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ABSTRACT
Many real applications can be modeled using bipartite graginch

as users vs. files in a P2P system, traders vs. stocks in a finan-

cial trading system, conferences vs. authors in a scieptitiica-
tion network, and so on. We introduce two operations on kitear
graphs: 1) identifying similar nodes (relevance searaidg,?) find-
ing nodes connecting irrelevant nodes (anomaly detectfm) we
propose algorithms to compute the relevance score for eadé n
using random walk with restarts and graph partitioning; \&® a
propose algorithms to identify anomalies, using relevaswm®es.
We evaluate the quality of relevance search based on sernarfti
the datasets, and we also measure the performance of thelgnom
detection algorithm with manually injected anomalies. tBef-
fectiveness and efficiency of the methods are confirmed bgrexp
ments on several real datasets.

1. INTRODUCTION

A bipartite graph is a graph where nodes can be divided into tw
groupsVi andV, such that no edge connects the vertices in the
same group. More formally, a bipartite gra@his defined a$s =

(ML UVo,E), whereVy = {g|1 <i <k}, Vo ={tj|]1<i<n} and

E C Vi1 xV, as shown in Figuré.

Many applications can be modeled as bipartite graphs, fmele:

1. P2P systems: \is a set of files, an¥, a set of peers. An
edgee connects a filea and a peet, if the peert down-
loaded or uploaded the fil@ In general, download/upload
of a single file usually involves more than two peers. Ideally
files should be placed based on their “similarity”, because
peers are more likely to download files of the same style (or
in the same neighborhood). Moreover, a peer that behaves
much differently from others is also of interest: it usually
consumes too much network resource or provides fictitious
files for others.

. Stock marketsThe traders and stocks foivkh andV, respec-
tively, and the edges represent buying and selling actiens b
tween the two sets. It is useful to identify similar stocksl an
abnormal traders.

. Research publicationResearchers publish in different con-
ferences, and this conference-author relationship carolde m
eled as a bipartite graph. Similar conferences and int&rdis
plinary authors are again important.

In general, based on the application domain, the edges caaigbted.
For instance, edge weights in the stock market graph caersept
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Figure 1: Bipartite Graph
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the trading volume, while in the research publication grapky

may represent the number of papers published by an author in a
conference. For presentation purposes, we will only focusio
weighted graphs; our algorithms can be easily generalzether
graph types.

Under this setting, our work addresses two primary problems

1. Relevancesearch(RS): Given a query nodain Vi, RS com-
putes therelevance scoresf all the nodes iV, to a. The
ones with higher relevance are the “neighborsaofor in-
stance in the research publication example, given the confe
ence KDD, the relevance search process computes the rele-
vance scores for all the conferences. Presumably, thestighe
score is assigned to KDD itself, with other data mining con-
ferences like ICDM, PKDD getting high scores as well.

. Anomaly detection(AD): Given a query noda in V;, AD
computes th@ormality scors for nodes in/, that link toa.
A node with a low normality score is an anomalydo In
the research publication example, an author is an anomaly if
he/she publishes at the conferences that have low relevance
scores to each other. More intuitively, they are the persons
who published in different fields.

Nodes that belong to the same grolfp ¢r V) have the same type;
it is the connectionbetweerthe two types of objects that hold the
key to mining the bipartite graph. Given the natural intestgp
connections (betweev, andV,), our objective is to discover the
intra-group relationships, such as the clusters and ositliéthin
the group. For example, in the research publication bigagtiaph,



Symbol Description

Vi the set ok row nodes

\2 the set oin column nodes

M thek-by-n bipartite matrix

MT the transpose d¥l

Ma the K+ n)-by-(k+ n) adjacent matrix

Pa the K-+ n)-by-(k+ n) Markov transition matrix
rs(a) 1-byk relevance score vector farc V

RS k-by-k similarity matrix where row equalsrs(i)
ns(t) the normality score of the column notle V»

