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ABSTRACT
Many real applications can be modeled using bipartite graphs, such
as users vs. files in a P2P system, traders vs. stocks in a finan-
cial trading system, conferences vs. authors in a scientificpublica-
tion network, and so on. We introduce two operations on bipartite
graphs: 1) identifying similar nodes (relevance search), and 2) find-
ing nodes connecting irrelevant nodes (anomaly detection). And we
propose algorithms to compute the relevance score for each node
using random walk with restarts and graph partitioning; we also
propose algorithms to identify anomalies, using relevancescores.
We evaluate the quality of relevance search based on semantics of
the datasets, and we also measure the performance of the anomaly
detection algorithm with manually injected anomalies. Both ef-
fectiveness and efficiency of the methods are confirmed by experi-
ments on several real datasets.

1. INTRODUCTION
A bipartite graph is a graph where nodes can be divided into two
groupsV1 andV2 such that no edge connects the vertices in the
same group. More formally, a bipartite graphG is defined asG =
〈V1 ∪V2,E〉, whereV1 = {ai |1 ≤ i ≤ k}, V2 = {ti |1 ≤ i ≤ n} and
E ⊂V1×V2 as shown in Figure1.
Many applications can be modeled as bipartite graphs, for example:

1. P2P systems: V1 is a set of files, andV2 a set of peers. An
edgee connects a filea and a peert, if the peert down-
loaded or uploaded the filea. In general, download/upload
of a single file usually involves more than two peers. Ideally,
files should be placed based on their “similarity”, because
peers are more likely to download files of the same style (or
in the same neighborhood). Moreover, a peer that behaves
much differently from others is also of interest: it usually
consumes too much network resource or provides fictitious
files for others.

2. Stock markets:The traders and stocks formV1 andV2 respec-
tively, and the edges represent buying and selling actions be-
tween the two sets. It is useful to identify similar stocks and
abnormal traders.

3. Research publications:Researchers publish in different con-
ferences, and this conference-author relationship can be mod-
eled as a bipartite graph. Similar conferences and interdisci-
plinary authors are again important.

In general, based on the application domain, the edges can beweighted.
For instance, edge weights in the stock market graph can represent

E

a1

ak

a5

a4

a3

a2

t1

tn

t5

t4

t3

t2

V1 V2

Figure 1: Bipartite Graph

the trading volume, while in the research publication graph, they
may represent the number of papers published by an author in a
conference. For presentation purposes, we will only focus on un-
weighted graphs; our algorithms can be easily generalized to other
graph types.
Under this setting, our work addresses two primary problems:

1. Relevance search(RS): Given a query nodea in V1, RS com-
putes therelevance scoresof all the nodes inV1 to a. The
ones with higher relevance are the “neighbors” ofa. For in-
stance in the research publication example, given the confer-
ence KDD, the relevance search process computes the rele-
vance scores for all the conferences. Presumably, the highest
score is assigned to KDD itself, with other data mining con-
ferences like ICDM, PKDD getting high scores as well.

2. Anomaly detection(AD): Given a query nodea in V1, AD
computes thenormality scores for nodes inV2 that link toa.
A node with a low normality score is an anomaly toa. In
the research publication example, an author is an anomaly if
he/she publishes at the conferences that have low relevance
scores to each other. More intuitively, they are the persons
who published in different fields.

Nodes that belong to the same group (V1 orV2) have the same type;
it is the connectionsbetweenthe two types of objects that hold the
key to mining the bipartite graph. Given the natural inter-group
connections (betweenV1 andV2), our objective is to discover the
intra-group relationships, such as the clusters and outliers within
the group. For example, in the research publication bipartite graph,



Symbol Description
V1 the set ofk row nodes
V2 the set ofn column nodes
M thek-by-n bipartite matrix

MT the transpose ofM
MA the (k+n)-by-(k+n) adjacent matrix
PA the (k+n)-by-(k+n) Markov transition matrix

rs(a) 1-by-k relevance score vector fora∈V1
RS k-by-k similarity matrix where rowi equalsrs(i)

ns(t) the normality score of the column nodet ∈V2
St the set of row nodes linking tot

