Indexing and Retrieval of Historical Aggregate Information about
Moving Objects

Dimitris Papadia’s Yufei Tad, Jun Zhang, Nikos Mamouli§, Qiongmao Shein and Jimeng Sun

TDepartment of Computer Science $Department of Comp. Science and Inf. Systems
Hong Kong University of Science and Technology University of Hong Kong
Clear Water Bay, Hong Kong Pokfulam Road, Hong Kong
{dimitris, taoyf, zhangjun, gmshen, jimep@cs.ust.hk nikos@csis.hku.hk
Abstract

Spatio-temporal databases store information about the positions of individual objects over time. In
many applications however, such as traffic supervision or mobile communication systems, only summa-
rized data, like the average number of cars in an area for a specific period, or phones serviced by a cell
each day, is required. Although this information can be obtained from operational databases, its com-
putation is expensive, rendering online processing inapplicable. A vital solution is the construction of a
spatiotemporal data warehouse. In this paper, we describe a framework for supporting OLAP operations
over spatiotemporal data. We argue that the spatial and temporal dimensions should be modeled as a
combined dimension on the data cube and present data structures, which integrate spatiotemporal index-
ing with pre-aggregation. While the well-known materialization techniques require a-priori knowledge
of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution
of ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions.

1 Introduction

The motivation of this work is that many (if not most) current applications require summarized spatio-temporal
data, rather than information about the locations of individual points in time. As an example, traffic supervision
systems need the number of cars in an area of interest, rather than their ids. Similarly mobile phone companies
use the number of users serviced by individual cells in order to identify trends and prevent potential network
congestion. Other spatio-temporal applications are by default based on arithmetic data rather than object loca-
tions. As an example consider a pollution monitoring system. The readings from several sensors are fed into a
database which arranges them in regions of similar or identical values. These regions should then be indexed
for the efficient processing of queries such as “find the areas near the center with the highest pollution levels
yesterday”.

The potentially huge amount of data involved in the above applications calls for pre-aggregation of results.
In direct analogy with relational databases, efficient OLAP operations require materialization of summarized
data. The motivation is even more urgent for spatio-temporal databases due to several reasons. First, in some
cases, data about individual objects should not be stored due to legal issues. For instance, keeping the locations
of mobile phone users through history may violate their privacy. Second, the actual data may not be important

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

as in the traffic supervision system discussed. Third, although the actual data may be highly volatile and involve
extreme space requirements, the summarized data are less voluminous and may remain rather constant for long
intervals, thus requiring considerably less space for storage. In other words, although the number of moving
cars (or mobile users) in some city area during the peak hours is high, the aggregated data may not change
significantly since the number of cars (users) entering is similar to that exiting the area. This is especially true if
only approximate information is kept, i.e., instead of the precise number we store values to denote ranges such
as high, medium and low traffic.

Throughout the paper we assume that the spatial dimension at the finest granularity consists of a set of
regions (e.g., road segments in traffic supervision systems, areas covered by cells in mobile communication
systems etc.). The raw data provide the set of objects that fall in each region every timestamp (e.g., cars in a
road segment, users serviced by a cell). Queries ask for aggregate data over regions that satisfy some spatio-
temporal condition. A fact that differentiates spatio-temporal, from traditional OLAP is the lack of predefined
hierarchies (e.g., product types). These hierarchies are taken into account during the design of the system so
that queries of the form “find the average sales for all products grouped-by product type” can be efficiently
processed. An analogy in the spatio-temporal domain would be “find the average traffic in all areas in a 1km
range around each hospital”.

The problem is that the positions and the ranges of spatio-temporal query windows usually do not conform
to pre-defined hierarchies, and are not known in advance. Another query, for instance, could involve fire emer-
gencies, in which case the areas of interest would be around fire departments (police stations and so on). In the
above example, although the hierarchies are ad-hoc, the spatial dimension is fixed, i.e., there is a static set of road
segments. In other applications, the spatial dimensions may be volatile, i.e., the regions at the finest granularity
may evolve in time. For instance, the area covered by a cell may change according to weather conditions, extra
capacity allocated etc. This dynamic behavior complicates the development of spatio-temporal data warehouses.