S the set of row nodes linking to

RS the similarity matrix for column node

c the restarting probability

Table 1: Symbol Table

we have two natural groups of entities: conferences andeasith
The relationship between these two groups is reflected bsabes.
Based on these edges, we want to find the similar conferemckes a
unusual authors that publish in different communities. Keative
mining algorithm should thus be able to utilize these linksoas
the two natural groups.
Our algorithm for RS is based on the idea of random walks with
restarts §]. The method is simple, fast and scalable. In addition, we
approximate the RS computation by graph partitioning tohter
boost the performance.
The algorithm for AD uses the relevance scores from RS taiealc
late the normality scores. Intuitively, a node i) is an anomaly if
it links to two nodes (ifv4) that do not belong to the same neighbor-
hood/community. For example, an author becomes an anoraly i
he/she publishes papers in conferences from two differelasfi In
the sequel, we will use neighborhood and community intergha
ably.
Note also that a natural symmetry exists in the roles of rmigh
hoods and anomalies. In particular, we can swWamandV, and
apply the same algorithms in order to obtain the relevanceesa
V5, and the normality score ivh.
In summary, the contributions of the paper are that:

1. we identify two important problems (Relevance search and

Anomaly detection) on bipartite graphs;

restarts;

. we propose a fast approximate algorithm using graph-parti
tioning;

. the results can be easily interpreted by the user; and

. we evaluate the methods on real datasets to confirm their ap
plicability in practice.

Section2 proposes the data model and the formal problem specifi-
cation. SectiorB presents the algorithms. In sectiénwe evaluate
the algorithms with real data. We discuss the related wodeir
tion 5 and conclude in sectiof

2. PROBLEM DEFINITION

We will first define our data model and terminology, and then de
scribe the exact formulations of the RS and AD problems.

Data model.The data is viewed as a bipartite gra@h= (V1 U
Vy,E), whereV; = {g|1 <i<k}andVo ={tj|1<i<n}, EC

V1 x V. The graphG is conceptually stored in kby-n matrix
M, whereM(i, j) is the weight of the edge i, j >. In practice,
we adopt the sparse matrix representation where the stepage

is proportional to the number of non-zero elements in theimat
The value can be 0/1 for an unweighted graph, or any nonmnegati
value for a weighted graph. For example, the unweightedhgimp
Figure 1becomes the following matrix:

1. 0000 0
0 1000 0
11111 1

Men=| 0 0 0 0 0 0
1 1010 1
0 0101 1

The nodes iv1(V,) are called row(column) nodes. Note that a col-
umn node links to a row node if the corresponding matrix elgme
is not zero. Moreover, row nodeconnects to another row notle

if there is a column nodelinking to botha andb. We call that path

a connectiorbetweena andb throughc. Nodes a and b can have
multiple connections via different column nodes. For exknip
the matrix above, rows 3 and 5 links through column 1, 2, 4rand
We can construct the adjacency maty of G usingM easily:

(%)

MT 0
In particularMa(a,t) denotes the element aitth row andt-th col-
umn inMa.
Suppose we want to traverse the graph starting from the rowano
The probability of taking a particular edgea, t > is proportional
to the edge weight over all the outgoing edges franMore for-
mally, Pa(a,t) = MA(a,t)/Zg‘jln Ma(a,i). Therefore, the Markov
transition matrixPy of G is constructed asPy = col_norm(Ma),
wherecol_norm(Ma) normalizesMa such that every column sum
up to 1.
The main reasons to ha instead of working directly oMa and
P are the computational and storage savings. Next, we define th
two problems addressed in the paper:

@)

Relevance search(RS}iven a nodea € Vy, which nodes in
V1 are most related ta? There are two ways to represent the neigh-

. we develop the exact algorithms based on random walks with horhoods: 1) select a set of nodes as the neighbors and tée oth

nodes are not the neighbors (Hard Neighborhood); 2) assigh a
evance score to every node where “closer” nodes have highsco
and no hard boundary exists (Soft Neighborhood). In thigpape
adopt the soft neighborhood, because the score can helfifjden
neighborhood but also differentiate the neighbors. Inipalgr, we
want to compute a relevance scoreatfor every nodeb € V4. The
higher the score is, the more related that node & tdore specif-
ically, the node with the highest scoredds a itself; the nodes that
are closer t@ probably have higher scores than the other nodes that
are further away frona.