RSt the similarity matrix for column nodet
c the restarting probability

Table 1: Symbol Table

we have two natural groups of entities: conferences and authors.
The relationship between these two groups is reflected by theedges.
Based on these edges, we want to find the similar conferences and
unusual authors that publish in different communities. An effective
mining algorithm should thus be able to utilize these links across
the two natural groups.
Our algorithm for RS is based on the idea of random walks with
restarts [9]. The method is simple, fast and scalable. In addition, we
approximate the RS computation by graph partitioning to further
boost the performance.
The algorithm for AD uses the relevance scores from RS to calcu-
late the normality scores. Intuitively, a node (inV2) is an anomaly if
it links to two nodes (inV1) that do not belong to the same neighbor-
hood/community. For example, an author becomes an anomaly if
he/she publishes papers in conferences from two different fields. In
the sequel, we will use neighborhood and community interchange-
ably.
Note also that a natural symmetry exists in the roles of neighbor-
hoods and anomalies. In particular, we can swapV1 andV2 and
apply the same algorithms in order to obtain the relevance score in
V2 and the normality score inV1.
In summary, the contributions of the paper are that:

1. we identify two important problems (Relevance search and
Anomaly detection) on bipartite graphs;

2. we develop the exact algorithms based on random walks with
restarts;

3. we propose a fast approximate algorithm using graph parti-
tioning;

4. the results can be easily interpreted by the user; and

5. we evaluate the methods on real datasets to confirm their ap-
plicability in practice.

Section2 proposes the data model and the formal problem specifi-
cation. Section3 presents the algorithms. In section4, we evaluate
the algorithms with real data. We discuss the related work insec-
tion 5 and conclude in section6.

2. PROBLEM DEFINITION
We will first define our data model and terminology, and then de-
scribe the exact formulations of the RS and AD problems.

Data model.The data is viewed as a bipartite graphG = 〈V1∪
V2,E〉, whereV1 = {ai |1 ≤ i ≤ k} andV2 = {ti |1 ≤ i ≤ n}, E ⊂
V1 ×V2. The graphG is conceptually stored in ak-by-n matrix
M, whereM(i, j) is the weight of the edge< i, j >. In practice,
we adopt the sparse matrix representation where the storagespace
is proportional to the number of non-zero elements in the matrix.
The value can be 0/1 for an unweighted graph, or any nonnegative
value for a weighted graph. For example, the unweighted graph in
Figure 1becomes the following matrix:

Mk×n =



















1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
1 1 1 1 1 . . . 1
0 0 0 0 0 . . . 0
1 1 0 1 0 . . . 1
. . .
0 0 1 0 1 . . . 1



















The nodes inV1(V2) are called row(column) nodes. Note that a col-
umn node links to a row node if the corresponding matrix element
is not zero. Moreover, row nodea connects to another row nodeb
if there is a column nodec linking to botha andb. We call that path
a connectionbetweena andb throughc. Nodes a and b can have
multiple connections via different column nodes. For example in
the matrix above, rows 3 and 5 links through column 1, 2, 4 andn.
We can construct the adjacency matrixMA of G usingM easily:

MA =

(

0 M
MT 0

)

(1)

In particular,MA(a,t) denotes the element ata-th row andt-th col-
umn inMA.
Suppose we want to traverse the graph starting from the row nodea.
The probability of taking a particular edge< a, t > is proportional
to the edge weight over all the outgoing edges froma. More for-
mally, PA(a,t) = MA(a,t)/∑k+n

i=1 MA(a, i). Therefore, the Markov
transition matrixPA of G is constructed as:PA = col norm(MA),
wherecol norm(MA) normalizesMA such that every column sum
up to 1.
The main reasons to haveM instead of working directly onMA and
PA are the computational and storage savings. Next, we define the
two problems addressed in the paper:

Relevance search(RS).Given a nodea∈ V1, which nodes in
V1 are most related toa? There are two ways to represent the neigh-
borhoods: 1) select a set of nodes as the neighbors and the other
nodes are not the neighbors (Hard Neighborhood); 2) assign arel-
evance score to every node where “closer” nodes have high scores,
and no hard boundary exists (Soft Neighborhood). In this paper, we
adopt the soft neighborhood, because the score can help identify
neighborhood but also differentiate the neighbors. In particular, we
want to compute a relevance score toa for every nodeb∈V1. The
higher the score is, the more related that node is toa. More specif-
ically, the node with the highest score toa is a itself; the nodes that
are closer toa probably have higher scores than the other nodes that
are further away froma.

Anomaly detection (AD).What are the anomalies inV2 to a
query nodea in V1? Again we adopt the notion of soft anomalies
by computing the normality scores for nodes inV2 that link to a.
Hence, the nodes with lowest normality score are the anomalies to
a.