This paper addresses these problems by proposing several indexing solutions. First, we describe spatial
trees suitable for the retrieval of aggregate information at a single timestamp. Then, we deal with static spatial
dimensions focusing on queries that ask for historical aggregated data in a query window over a continuous
time interval. An example would be “give me the number of cars in the city center during the last hour”. For
such queries we develop multi-tree indexes that combine the spatial and temporal dimensions. In contrast with
traditional OLAP solutions, we use the index structure to define hierarchies and we store pre-aggregated data in
internal nodes. Finally, we extend our techniques to volatile regions that change over time.

Depending on the type of queries posed, a spatio-temporal OLAP system should capture different types
of summarized data. Since our focus is on indexing, we assume some simple aggregate functions like count,
or average. In more complex situations we could also store additional measures including the source and the
destination of data, direction of movement and so on. Such information will enable analysts to identify certain
motion and traffic patterns which cannot be easily found by using the raw data. The proposed methods can be
modified for this case. The rest of the paper is organized as follows. Sgction 2 describes aggregate spatial access
methods, while Sectiofi 3 proposes indexing techniques for spatio-temporal data, applicable in the presence
of static regions. Sectiof) 4 discusses structures for volatile regions and Séction 5 concludes the paper with a
discussion on future work.

2 Spatial Aggregate Structures

A window aggregate querfWA for short) returns summarized information about objects that fall inside the
guery window, for example the number of cars in a road segment, the average number of mobile phone users per
city block etc. An obvious approach to answer such queries is to first retrieve the actual objects by performing
traditional window queries, and then compute the aggregate function. This, however, entails a lot of unnecessary
effort, compromising performance. A solution for the problem is to store aggregate information in the nodes of
specialized index structures.

The aggregate R-treg [8] improves the original R-treél[4, 3] towards aggregate processing by storing, in each
intermediate entry, summarized data about objects residing in the subtree. In caseamifrth&nction, for
example, each entry stores the number of objects in its subtree (the extension to any non-holistic functions is
straightforward). Figurg] 1a shows a simple example where 8 points are clustered into 3 leaRnodes
R3, which are further grouped into a root no&e The solid rectangles refer to the MBR of the nodes. The
corresponding R-tree with intermediate aggregate numbers is shown in Higure 1b.eEnty for instance,
means that 2 points are in the subtreepfi.e., nodeR;). Notice that each point is counted only once, e.g.,
the point which lies inside the MBRs of bo#®, and R, is added to the aggregate result of the node where it
belongs ¢;). The WA query represented by the bold rectangle in Fifure 1a is processed in the following manner.
First the root R is retrieved and each entry inside is compared with the query regfa@gle of the 3 following
conditions holds: (i) the (MBR of the) entry does not intersge(e.g., entrye;) and its sub-tree is not explored
further; (ii) the entry partially intersectgs(e.g., entrye;) and we retrieve its child node to continue the search;

(iii) the entry is contained i (e.9., entryes), in which case, it suffices to add the aggregate number of the entry
(e.g., 3 stored witl3) without accessing its subtree. As a result, only two node vigitar({d R2) are necessary.
Notice that conventional R-trees would require 3 node visits.

R 1
. [| R
R . Ry [e1:2 [€;:3 [e3:3 |
. | | | || |
- R R) R
(a) Clustering of points (b) The corresponding aR-tree

Figure 1: An aR-tree example

In summary, the improvement of the aR-tree over the conventional R-tree is that we do not need to visit the
nodes (whose MBRs are) inside the query window, but only those nodes that intersect the edges of the window.
The cost savings obviously increase with the size of the query window, an important fact because OLAP queries
often involve large ranges. Notice, however, that despite the improvement of the aR-tree, query performance
is still sensitive to the window size since, the larger the window, the higher the number of node MBRs that
are expected to intersect its sides. Another structure, the aP=free [10], overcomes this problem (i.e., the cost
is independent of the query extent) by transforming points to intervals in the key-time plane as follows: the
y-coordinate of the point can be thought of as a key value, whiletbeordinate represents the starting time of
the interval. The ending time of all intervals is the current time (lying on the right boundary of the time axis).
Figure[2a shows the points used in the example of Figure 1a, and [Eigure 2b illustrates the resulting intervals.