Anomaly detection (AD)what are the anomalies Wy to a
query nodea in V1? Again we adopt the notion of soft anomalies
by computing the normality scores for nodesvnthat link to a.
Hence, the nodes with lowest normality score are the anesti

a

3. PROPOSED METHOD



In this section we discuss the algorithms that solve the twbp
lems presented above. We first define relevance score andbaesc

ond, we need to compute tlik+ n) x 1 steady-state probability
vectoru, over all the nodes is. Last we extract the probabilities

how to compute the relevance scores for the row nodes (neigh- of the row nodes as the score vectors. Notedhaian be computed

borhood formation) in sectio.1. Then, based on the relevance
scores, we define normality score and illustrate how to ot
normality scores for the column nodes (anomaly detectiospi-
tion 3.2,

3.1 Algorithmsfor Relevance search (RS)

Given a row node € Vq, we want to compute a relevance score for
each row nod® € V;. The final result is a 1-bk-vector consisting
of all the relevance scores &

Intuition. Intuitively, we do multiple random walks starting from
a, and count the number of times that we visit eachV;. These
counts reflect the relevance of those nodes. tbhe probability of
visiting b € V4 from a is the relevance score we want to obtain. In
the following, we list some scenarios on which the row nodash
high relevance scores.

b usually has a high relevance scoreatih (1) b has many connec-
tions toa as shown irFigure 2 or (2) the connections only involve
a andb as shown irFigure 3 Scenario (1) is obvious because the
row nodesb and a have many connections through the columns
nodes, which indicates the strong relevance betviesmda. Sce-
nario (2) is less obvious. The intuition is that the conractihat
only links a andb brings more relevance betwearandb than the
connections linking, b and other nodes. The relevance score is not
only related to the number of connections but also to the rurob
nodes involved in the connections. One observation is figatdde

b with the highest relevance score is not necessarily the adtie w
most connections ta. The reason is that those connections link to
nodes other thaa andb as well. Thus, the relevance is spread out
among many different nodes. Nevertheless, all the scenaliove
are well captured by our algorithm in spite of its simplicity

Figure 2: Many connections betweamndb
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Figure 3: A few exclusive connection betwesandb
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Algorithms. We propose three methods for computing relevance
scores: (1Exact RS implements the basic idea but can have slow
convergence rates, (Bpproximate RS performs graph partition-
ing first which calculate results approximately but much engifi-
ciently.

Exact RS First, we transform the input row nodeinto a (k +
n) x 1 query vectoq with 1 in thea-th row and 0 otherwise. Sec-

by an iterated method from the following lemma.

LEmMMA 3.1. Letc be the probability of restarting random-walk
from the row node a. Then the steady-state probability vedgo
satisfies

LTa = (1— C)PA[.Ta+ an

@)

where R is already the column normalized.

PROOF Seel9 O

Algorithm RSE(Exact RS)
Input: nodea, bipartite matrixM, restarting probabilite, tolerant
thresholde

0. initialize g; = 0 except thea-th element is 1dz(a) = 1)

1. constructMa (seeEquation ) andPy = col_norm(Ma)

2. while (Ata| > €)

Uz = (1—c)Palla +COa

3. returniz (1 : k)

The algorithm simply applie§quation 2repeatedly until it con-
verges. Andc is set to 0.15 for all experiments. The actual com-
putation of the algorithm can utilize the bipartite struetto have
more saving. More specifically, we do not materialldg and Pa
and modifyEquation 2as follows:

u}:(l—c)(

whereUa(1 : k) andua(k+ 1 : k+n) are the vectors of firdt and
last n elements oft,, respectively. The relevance scasta) is
Ua(1: K). If we compute the relevance scores for all the nodes, we
have a similarity matriXs.

The saving is significant when the number of rdvad the number

of columnsn differ a lot. ThereforeEquation 3is always recom-
mended in practice, whilEquation Zis only for demonstrating the
concept.

Very often we have the input of more than one row node. The task
is to compute the relevance score for every input row nodseéu

of applying algorithm R§ for every input, we implement it in a
more efficient way by running the algorithm in parallel fovegal
inputs by vectorizing the code.

col norm(M)Ua(k+1:k+n)

col_norm(MT)lIa(l 1K) ) +ca  (3)

Approximate RSOne problem with the previous approaches
is the large memory requirement. In particular, the alganitis
efficient when the entire matrix can fit in memory. Howevere on
observation from our experiments suggest that the relevacores

for the nodes are very skewed, with most nodes have almost zer
relevance scores, and only a few nodes having high scoreis. Th
suggests that we can possibly filter out many “irrelevanttiem
before applying the RS computation. Based on this intuitive
apply graph partition first and perform RS only on the pantiti
containing the query node. In particular, we use METIS] [to
partition the graph int& non-overlapping subgraphs of about the
same size. Note that the graph partition is a one-time costeto
process the data. The pseudo code is the following:

