
Large Language Models in Computational Biology 
– A Primer (2024 Update) 

Jian Ma
@jmuiuc

July 15, 2024 |  UCLA CGSI

Ray and Stephanie Lane Professor of Computational Biology
Ray and Stephanie Lane Computational Biology Department

School of Computer Science
Carnegie Mellon University



It’s been a year …
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This presentation was put together with help from –
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Large Language Models

§ Large language models 
=

large-sized pretrained 
language models

§ Scaling laws 
• Kaplan et al. 2020 (OpenAI)
• Chinchilla scaling –

Hoffmann et al. NeurIPS 2022

§ Differences compared to LMs
• Large # of model parameters
• LLMs display some surprising “emergent abilities”
• LLMs harbor powerful features such as prompting interface (e.g., GPT-4 API)
• LLMs need tremendous resource to build

4



What is a Foundation Model?
§ Foundation models are a 

replacement for task-specific 
models

§ Large-scale pretraining on 
large unlabeled datasets

§ Finetuning for diverse 
downstream tasks 

§ Self-supervised learning
§ Transfer learning
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“On the Opportunities and Risks of Foundation Models”
Bommasani et al. Stanford CRFM 2022



Open questions – from CGSI 2023

§ How to better evaluate LLMs? How to make LLMs more accessible?
§ How to embed cell/gene to better maintain biological contexts?
§ How to incorporate prior knowledge into the neural network?
§ How much finetuning is sufficient for a specific task/dataset? Will better designed 

pre-training tasks help shorten finetuning?
§ How to extract the knowledge claimed to be distilled by the model?
§ Do we have enough data available to pretrain LLMs or Foundation Models for 

various modalities in genomics?
§ DNA and single-cell LLMs have comparable performance compared to existing 

approaches – need more challenging problems. What are the important problems 
for LLMs?

§ Specific LLMs from molecular and cell biology literature + genomics data?
§ Reliable hallucinations from LLMs => new biological hypothesis?
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Genomic DNA Foundation Models
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GPT 0.11B
BERT 0.34B
GPT-2 1.5B
Turing-NLG 17.2B
GPT-3 175B
Switch 1.6T
MT-NLG 530B
JURASSIC-1 178B
GLaM 1.2T
LaMDA 137B
PaLM 540B
OPT 175B
YaLM 100B
BLOOM 176B
Bard 137B
LLaMA 65B 
GPT-4 1.7T

Source: 
https://github.com/Hannibal046/Awesome-LLM

8Yang et al. arXiv 2023
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Non-comprehensive 
evolutionary tree for 
Protein/RNA/DNA 
language models

Nicholas Ho



Architecture of LLMs for genomic sequence

10



Some recent LLMs for genomic sequence
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Model Paper # Parameters Architecture Training Data Downstream 
Tasks

Nucleotide 
Transformer

Dalla-Torre et al. 
bioRxiv 2023

500M_human_ref   480M
500M_1000G         480M
2B5_1000G            2537M
2B5_multi_species 2537M

Transformer 
BERT

human reference, 
3202 human 

genomes, genome 
from 850 different 

species

epigenetic marks 
prediction, promoter and 

enhancer prediction, 
splice site prediction

DNABERT-2 Zhou et al.
ICLR 2024 117M Transformer 

BERT

multi-species 
genome dataset 
from 135 species 

(32.49B)

promoter prediction, TF 
prediction, splice site 
prediction, epigenetic 

marks prediction, variant 
classification

HyenaDNA Nguyen et al.
NeurIPS 2023 ~0.5M to 6.6M Autoregressive 

Long convolutions
human reference 

genome

epigenetic marks 
prediction, promoter and 

enhancer prediction, 
splice site prediction

Caduceus Schiff et al. 
ICML 2024

~0.5M to 6.6M Bidirectional 
Mamba

human reference 
genome

epigenetic marks 
prediction, promoter and 

enhancer prediction, 
splice site prediction
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Model Paper # Parameters Architecture Training Data Downstream 
Tasks

Evo
Nguyen et al.
bioRxiv 2024 7B Parameters Striped Hyena

2.7M prokaryotic 
and phage 
genomes

Protein, ncRNA, fitness 
prediction, gene 

expression prediction, 
CRISPR and Transposon 

sequence generation

Genomic 
Pretrained 

Network (GPN)

Benegas et al.
PNAS 2023 66M Parameters Dilated 

Convolutions

TAIR10 reference 
genome of 
Arabidopsis 
thaliana from 

EnsemblPlants

Variant effect prediction

LucaOne He et al.
bioRxiv 2024 1.8B Parameters Transformer

DNA, RNA and 
Protein data across 

169,861 species

Protein Interactions with 
Proteins, ncRNA and 

DNA, ncRNA interactions 
with protein, ncRNA and 
DNA, DNA interactions 

with protein, ncRNA and 
DNA



Nucleotide Transformer

§ Pre-trained BERT for DNA sequences on 
humans, 1000 genomes, and 
multispecies

§ Non-overlapping K-mer tokenization
§ Context length of 12K bp
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§ Downstream prediction tasks: 
§ promoter region, TFBS, splice site, functional 

variants identification

Dalla-Torre et al. bioRxiv 2023



HyenaDNA

§ Pre-trained next token prediction for DNA sequences using a convolution-
based architecture

§ Tokenization: Nucleotide base-pair resolution
§ Advantages: Long context modeling (~1M context length)
§ Disadvantages: Not quite clear if this convolutional architecture has the 

capacity to match transformers
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L → Sequence Length
D → Embedding Dimension