X0 X1 xaxis X X, timeaxs

(a) Original points and query (b) Transformed intervals and queries

Figure 2: Transformation of the problem

The original query is also transformed since the goal now is to retrieve the number of intervals that intersect
the vertical line segmenj; but notgy. The intervals are stored using a variation multi-version B-trges [1] en-
hanced with aggregate information in intermediate entries. Query processing can be reduced to the vertical line
segment intersection problem optimally solved by the multi-version B-tree, except that here we are interested
in the aggregate number, instead of the concrete ids, of the qualifying objects. This fact differentiates query
processing since we can avoid the retrieval of the actual objects intersectimgl gy, and the expensive com-
putation of their set difference. The evaluationlof [10] suggests that the aP- is faster than aR-tree at the expense
of space consumption, which@(nlogn) (n is the number of records) as opposedto:) for the aR-tree.

Thewindow-interval aggregatguery (WIA for short) is the natural extension of WA queries in the spatio-
temporal domain. In particular, a WIA querys(g;) retrieves historical summarized information about objects
that fall inside the query window; during intervalg;. The next section discusses structures that can efficiently
process such queries.

3 Indexing Static Spatial Dimensions

The most common conceptual model for data warehouses is the multidimensional data view. In this model, there
is a set of numericaheasuresvhich are the items of analysis, for examplemberof objects(cars or mobile

phone users). A measure depends on a set of dimen&egsonand Time for instance. Thus, a measure is

a value in the multidimensional space which is defined by the dimensions. Each dimension is described by a
domain of attributes (e.g. days). The set of attributes may be related via a hierarchy of relationships, a common
example of which is the temporal hierarchy (day, month, year). Fifure 3 illustrates a simple case; observe
that although the regions are 2-dimensional, they are mapped as one dimension in the warehouse?;Region
contains 150 objects during the first two timestamps and this number gradually decreases. The starischema [6]
is a common way to map multi-dimensional data onto a relational database. A main table faetlzsdble

F, stores the multidimensional array of measures, while auxiliary tabled., ..., D,, store the details of

the dimensions. A tuple iF" has the form(D;[].key, M[]) where D;[].key is the set of foreign keys to the
dimension tables andl/[] is the set of measures.

aggregate results over timestamps ~ total sum

369 | 369 | 367 | 364 | 359 1828
Ry| 12| 12| 12| 12| 12 60
R, | 132 127 | 125 127 127 638
regions
R,| 75| 80| 8| 90| 9% 420
R, | 150 | 150 | 145 | 135 | 130 710
Tl T2 T3 T4 T5 now aggregate results
FACT TABLE over regions

Figure 3: A data cube example

OLAP operations ask for a set of tuplesif or for aggregations on groupings of tuples. Assuming that
there is no hierarchy in the dimensions of the previous example, we identify four possible groupings: i) Group-
of F on theregion(time) -axis, and iv) the aggregation over all valuesrofvhich is the projection on the origin.
Figure[B depicts these groupings assuming that the aggregation functiarmis The fact table, together with
all possible combinations of group-bys, composedata cubdh]. Although all groupings can be derived from
F, in order to accelerate query processing some results may be pre-computed and stattiakzed views

4

Since, the spatial dimension has no one-dimensional order we store the table in the secondary memory
ordered by time and build a B-tree index to locate the blocks containing information about each timestamp.
The processing of a typical WIA query employs the B-tree index to retrieve the blocks (i.e., table columns)
containing information abouj; and then all regions are scanned sequentially. The aggregate data of those
qualifying ¢, is accumulated in the result. In the sequel, we refer to this approacblasn scanning An
alternative approach, which achieves simultaneous indexing on both spatial and temporal dimensions, can be
obtained by the generalization of the aR-tree to 3-dimensional §paqearticular, each entnyof theaggregate
3DR-tree(a3DR-tree) has the forfr. M BR, r.pointer, r.li fespan, r.aggr]]), i.e., for each region it keeps the
aggregate value and the interval during which this value is valid. Whenever the aggregate information about a
region changes, a new entry is created. Using the example of Higure 3, four entries are requiteddioe
for timestamps 1 and 2 where the aggregate value remains 150, and three more entries for the other timestamps
where the aggregate value changes. Although the a3DR-tree integrates spatial and temporal dimensions in the
same structure (and is, therefore, expected to be more efficient than column scanning for WIA queries that
involve both conditions), it has the following drawbacks: (i) it wastes space by storing the MBR each time there
is an aggregate change (e.g., the MBRRgfis stored four times), and (i) the large size of the structure and the
small fanout of the nodes compromises query efficiency.