3. PROPOSED METHOD



In this section we discuss the algorithms that solve the two prob-
lems presented above. We first define relevance score and describe
how to compute the relevance scores for the row nodes (neigh-
borhood formation) in section3.1. Then, based on the relevance
scores, we define normality score and illustrate how to obtain the
normality scores for the column nodes (anomaly detection) in sec-
tion 3.2.

3.1 Algorithms for Relevance search (RS)
Given a row nodea∈V1, we want to compute a relevance score for
each row nodeb∈V1. The final result is a 1-by-k vector consisting
of all the relevance scores toa.

Intuition. Intuitively, we do multiple random walks starting from
a, and count the number of times that we visit eachb∈V1. These
counts reflect the relevance of those nodes toa. The probability of
visiting b∈V1 from a is the relevance score we want to obtain. In
the following, we list some scenarios on which the row nodes have
high relevance scores.
b usually has a high relevance score toa if (1) b has many connec-
tions toa as shown inFigure 2; or (2) the connections only involve
a andb as shown inFigure 3. Scenario (1) is obvious because the
row nodesb and a have many connections through the columns
nodes, which indicates the strong relevance betweenb anda. Sce-
nario (2) is less obvious. The intuition is that the connection that
only links a andb brings more relevance betweena andb than the
connections linkinga, b and other nodes. The relevance score is not
only related to the number of connections but also to the number of
nodes involved in the connections. One observation is that the node
b with the highest relevance score is not necessarily the one with
most connections toa. The reason is that those connections link to
nodes other thana andb as well. Thus, the relevance is spread out
among many different nodes. Nevertheless, all the scenarios above
are well captured by our algorithm in spite of its simplicity.

a

b

Figure 2: Many connections betweena andb

a

b

Figure 3: A few exclusive connection betweena andb

Algorithms. We propose three methods for computing relevance
scores: (1)Exact RS implements the basic idea but can have slow
convergence rates, (2)Approximate RS performs graph partition-
ing first which calculate results approximately but much more effi-
ciently.

Exact RS.First, we transform the input row nodea into a (k+
n)×1 query vector~qa with 1 in thea-th row and 0 otherwise. Sec-

ond, we need to compute the(k+ n)× 1 steady-state probability
vector~ua over all the nodes inG. Last we extract the probabilities
of the row nodes as the score vectors. Note that~ua can be computed
by an iterated method from the following lemma.

LEMMA 3.1. Let c be the probability of restarting random-walk
from the row node a. Then the steady-state probability vector ~ua
satisfies

~ua = (1−c)PA~ua +c~qa (2)

where PA is already the column normalized.

PROOF. See [19]

Algorithm RSE(Exact RS)
Input: nodea, bipartite matrixM, restarting probabilityc, tolerant
thresholdε
0. initialize ~qa = 0 except thea-th element is 1 (qa(a) = 1)
1. constructMA (seeEquation 1) andPA = col norm(MA)

2. while (|∆~ua| > ε)
~ua = (1−c)PA~ua +c~qa

3. return~ua(1 : k)

The algorithm simply appliesEquation 2repeatedly until it con-
verges. Andc is set to 0.15 for all experiments. The actual com-
putation of the algorithm can utilize the bipartite structure to have
more saving. More specifically, we do not materializeMA andPA
and modifyEquation 2as follows:

~ua = (1−c)

(

col norm(M)~ua(k+1 : k+n)
col norm(MT)~ua(1 : k)

)

+c~qa (3)

where~ua(1 : k) and~ua(k+ 1 : k+ n) are the vectors of firstk and
last n elements of~ua, respectively. The relevance scorers(a) is
~ua(1 : k). If we compute the relevance scores for all the nodes, we
have a similarity matrixS.
The saving is significant when the number of rowsk and the number
of columnsn differ a lot. Therefore,Equation 3is always recom-
mended in practice, whileEquation 2is only for demonstrating the
concept.
Very often we have the input of more than one row node. The task
is to compute the relevance score for every input row node. Instead
of applying algorithm RSE for every input, we implement it in a
more efficient way by running the algorithm in parallel for several
inputs by vectorizing the code.