Algorithm RSa(Approximate RS)
Input: the bipartite grapks, the number of partitions, input node
a

0. divide G into k partitionsG; ... Gk (one-time cost)

1. find the partitior5; containinga




2. construct the approximate bipartite mathi of G; (ignore the
edges cross two partitions)

3. applyRS onaandM’

4. set O relevance scores for the nodes that are Bt in

3.2 Algorithm for Anomaly Detection

Based on the relevance scores\fpicomputed as shown above, we
can compute the normality scores for the nodéginA node with

a low normality score is an anomaly.

Given a column nodee V,, we first find the se& of row nodes to
whicht links: § = {a|< a,t >€ E}. Letk be the size of. If t is
“normal”, then the relevance scores between any pair of ehesn

in § should be high. More formally, we compute tkheby-k; sim-
ilarity matrix RS overS. Note thatRS can be obtained by taking

a subset of columns and rows from théy-k similarity matrixRS

For example inFigure 1 fort = 1,§ = {1,3,5} andRS is a 3-
by-3 matrix where each element is a relevance score @t

tob € §. Note that (1)RS is asymmetric, i.e., the relevance score
from a to b may differ from the one fronb to a, and (2)RS has

a strong diagonal, i.e., every node has a high relevance scdt-
self. We ignore the diagonal for the normality score comipora

In general, the normality score bfcan be any function oveRS.

We defineng(t) as the mean over all the non-diagonal elements in
RS. The lower the normality scomes(t) is, the more abnormalis.
Essentially, given an inpute V,, we first compute the relevance
score vectors for every adjacent row ndgldéo t (using any of the
RS methods described in secti®r). Then we obtain the similarity
matrix RS and apply the score function d®S. A computational
trade-off is whether or not to pre-compute the relevanceeseec-
tors of all the row nodes. It usually depends on the numbeowf r
nodes involved. For example, if the dataset has a large nuaibe
rows and the input queries are skewed, pre-computationt isene
ommended, because it incurs huge cost and most of them isdvast
due to the skewed distribution of the queries.

Algorithm AD(Anomaly Detection)
Input: input nodd, bipartite transition matri®

0. find the se§ = {&;,ay,...} such thava € §, < &,t > E.

1. compute all the relevance score veciisf a € §

2. construct the similarity matriRS from Rovers

3. apply the score function ov&®S to obtain the final normality
scorens(t)

4. returnngt)

Examples of anomaliegigure 4shows the typical example
of an anomalyt, which links to two row nodea andb that commu-
nicate to different sets of nodes. Withdyt andb are completely
irrelevant. Note that one requirement of computing releeais
that a and b need to have enough connections to establish their
identities. For exampleg andb in Figure 4still have a number of
connections without, while in Figure 5 b has no other connections
apart fromt. This implies inFigure 5the identity ofb is unknown

(or we do not have enough confidence to say whethiswvery re-
lateda or not). Thereforet in Figure 5will not be identified as an
anomaly, whilet in Figure 4will.

On the other hand, the exampleRigure 5is easy to be found by
simply counting the degree of the row nodes and picking theson
with only one connection. Potentially, the number of sucde®
can be huge. The point is that our method aims at a non-trivial
case of the anomaly, which tries to identify the connectiatr®ss
multiple neighborhoods. For example, author A and B writ@yna
papers with different groups of authors. If there is a paggwben

A and B, it will be an anomaly, because we know A and B belong to

different neighborhoods. However, if B only has one paper An

is the co-author, we cannot decide whether the paper is analyo
because we do not know the neighborhood of B other than tlee sol
paper with A.

Figure 4: Withoutt, a andb belong to different neigh-
borhoods

Figure 5: Without, the identify ofb is unknown

4. EXPERIMENTS

In this section we evaluate the exact and approximate mstbod
neighborhood formation and anomaly detection. We focusmn a
swering the following questions:

Q1: How accurate is the exact RS algorithm?

Q2: How to choose restarting probabilic?

Q3: How accurate is the approximate RS algorithm?

Q4: Can the AD algorithm detect the injected anomalies?
Q5: What about the computational cost of different methods?