In order to overcome these problems, we present a novel multi-tree structuaggtiegate R- B-treéaRB-
tree), which is based on the following concept: the regions that constitute the spatial hierarchy are stored only
once and indexed by an R-tree. For each entry of the R-tree (including intermediate level entries), there is a
pointer to a B-tree which stores historical aggregated data about the entry. In particular, each R-tree entry
has the form{(r.M BR, r.pointer, r.btree,r.aggr(]) wherer.M BR andr.pointer have their usual meaning;
r.aggr|] keeps summarized data abewiccumulated over all timestamps (e.g., the total number of objeets in
throughout history), anélbtree is a pointer to the B-tree which keeps historical data abokach B-tree entry
b, has the form(b.time, b.pointer, b.aggr|]) whereb.aggr|] is the aggregated data fortime. If the value of
b.aggr|] does not change in consecutive timestamps, it is not replicated.

Figure[#a illustrates an aRB-tree using the data of the cube in Higure 3. For instance, the number 710 stored
with the R-tree entryk;, denotes that the total number of objectdiinis 710. The first leaf entry of the B-tree
for R; (1, 150) denotes that the number of objectdinat timestamp 1 is 150. Similarly the first entry of the
top node (1, 445) denotes that the number of objects during the interval [1,3] is 445. The same information is
also kept for the intermediate entries of the R-tree (Rg.and Rg). The topmost B-tree corresponds to the root
of the R-tree and stores information about the whole space. Its role is similar to that of the extra row in Figure
B, i.e., answer queries involving only temporal conditions.

B-tree for the whole space
B-treefor Ry
367. B-treefor Ry

359
\ |
1225 2230 4| 228 5| 220 R-treefor spatial dlma\V
B-treefor R R[i130R]6%8} " [1]144 2139 3] 137 4] 139

e L
R [Rs | r,

:

.
B-treefor R, B-treefor R, R R 4
! R
[1]7s]2[s0 F—]s[es[a]e0] [1]1a2[2[1e7}— 3]12s] 4] 127 qg Re
(a) aRB-tree (b) example query

Figure 4. Example of aRB-tree

IFor the following discussion we assume aR-trees as the spatial aggregate structure because the aP-tree cannot be easily generalizec
to more than two dimensions.

The aRB-tree facilitates the processing of WIA queries, by eliminating the need to visit nodes which are
totally enclosed by the query. As an example, consider that a user is looking for all objects in some region
overlapping the (shaded) query windgwof Figure[4#b during the time interval [1,3]. Search starts from the root
of the R tree. EntryR; is totally contained inside the query window and the corresponding B-tree is retrieved.
The top node of this B-tree has the entries (1, 685), (4, 445) meaning that the aggregated data correspond to the
intervals [1,3], [4,5]. Therefore, the next level of the B-tree does not need to be accessed and the contribution of
R5 to the query result is 685. The second root entry of the R-tigepartially overlaps the query window so
the corresponding node is visited. Inside this node only eRtryintersects;,, and its B-tree is retrieved. The
first entry of the top node suggests that the contributioR9ffor the interval [1,2] is 259. In order to complete
the result we will have to descend the second entry and retrieve the aggregate \ijuertfimestamp 3 (i.e.,

125). The final result (i.e., total number of objects in these regions in the interval [1,3]) is the sum 685+259+125.
This corresponds to the sum of aggregate data in the gray cells of [Fjgure 3.

If the aggregate data is not very dynamic, the size of structure is expected to be smaller than the data cube
because it does not replicate information that remains constant for adjacent intervals. Even in the worst case
that the aggregate data of all regions change each timestamp, the size of aRB-trees is about double that of the
cube since the leafs (needed also for the cube) consume at least half of the space. Furthermore, aRB-trees
are beneficial regardless of the selectivity, since: (i) if the query windgwgf) is large, many nodes in the
intermediate levels of the aRB-tree will be containedd §:) so the pre-calculated results are used and visits
to the lower tree levels are avoided; (ii) 4s(¢:) is small, the aRB-tree behaves as a spatio-temporal index.
This is also the case for queries that ask for aggregated results at the finest granularity. Next, we extend these
concepts for volatile regions.

4 Indexing Dynamic Spatial Dimensions

In this section we consider that the finest granularity regions in the spatial dimension, can change their extents
over time and/or new regions may appear/disappear. Obviously, when the leaf-level regions change, the spatial
tree structure is altered as well. We propose two solutions to this problem by employing alternative multi-tree
indexes.