Approximate RS.One problem with the previous approaches
is the large memory requirement. In particular, the algorithm is
efficient when the entire matrix can fit in memory. However, one
observation from our experiments suggest that the relevance scores
for the nodes are very skewed, with most nodes have almost zero
relevance scores, and only a few nodes having high scores. This
suggests that we can possibly filter out many “irrelevant” nodes
before applying the RS computation. Based on this intuition, we
apply graph partition first and perform RS only on the partition
containing the query node. In particular, we use METIS [13] to
partition the graph intoκ non-overlapping subgraphs of about the
same size. Note that the graph partition is a one-time cost topre-
process the data. The pseudo code is the following:
Algorithm RSA(Approximate RS)
Input: the bipartite graphG, the number of partitionsκ, input node
a
0. divideG into κ partitionsG1 . . .Gκ (one-time cost)
1. find the partitionGi containinga



2. construct the approximate bipartite matrixM′ of Gi (ignore the
edges cross two partitions)
3. applyRSE ona andM′

4. set 0 relevance scores for the nodes that are not inGi

3.2 Algorithm for Anomaly Detection
Based on the relevance scores forV1 computed as shown above, we
can compute the normality scores for the nodes inV2. A node with
a low normality score is an anomaly.
Given a column nodet ∈V2, we first find the setSt of row nodes to
which t links: St = {a |< a,t >∈ E}. Let kt be the size ofSt . If t is
“normal”, then the relevance scores between any pair of elements
in St should be high. More formally, we compute thekt-by-kt sim-
ilarity matrix RSt overSt . Note thatRSt can be obtained by taking
a subset of columns and rows from thek-by-k similarity matrixRS.
For example inFigure 1, for t = 1,St = {1,3,5} and RSt is a 3-
by-3 matrix where each element is a relevance score froma ∈ St
to b∈ St . Note that (1)RSt is asymmetric, i.e., the relevance score
from a to b may differ from the one fromb to a, and (2)RSt has
a strong diagonal, i.e., every node has a high relevance score to it-
self. We ignore the diagonal for the normality score computation.
In general, the normality score oft can be any function overRSt .
We definens(t) as the mean over all the non-diagonal elements in
RSt . The lower the normality scorens(t) is, the more abnormalt is.
Essentially, given an inputt ∈ V2, we first compute the relevance
score vectors for every adjacent row nodeSt to t (using any of the
RS methods described in section3.1). Then we obtain the similarity
matrix RSt and apply the score function onRSt . A computational
trade-off is whether or not to pre-compute the relevance score vec-
tors of all the row nodes. It usually depends on the number of row
nodes involved. For example, if the dataset has a large number of
rows and the input queries are skewed, pre-computation is not rec-
ommended, because it incurs huge cost and most of them is wasted
due to the skewed distribution of the queries.
Algorithm AD(Anomaly Detection)
Input: input nodet, bipartite transition matrixP
0. find the setSt = {a1,a2, ...} such that∀ai ∈ St ,< ai ,t >∈ E.
1. compute all the relevance score vectors~Rof a∈ St

2. construct the similarity matrixRSt from ~R overSt

3. apply the score function overRSt to obtain the final normality
scorens(t)
4. returnns(t)

Examples of anomalies.Figure 4shows the typical example
of an anomalyt, which links to two row nodesa andb that commu-
nicate to different sets of nodes. Withoutt, a andb are completely
irrelevant. Note that one requirement of computing relevance is
that a and b need to have enough connections to establish their
identities. For example,a andb in Figure 4still have a number of
connections withoutt, while inFigure 5, b has no other connections
apart fromt. This implies inFigure 5the identity ofb is unknown
(or we do not have enough confidence to say whetherb is very re-
lateda or not). Therefore,t in Figure 5will not be identified as an
anomaly, whilet in Figure 4will.
On the other hand, the example inFigure 5is easy to be found by
simply counting the degree of the row nodes and picking the ones
with only one connection. Potentially, the number of such nodes
can be huge. The point is that our method aims at a non-trivial
case of the anomaly, which tries to identify the connectionsacross
multiple neighborhoods. For example, author A and B write many
papers with different groups of authors. If there is a paper between
A and B, it will be an anomaly, because we know A and B belong to

different neighborhoods. However, if B only has one paper and A
is the co-author, we cannot decide whether the paper is an anomaly,
because we do not know the neighborhood of B other than the sole
paper with A.

a

b
t

Figure 4: Withoutt, a andb belong to different neigh-
borhoods

a

b
t

Figure 5: Withoutt, the identify ofb is unknown

4. EXPERIMENTS
In this section we evaluate the exact and approximate methods on
neighborhood formation and anomaly detection. We focus on an-
swering the following questions:

Q1: How accurate is the exact RS algorithm?