After describing the experimental settings in sectiah we answer
Q1 in sectiom.2, using concrete examples from different datasets
(i.e., compare exact RS algorithm vs. “ground truth”). &ect
4.3 discusses the tradeoff in parameter selection. Sedtibnses
guantitative metric to compare approximate RS methods xs. e
act RS method (Q2). Sectign5answers Q3 by injecting artificial
anomalies and evaluating the performance on that. Firsattion

4.6 answers Q4 by providing the quantitative evidence of the dra
matic computational saving on space and execution time.

4.1 Experiment Setting

Datasets: We construct the graphs using three real datasets, whose
size are specified ifiable 2

Conference-Author (CA) dataset: Every row represents a confer-
ence; every column represents an author. The elements ni-the
partite matrixM are nonnegative integers. On average, every con-
ference has 510 authors, every author publishes in 5 cordese



Dataset | Rows | Columns | Nonzeros | Weighted
CA 288590 2687 661535 yes
AP 315688 | 471514 | 1073168 no

IMDB | 553388| 204000 | 2269811 no

Table 2: Dataset summary

Author-Paper (AP) dataset: Every row represents an author; every
column represents a paper. The elements in the bipartitexniat
are either 0 or 1. In particulaM(i, j) = 1 indicates that théth
author is an author for thpth paper. On average, every author has
3 papers, every paper has 2 authors. The distribution isskeryed

as most of authors have only one paper.

IMDB dataset: Every row is an actor/actress; every column is a
movie. The elements in the bipartite matkikare either 0 or 1. In
particular,M(i, j) = 1 indicates that theth actor/actress is in the
j-th movie. On average, every actor/actress plays in 4 moaies
every movies has 11 actors/actresses.

4.2 (Q1) Evaluation of Exact RS

Exact RS: We want to check whether the nodes with high rele-
vance scores are closely related to the query node. The gtal i
ensure the result makes sense in the context of the apphsati
More specifically, we select some rows from the three dataset
the query nodes and verify the RS scores through user stugly. D
to the page limit, we just show one example from each dataset.
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Figure 6: (KDD

CA dataset: Figure 6shows the top 10 neighbors of KDD confer-
ence. As expected, the most related conferences are thetoghe
data mining, machine learning and databases conferencédi:,|
SIGMOD, VLDB, ICDM, ICDE, NIPS. This also implies that KDD
is an interdisciplinary conference attracting researctilom dif-
ferent fields. Similar to our example, Klink et al. 14 devel-
oped DBLP browser which uses an author-based similarityimet
to model the closeness of two conferences. i.e., two conderse
that have many common authors are highly similar.

AP dataset: Figure 7plots the top 10 neighbors of Prof. Jiawei
Han. They are indeed the close collaborators to Prof. Ham, wh
either have many joint papers with Prof. Han or have sevedlie
sive joint papers.

IMDB dataset: For IMDB dataset, we perform the same set of
experiment as above. Unlike the previous two datasets,dbple

in this dataset are not well-clustered, meaning thatahdb play

in the same movie, it does not increase the likelihood thet ill
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Figure 8: Robert DeNiro

play together again in the future. Of course, they are exmepin

the sequels of successful movies.

We choose Robert De Niro as an example here. The persons with
the highest relevance scores, as showFigure § are Billy Crystal

and Lisa Kudrow because they all perform in the same 2 movies
(“Analyze this” and the sequel “Analyze that"). Furtherrapthey

are the only main actors/actress in the movies. This is afjarto

the result of the combination of 2 scenarios in secidn

4.3 (Q2) Parameter Selection

There are only two parameters in R&lgorithm, namely the restart
probability c and the convergence threshald The ¢ is just the
termination threshold for the matrix multiplication, whiclearly
affects the number of convergence. Basically, it determitie
minimal change on the relevance scores between two comsecut
rounds. We setitto 0.1 in all cases.

The effect ofc is similar to e but in a less obvious way. Given
the e, the largerc is, the quicker the method converges. In the ex-
treme,wherc = 1, meaning that we jump back to the query node
with 100% probability every timestamp, it is converged vitter-
ation. Wherc is closed to 0, the method probably takes very long
time to converge if ever. Note thatdf= 0, it will never converge
since the graph is bipartite. The Markov chain will bouncekba
and forth between two sets of vertices. Rigure 9 the number

of iterations before converging decreases quickly thers dia¢ as



c increases. Ideally from the efficiency point of view, we wamnt
minimize the time required for the method. Note that the nemb
of iteration needed drops significantly when the size of grap
duces. This gives us a lot of performance gain when we pattiti
the graph.