4.1 The aggregate Historical RB-tree

A simple approach to deal with volatile regions is to create a new R-tree every time there is a change. Assume

that at timestamp 5, regioR; is modified toR and this update alters the father enRy to R;. Then, a new

R-tree is created at timestamp 5, while the first one dies. In order to avoid replicating the objects that were not

affected by the update, we propose #lggregate Historical R-B-tre@HRB-tree), which combines the concepts

of aRB-trees and HR-trees [7]. For example in Fiqure 5a, the two R-trees sharé'nbdeause the extents of

regionsRs and R, did not change. Each ndgli the HR-tree, stores a lifespan, which indicates its valid period

in history. The lifespans of nodesandB are [1,4], while that of” is [1,*), where * means that the node is valid

until the current time. The form of the entries is the same as in aRB-trees exceptthai|, keeps aggregated

information about the entry during the lifespan of the node that contains it, instead of the whole history.
Assume that the current time is after timestamp 5, and a query asks for objects in some region overlapping

the query windowy, of Figure[Bb during the time interval [1,5]. The figure illustrates the old and the new

versions after the update at timestamp 5. Both R-trees of Higure 5a are visited. In the first treB; ssrioside

gs its child node B is not accessed. Furthermore, as the lifesp&t ¢fe., [1,4]) is entirely within the query

interval, we retrieve the aggregate dataip without visiting its associated B-tree. On the other hand, node

2Historical R-trees(HR-trees) [7] decrease the level of redundancy by allowing consecutive R-trees to share common branches.
Although traditional HR-trees do not store lifespans, we need this information in order to record the validity period of aggregate data in
the R-tree nodes and avoid visiting the B-trees.

R-tree for spatial dimension R-tree for spatial dimension

timestamps 1-4 timestamp 5 extent of R5

A

B-tree for
S ——[r[[%]] Rs R,
B-treefor R »" Betreefor R ‘ R
E 4
Ry R R R3
B-treefor Ry 1 I
B-tveefo{ Breefor Ry B-lrem-lreefov Ry q Re
extent of R1
(a) aHRB-tree (b) example query

Figure 5: Example of aHRB-tree

C is accessedHg partially overlaps;s) and we retrieve the aggregate valueRyf (for interval [1,5]) from its
R-tree entry. Searching the subsequent R-trees is similar, except that shared nodes are not accessed. Continuing
the above example, node is reached and the B-trees Bf and R, are searched, while we do not follow the
pointer of R (to nodeC) asC' is already visitedt

Notice that independently of the query length){in the worst case the algorithm will visit the B-trees of
two R-trees. These are the R-trees at the two ends. of he lifespans of nodes in the trees for intermediate
timestamps ofy; are entirely contained ip;, so the relevant aggregate data stored with the R-tree entries are
used directly. Furthermore, although in Fig{ire 5a we show a separate B-tree for each HR-tree entry, the B-trees
of various entries may be stored together in a space efficient storage scheme, described [9].

4.2 The aggregate 3DRB-tree

In HR-trees, a node (e.gB) will be duplicated even if only one of its entries (e.g;) changes. This introduces

data redundancy and increases the size of aHRB-trees. The a3DRBgggegate 3-dimensional R-B-tjee

avoids this problem, by combining B-trees with 3DR-trees. Every version of a region is modeled as a 3D box, so
that the projection on the temporal axis corresponds to a time interval when the spatial extents of the region are
fixed; different versions/regions are stored as distinct entries in the 3DR-tree. In particular, a 3DR-tree entry has
the form (r.M BR, r.li fespan, r.pointer, r.btree, r.aggr|]), wherer.M BR, r.pointer, r.btree are defined as

in aRB-treesr.aggr[] stores data ovetlifespan.f| A typical query involving both spatial and temporal aspects
("find the total number of objects in the regions intersecting some wingauring a time intervad;”) is also
modeled as a 3D box.

Although both aHRB- and a3DRB- trees are aimed at volatile regions they have two important differences:
(i) a3DRB-trees maintain a large 3DR-tree for the whole history, while aHRB-trees maintain several small trees,
each responsible for a relatively short interval. This fact has implications on their query performance. (ii) The
aHRB-tree is aron-line structure, while the a3DRB-tree &ff-line, meaning that the lifespans of its entries
should be known before the structure is created; otherwise, we have to store unbounded boxes inside the 3DR-
tree, which affects query performance severely.