Q2: How to choose restarting probabilityc?

Q3: How accurate is the approximate RS algorithm?

Q4: Can the AD algorithm detect the injected anomalies?

Q5: What about the computational cost of different methods?

After describing the experimental settings in section4.1, we answer
Q1 in section4.2, using concrete examples from different datasets
(i.e., compare exact RS algorithm vs. “ground truth”). Section
4.3 discusses the tradeoff in parameter selection. Section4.4 uses
quantitative metric to compare approximate RS methods vs. ex-
act RS method (Q2). Section4.5answers Q3 by injecting artificial
anomalies and evaluating the performance on that. Finally,section
4.6 answers Q4 by providing the quantitative evidence of the dra-
matic computational saving on space and execution time.

4.1 Experiment Setting
Datasets: We construct the graphs using three real datasets, whose
size are specified inTable 2.
Conference-Author(CA) dataset: Every row represents a confer-
ence; every column represents an author. The elements in thebi-
partite matrixM are nonnegative integers. On average, every con-
ference has 510 authors, every author publishes in 5 conferences.



Dataset Rows Columns Nonzeros Weighted
CA 288590 2687 661535 yes
AP 315688 471514 1073168 no

IMDB 553388 204000 2269811 no

Table 2: Dataset summary

Author-Paper(AP) dataset: Every row represents an author; every
column represents a paper. The elements in the bipartite matrix M
are either 0 or 1. In particular,M(i, j) = 1 indicates that thei-th
author is an author for thej-th paper. On average, every author has
3 papers, every paper has 2 authors. The distribution is veryskewed
as most of authors have only one paper.
IMDB dataset: Every row is an actor/actress; every column is a
movie. The elements in the bipartite matrixM are either 0 or 1. In
particular,M(i, j) = 1 indicates that thei-th actor/actress is in the
j-th movie. On average, every actor/actress plays in 4 movies, and
every movies has 11 actors/actresses.

4.2 (Q1) Evaluation of Exact RS
Exact RS: We want to check whether the nodes with high rele-
vance scores are closely related to the query node. The goal is to
ensure the result makes sense in the context of the applications.
More specifically, we select some rows from the three datasets as
the query nodes and verify the RS scores through user study. Due
to the page limit, we just show one example from each dataset.
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CA dataset: Figure 6shows the top 10 neighbors of KDD confer-
ence. As expected, the most related conferences are the other top
data mining, machine learning and databases conferences: ICML,
SIGMOD, VLDB, ICDM, ICDE, NIPS. This also implies that KDD
is an interdisciplinary conference attracting researchers from dif-
ferent fields. Similar to our example, Klink et al. [14] devel-
oped DBLP browser which uses an author-based similarity metric
to model the closeness of two conferences. i.e., two conferences
that have many common authors are highly similar.
AP dataset: Figure 7plots the top 10 neighbors of Prof. Jiawei
Han. They are indeed the close collaborators to Prof. Han, who
either have many joint papers with Prof. Han or have several exclu-
sive joint papers.
IMDB dataset: For IMDB dataset, we perform the same set of
experiment as above. Unlike the previous two datasets, the people
in this dataset are not well-clustered, meaning that ifa andb play
in the same movie, it does not increase the likelihood that they will
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Figure 8: Robert DeNiro

play together again in the future. Of course, they are exceptions in
the sequels of successful movies.
We choose Robert De Niro as an example here. The persons with
the highest relevance scores, as shown inFigure 8, are Billy Crystal
and Lisa Kudrow because they all perform in the same 2 movies
(“Analyze this” and the sequel “Analyze that”). Furthermore, they
are the only main actors/actress in the movies. This is againdue to
the result of the combination of 2 scenarios in section3.1.