In general, the convergence speed depends on the ratio Hifghe
and second eigenvalues of the Markov transition matrix. dr p
ticular, sinceA; = 1, the convergence speed is proportional to the
second eigenvalug,. The smallerA; is, the faster the conver-
gence speed is. In fact, as pointed out by Haveliwalg, [the
second eigenvalue of Markov transition matfxis exactly 1— c.
Therefore, the number of iteration decreases axhs shown in
Figure 9

On the other hand, whenis high, the relevance search only focus
on the neighbors that are very close to the query node. Inxhe e
treme, whert = 1, the only relevant node is the query node itself,
all the other row nodes have 0 relevance value Figure 10we
observe the percentages of irrelevant row nodes increasesce-
ally from the effectiveness point of view, we want to have rgda
coverage of the nodes with non-zero relevance score.

To balance between efficiency and effectiveness, we choese
0.15 in all the other experiments. We only show the result on BBL
dataset, and similar results are obtained from other datés® In
practice, The changes arhave very small effect on the ordering
of the most relevant nodes to the query nodes. The effectiidyna
focused on the nodes that have little relevance to the queatg,n
which are unimportant in most cases. In this sense, the migte
robust to the change af

4.4 (Q3) Evaluation of Approximate RS

We partition each dataset intopartitions with equal size using
METIS [13]. The RS computation for a row nodeonly involves
the nodes in the same partition agwe assign 0 relevance scores
to the row nodes in other partitions). The goal is to show that
relevance scores of the high relevant nodes do not changle usuc
ing the approximate method(partition method). The metdcuse
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Figure 9: ¢ value vs. number of iteration for converging for
DBLP
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Figure 10: c value vs. percentage of irrelevant nodes for RBL
Whenc > .6, most of the nodes have 0 relevance score to the
guery node except for the ones that are very close to it.

is precision that is, the number of common top relevant nodes over proximate RS is marginal. And we use approximate RS in the AD

the neighborhood size. We set the neighborhood size to &0 (i.
retrieve the top 10 relevant nodes) and vary the number tifipar

k as shown irFigure 11as a function oprecision We observe the
precision does not drop much, which suggests that the ajppat
method works well. We also vary the neighborhood size as @& fun
tion of precisionin Figure 12 while setting the number of partition
k = 10. We observe that the neighborhood can be fairly accyratel
captured over different ranges. Note that it does not mahkses®
have large neighborhood size for this evaluation, becaused-
evance scores will become very low (practically zero) forstraf
the nodes. In particular, the effective neighborhood sizelftaset
AP is rather small, because the most of people only co-auwtftbr

a small number of people. As a result, the precision dropsifas
the neighborhood size increases.

45 (Q4) Evaluation of Anomaly Detection

Due to lack of information about the real anomalies, we mbyua
inject random connections between nodes. In particularjnxe
ject 100 column nodes in each dataset connectifgrtov nodes,

algorithm to reduce computational cost.

Figure 13plots the average normality scores of genuine and in-
jected nodes over three different datasets. We observe galpig
of the normality scores between genuine and injected onescé]

we can easily identify the anomalies by looking at the oneh wi
the lower scores within the same dataset. Note that onlyetae r
tive score matters in detecting anomaly not the absoluteeséand

it is hard to compare the scores across datasets becausedif-th
ferent graph structure.

4.6 (Qb5) Evaluation of thecomputational cost

All the computation of different methods boils down to the &&n-
putation. The only difference is how large the matrix isultively,

the computational cost is large if we work with the entireadat.