The experimental evaluation dfi [9] for static spatial dimensions suggests that the cube implementation is
unsuitable in practice due to extreme query cost. aRB-trees consume a fraction of the space required by a3DR-
trees, while they outperform them in all cases except for very short query intervals. Furthermore, unlike a3DR-
trees where all the data must be known a priori, aRB-trees are on-line structures. For dynamic dimensions, the
a3DRB-tree has the best overall performance in terms of size and query cost. Since however, it is an off-line

structure, aHRB-trees are the best alternative for applications requiring on-line indexing.
3To be specific, the B-trees should be visited only if ndgleemains alive after timestamp 5. Otherwise, the aggregate valu@s of
and R for timestamp 5 are stored in E.
“The 3DR-tree structure of a3DRB-trees is similar to the a3DR-tree, but now each version is generated by an extent (rather
than aggregate) change. Thus, there is no redundancy since the storage of MBRs is required to capture the new extent.

5 Conclusions

Numerous real-life applications require fast access to summarized spatio-temporal information. Although data
warehouses have been successfully employed in similar problems for relational data, traditional techniques
have three basic impediments when applied directly in spatio-temporal applications: (i) no support for ad-hoc
hierarchies, unknown at the design time (i) lack of spatio-temporal indexing methods, and (iii) limited provision
for dimension versioning and volatile regions.

Here, we provide a unified solution to these problems by developing spatio-temporal structures that integrate
indexing with the pre-aggregation technique. The intuition is that, by keeping summarized information inside
the index, aggregation queries with arbitrary groupings can be answered by the intermediate nodes, thus saving
accesses to detailed data. We first consider static dimensions and describe the basic structure (aRB-tree). Sub-
sequently, we present a generalization of aRB-trees, which supports dynamic dimensions (aHRB-tree). For the
same case, we also develop a solution based on a 3-dimensional modeling of the problem (a3DRB-tree). Our ap-
proach does not aim at simply indexing, but rather replacing the data cube for spatio-temporal data warehouses.

We believe that spatio-temporal OLAP is a new and very promising area, both from the theoretical and
practical point of view. Since this is an initial approach, we limited this work to simple numerical aggregations.

In the future, we will focus on supporting spatio-temporal “measures” like the direction of movement. This will
enable analysts to ask sophisticated queries in order to identify interesting numerical and spatial/temporal trends.
The processing of such queries against the raw data is currently impractical considering the huge amounts of
information involved in most spatio-temporal applications.

Another interesting area concerns the extension of the proposed techniques to different access methods. For
instance, we could apply the R-tree insertion algorithmsZof [2] in order to obtain on-line structures based on
3DR-trees. Furthermore, the integration of multi-version data structures may provide on-line methods more
efficient than aHRB-trees. The problem with such methods (and all methods maintaining multiple R-trees) is
the avoidance of multiple visits to the same node via different ancestors. Although various techniques have been
proposed in the context of spatio-temporal data structures, it is not clear how they can be applied within our
framework.

References

[1] Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P. An Asymptotically Optimal Multi-version BVL:B& Journa)
5(4): 264-275, 1996.

[2] Bliujute, R., Jensen, C., Saltenis, S., Slivinskas, G. R-Tree Based Indexing of Now-Relative BitemporsLIDda1998.

[3] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B. The R*-tree: an Efficient and Robust Access Method for Points and Rectan-
gles.SIGMOD Conferencel990.

[4] Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searci8f@MOD Conferencel984.

[5] Gray, J., Bosworth, A., Layman, A., Pirahesh, H. Data Cube: a Relational Aggregation Operator Generalizing Group-by, Cross-tabs
and SubtotaldCDE, 1996.

[6] Kimball, R. The Data Warehouse Toolkit. John Wiley, 1996.

[7] Nascimento, M., Silva, J. Towards Historical R-tre&€M SAGC 1998.

[8] Papadias, D., Kalnis, P., Zhang, J., Tao, Y. Efficient OLAP Operations in Spatial Data Warel8%iEB<2001.
[9] Papadias, D., Tao, Y., Kalnis, P., Zhang, J. Indexing Spatio-Temporal Data WareHQIREs2002.

[10] Tao, Y., Papadias, D., Zhang, J. Aggregate Processing of Planar B3, 2002.

	Introduction
	 Spatial Aggregate Structures
	Indexing Static Spatial Dimensions
	 Indexing Dynamic Spatial Dimensions
	 The aggregate Historical RB-tree
	 The aggregate 3DRB-tree

	 Conclusions