4.3 (Q2) Parameter Selection
There are only two parameters in RSE algorithm, namely the restart
probability c and the convergence thresholdε. The ε is just the
termination threshold for the matrix multiplication, which clearly
affects the number of convergence. Basically, it determines the
minimal change on the relevance scores between two consecutive
rounds. We set it to 0.1 in all cases.
The effect ofc is similar to ε but in a less obvious way. Given
theε, the largerc is, the quicker the method converges. In the ex-
treme,whenc = 1, meaning that we jump back to the query node
with 100% probability every timestamp, it is converged with0 iter-
ation. Whenc is closed to 0, the method probably takes very long
time to converge if ever. Note that ifc = 0, it will never converge
since the graph is bipartite. The Markov chain will bounce back
and forth between two sets of vertices. InFigure 9, the number
of iterations before converging decreases quickly then goes flat as



c increases. Ideally from the efficiency point of view, we wantto
minimize the time required for the method. Note that the number
of iteration needed drops significantly when the size of graph re-
duces. This gives us a lot of performance gain when we partition
the graph.
In general, the convergence speed depends on the ratio of thefirst
and second eigenvalues of the Markov transition matrix. In par-
ticular, sinceλ1 = 1, the convergence speed is proportional to the
second eigenvalueλ2. The smallerλ2 is, the faster the conver-
gence speed is. In fact, as pointed out by Haveliwala [10], the
second eigenvalue of Markov transition matrixPA is exactly 1−c.
Therefore, the number of iteration decreases as 1− c as shown in
Figure 9.
On the other hand, whenc is high, the relevance search only focus
on the neighbors that are very close to the query node. In the ex-
treme, whenc = 1, the only relevant node is the query node itself,
all the other row nodes have 0 relevance value. InFigure 10we
observe the percentages of irrelevant row nodes increases asc. Ide-
ally from the effectiveness point of view, we want to have a large
coverage of the nodes with non-zero relevance score.
To balance between efficiency and effectiveness, we choosec =
0.15 in all the other experiments. We only show the result on DBLP
dataset, and similar results are obtained from other datasets too. In
practice, The changes onc have very small effect on the ordering
of the most relevant nodes to the query nodes. The effect is mainly
focused on the nodes that have little relevance to the query node,
which are unimportant in most cases. In this sense, the methods are
robust to the change ofc.

4.4 (Q3) Evaluation of Approximate RS
We partition each dataset intok partitions with equal size using
METIS [13]. The RS computation for a row nodea only involves
the nodes in the same partition asa (we assign 0 relevance scores
to the row nodes in other partitions). The goal is to show thatthe
relevance scores of the high relevant nodes do not change much us-
ing the approximate method(partition method). The metric we use
is precision, that is, the number of common top relevant nodes over
the neighborhood size. We set the neighborhood size to 10 (i.e.,
retrieve the top 10 relevant nodes) and vary the number of partition
κ as shown inFigure 11as a function ofprecision. We observe the
precision does not drop much, which suggests that the approximate
method works well. We also vary the neighborhood size as a func-
tion of precisionin Figure 12, while setting the number of partition
κ = 10. We observe that the neighborhood can be fairly accurately
captured over different ranges. Note that it does not make sense to
have large neighborhood size for this evaluation, because the rel-
evance scores will become very low (practically zero) for most of
the nodes. In particular, the effective neighborhood size for dataset
AP is rather small, because the most of people only co-authorwith
a small number of people. As a result, the precision drops faster as
the neighborhood size increases.

4.5 (Q4) Evaluation of Anomaly Detection
Due to lack of information about the real anomalies, we manually
inject random connections between nodes. In particular, wein-
ject 100 column nodes in each dataset connecting tok row nodes,
wherek equals the average degree of column nodes. The row nodes
are randomly selected among the column nodes with large degree
(greater than 10 times the average). The reason for not usingall the
row nodes is that most of row nodes have degree one and the injec-
tion to those nodes will not lead to an anomaly because statistically
we do not have enough information to tell whether the injection is
an anomaly. Note that the difference between using exact andap-
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Whenc ≥ .6, most of the nodes have 0 relevance score to the
query node except for the ones that are very close to it.

proximate RS is marginal. And we use approximate RS in the AD
algorithm to reduce computational cost.
Figure 13plots the average normality scores of genuine and in-
jected nodes over three different datasets. We observe a biggap
of the normality scores between genuine and injected ones. Hence,
we can easily identify the anomalies by looking at the ones with
the lower scores within the same dataset. Note that only the rela-
tive score matters in detecting anomaly not the absolute score. And
it is hard to compare the scores across datasets because of the dif-
ferent graph structure.

4.6 (Q5) Evaluation of the computational cost
All the computation of different methods boils down to the RScom-
putation. The only difference is how large the matrix is. Intuitively,
the computational cost is large if we work with the entire dataset.
It is usually beneficial to partition the dataset. The partition incurs
a one-time cost which can be amortized over the future queries (in-
volving RS and AD computation).Figure 14shows the computa-
tion cost on neighborhood formation vs. the number of partitions.
Note that a dramatic cost reduction can be found when using the
approximate RS computation method (the partition method).