It is usually beneficial to partition the dataset. The pamiincurs

a one-time cost which can be amortized over the future gsiérie
volving RS and AD computation)Figure 14shows the computa-
tion cost on neighborhood formation vs. the number of partit.
Note that a dramatic cost reduction can be found when usiag th

wherek equals the average degree of column nodes. The row nodesapproximate RS computation method (the partition method).

are randomly selected among the column nodes with largesdegr
(greater than 10 times the average). The reason for not aitige
row nodes is that most of row nodes have degree one and tlee inje
tion to those nodes will not lead to an anomaly because titafiy

we do not have enough information to tell whether the ingects

an anomaly. Note that the difference between using exacapnd

5. RELATED WORK

There is a significant body on research related to our workghvh
we categorize into four groups: graph partitioning,outtietection
on graphs, random walks on graphs, and collaborative fileri
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Graph Partitioning. Popular methods for partitioning graphs
include the METIS algorithm1[3], spectral partitioning technique$7],
flow-based methodsTinformation-theoretic methods], and meth-
ods based on the “betweenness” of edggsgmong others. These
typically require some parameters as input; Chakraba}tuges
MDL criterion to automatically determine both the numbeciofs-
ters and their memberships. Note that our work is orthogtmal
this, and we can use any graph-clustering algorithm. Inteoidi
as a by-product of our algorithms, the neighborhoods oveeso
can represermersonalized clusterdepending on different perspec-
tives.

Outlier Detection on GraphsaAutopart /] finds outlier edges
in a general graph; however, we need to detect outbeles Noble
and Cook 15 study anomaly detection on general graph with la-
beled nodes; yet, their goal is to identify abnormal sulzstme in
the graph, not the abnormabdes Aggarwal and Yu [] propose
algorithms to find outliers in high-dimensional spaces, itsiap-
plicability to graphs is unclear: the nodes in a graph lie ireetor
space formed by the graph nodes themselves, so the vect spa
and the points in it are related. Newman proposed “betwessine
measure of the centrality of a node in a graph. The algorithahsio
based on random walk with running time @ n)n?), wheremis

0.035 4 O genuine
0.03 - M injected
0.025 +
0.02 -
0.015 -
0.01 -
0.005 -
o [ mm | i
CA AP IMDB

Figure 13: Normality scores between genuine and injectetk10
across 3 datasets
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Figure 14: Computation time(sec): y-axis vs. number ofipanis:
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the number of edges amdthe number of nodes in the graph. The
betweenness measure is intuitively related to our norynstiores
(high betweenness means low normality). However the comput
tion cost of betweenness is much higher.

Random-walk on Graphsage-Rank{] learns the ranks of
web pages using the iterated power method on web graph M (ad-
jacency matrix of the entire graph). The ranks of all webpaaye
cast as an N-dimensional vector, and then the fixed pointuisdo
for the following equationt = (1—a)M x T+ ap, where thea

is the damping factor ang = [ﬁ]N x 1. Thus, there is an uni-
form prior on all the web pages. In order to deal with persiaedl
query, Topic-Sensitive PageRan¥ jncreases the importance of
certain web pages by putting non-uniform weights fiorSimilar
random-walk approaches have been used into other domains; f
example, Mixed Media Graph(MMG)L[] applies random walk
with restart on image captioning application. We plan tdHer
explore the random walk algorithm on bipartite graph andiuse
identify anomaly nodes. Similar idea also appear in SimRank



which is a similarity measure between nodes in a graph wigh th
intuition that two nodes are similar if they are related hyitar
nodes.

Collaborative Filtering. Collaborative filtering is one of biggest
successes on bipartite graphs, which provides automatitid
about the user interests based on the historical informdtimm
many users (collaborating)L§; 2]. Many different similarity met-
rics have been proposed such as Jaccard coefficient, cawiiters
ity, and Pearson correlation coefficient (see alllif]], which is re-
lated to the relevance search in this paper. However, tdéitraal
similarity metrics do not apply when there is no common carne
tion. For example, if two authors never published a papesttuey,
those traditional metrics will give zero similarity despihe fact
that they publish in the same field, while our method will bieab
find the non-zero relevance between the two authors. Funthrer,
the goal of collaborative filtering is to develop a recomnagiah
system to predict the users’ behavior but not to find anomalie

6. CONCLUSION

A variety of datasets can be modeled as bipartite graph#, asic
P2P networks, stock trades, author-paper relationshifgssa on.
This paper addresses two problems on such bipartite graphs:
relevance search; 2) anomaly detection. The main propeastithe
methods are:

Fast convergence

Scalability to large graphs

e Simplicity of implementation

Easy interpretation of results

The main idea is to use random-walk with restarts and graph pa
titioning. We evaluate the methods on several real datagets
experiments confirm the efficiency as well as the effectiseraf
the proposed methods.
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