5. RELATED WORK
There is a significant body on research related to our work, which
we categorize into four groups: graph partitioning,outlier detection
on graphs, random walks on graphs, and collaborative filtering.
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Figure 11: Precision(y-axis) vs. number of partition(x-axis)
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Figure 12: Precision(y-axis) vs. neighborhood size(x-axis)

Graph Partitioning. Popular methods for partitioning graphs
include the METIS algorithm [13], spectral partitioning techniques [12],
flow-based methods [7] information-theoretic methods [6], and meth-
ods based on the “betweenness” of edges [8], among others. These
typically require some parameters as input; Chakrabarti [5] uses
MDL criterion to automatically determine both the number ofclus-
ters and their memberships. Note that our work is orthogonalto
this, and we can use any graph-clustering algorithm. In addition,
as a by-product of our algorithms, the neighborhoods over nodes
can representpersonalized clustersdepending on different perspec-
tives.

Outlier Detection on Graphs.Autopart [4] finds outlier edges
in a general graph; however, we need to detect outliernodes. Noble
and Cook [15] study anomaly detection on general graph with la-
beled nodes; yet, their goal is to identify abnormal substructure in
the graph, not the abnormalnodes. Aggarwal and Yu [1] propose
algorithms to find outliers in high-dimensional spaces, butits ap-
plicability to graphs is unclear: the nodes in a graph lie in avector
space formed by the graph nodes themselves, so the vector space
and the points in it are related. Newman proposed “betweenness”, a
measure of the centrality of a node in a graph. The algorithm is also
based on random walk with running time O((m+n)n2), wherem is

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

CA AP IMDB

genuine
injected

Figure 13: Normality scores between genuine and injected nodes
across 3 datasets
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Figure 14: Computation time(sec): y-axis vs. number of partitions:
x-axis

the number of edges andn the number of nodes in the graph. The
betweenness measure is intuitively related to our normality scores
(high betweenness means low normality). However the computa-
tion cost of betweenness is much higher.

Random-walk on Graphs.Page-Rank [3] learns the ranks of
web pages using the iterated power method on web graph M (ad-
jacency matrix of the entire graph). The ranks of all webpages are
cast as an N-dimensional vector, and then the fixed point is found
for the following equation:~r = (1−α)M ×~r + α~p, where theα
is the damping factor and~p = [ 1

N ]N× 1. Thus, there is an uni-
form prior on all the web pages. In order to deal with personalized
query, Topic-Sensitive PageRank [9] increases the importance of
certain web pages by putting non-uniform weights for~p. Similar
random-walk approaches have been used into other domains; for
example, Mixed Media Graph(MMG) [16] applies random walk
with restart on image captioning application. We plan to further
explore the random walk algorithm on bipartite graph and useit to
identify anomaly nodes. Similar idea also appear in SimRank[11]



which is a similarity measure between nodes in a graph with the
intuition that two nodes are similar if they are related by similar
nodes.

Collaborative Filtering.Collaborative filtering is one of biggest
successes on bipartite graphs, which provides automatic filtering
about the user interests based on the historical information from
many users (collaborating) [18; 2]. Many different similarity met-
rics have been proposed such as Jaccard coefficient, cosine similar-
ity, and Pearson correlation coefficient (see all in [17]), which is re-
lated to the relevance search in this paper. However, the traditional
similarity metrics do not apply when there is no common connec-
tion. For example, if two authors never published a paper together,
those traditional metrics will give zero similarity despite the fact
that they publish in the same field, while our method will be able to
find the non-zero relevance between the two authors. Furthermore,
the goal of collaborative filtering is to develop a recommendation
system to predict the users’ behavior but not to find anomalies.

6. CONCLUSION
A variety of datasets can be modeled as bipartite graphs, such as
P2P networks, stock trades, author-paper relationships, and so on.
This paper addresses two problems on such bipartite graphs:1)
relevance search; 2) anomaly detection. The main properties of the
methods are:

• Fast convergence

• Scalability to large graphs

• Simplicity of implementation

• Easy interpretation of results

The main idea is to use random-walk with restarts and graph par-
titioning. We evaluate the methods on several real datasets. Our
experiments confirm the efficiency as well as the effectiveness of
the proposed methods.
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