Nguyen et al. NeurIPS 2023



Evo
§ Autoregressive (next-token prediction) 

pretrained on prokaryotic and phage 
genomes

§ Striped Hyena architecture: 
combination of 29 hyena layers and 3 
attention layers

§ Demonstrates that aspects of protein 
and ncRNA can be evaluated through 
a model trained on DNA sequences

15
Nguyen et al. bioRxiv 2024



Single-cell Foundation Models (scFMs)
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General structure of scFMs
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Cell Sentence of genes

Expression value 
embedding

Transformer 
(w/ attention)

× n

Trained Gene embedding Cell embedding 

Gene embedding

Sample embedding 

Initial embedding Final embedding

Pooling

Pooling

CD
3D

PDCD1

TP
53

- cell-type annotation
- batch integration
- perturbation prediction

- gene network
- gene dosage sensitivity

- patient outcome



Tokenization for cells
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Cell Sentence of genes Transformer 
(w/ attention)

× n

Initial embedding Final embedding

CD
3D

PDCD1

TP
53

Gene embeddings ordered by their expression value (Geneformer)

Gene embeddings + binned expression value embeddings (scGPT, scBERT)

Gene embeddings + expression value embeddings (scFoundation)

Gene embedding by protein language model (UCE)



Network structures and training strategies
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Cell Sentence of genes Transformer 
(w/ attention)

× n

Initial embedding Final embedding

CD
3D

PDCD1

TP
53

- Autoregressive pretraining (scGPT)

- Masked language modeling (MLM) pretraining (scBERT, 
Geneformer, scFoundation)



Timeline of scFMs
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2022

2023

2024

# Parameters Training 
data size

Highlights Paper

scBERT 5M 1M > Scalability: Performer Yang et al.,
Nat Mach Intell 2022

Geneformer 40M 30M > Gene networks inference Theodoris et al.,
Nature 2023

scGPT 51M 33M > Generative pretraining
(cell & gene prompt)

Cui et al.,
Nat Methods 2024

scFoundation 100M 50M > Scalability: reduced input length
> Integration: confounding factors 
regressed out

Hao et al.,
Nat Methods 2024

UCE 650M 
+15B pLM (fixed)

46M > Cross-species integration: utilizes 
pLM (ESM-2) for gene embedding

Rosen et al.,
bioRxiv 2023

scMulan 368M 10M > Multi-tasking: query by prompts
> Richer pretraining: metadata

Bian et al.,
RECOMB 2024

NicheFormer 50M 110M > Integration: dissolved & spatial 
assays

Schaar et al.,
bioRxiv 2024



Geneformer

§ Pretrained on ~30 million human single-
cell transcriptomes

§ Utilizes rank value encoding, normalizing 
gene expression levels across the 
pretraining corpus
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§ Transformer with MLM pretraining, 
incorporating positional encoding to 
represent a gene’s relative 
expression level

Theodoris et al. Nature 2023



scGPT

§ Pretrained on ~33 million single-cell 
transcriptomes

§ Generative pre-training with gene- and 
cell-prompt

§ Utilizes value binning to convert 
expression counts into relative values
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Cui et al. Nat Methods 2024



scFoundation

§ Trained on 50 million cells
§ scFoundation designs read-depth-aware (RDA) modeling pretraining task:
• Downsample gene expression to create cells with varying read counts
• Reconstructs original expression counts via MLM strategy

§ RDA pretraining task enables the learning of relationships between cells with 
different read depths
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Hao et al. Nat Methods 2024



Leveraging prior knowledge for improved gene embeddings 

Gene embeddings can be trained de novo, but prior knowledge may help:

§ Gene2vec 
• Distributed representation based on co-expression (used in scBERT)

§ GenePT (Chen and Zou)
• Use GPT-3.5 to generate gene embeddings from gene description.

However, because each gene is treated as a separate entity, knowledge about 
one gene is not transferable to another. Also, recognizing similarity of genes 
across species is important for a universal model.

§ Universal Cell Embeddings (UCE)
• Uses protein LLM to embed a sample’s genes with protein products
• Protein products make genes across species more comparable
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UCE framework
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UCE samples genes by expression value and 
orders them by chromosomal loci

Binary expression prediction 
using cell + gene’s protein 
embeddings

Genes embedded by a protein LM Rosen et al. bioRxiv 2023



Promises and challenges

§ Foundation models for genomes and cells seem to have potentials

• Pretraining on large number of cells will discover intrinsic interaction of genes
• Pretrained models are easily adaptable to multiple tasks to enable biological findings

§ But biology is complicated and its “language” is likely much harder to model 
than natural languages.

• Biological data involve many confounding factors
• Biological questions are often not mathematically well-defined
• In this data driven era: “what is the best question to ask”

30



Challenge: how to be more foundational?

§ Limited robustness: 
• Although trained on millions of cells, current foundation models struggle with different assays 

in zero-shot settings (Kedzierska et al. bioRxiv 2023).
• Pretraining often fails to separate biology from noise and sometimes has no effect 

(Boiarsky et al. bioRxiv 2023)

§ Do we need more training data or different modeling approaches to make the 
models truly FMs?
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Challenge: Jack of all trades, master of none

§ Training inefficiency (Boiarsky et al. bioRxiv 2023): 
• Expensive pretraining and finetuning do not always outperform simple specialized methods

§ Questions: 
• How do we assess the effectiveness of the strategy and output embeddings?
• How can we better harness the power of the models?
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Challenge: Where are the nails?

§ FMs promise to be powerful hammers, but surprisingly, many biological 
questions do not look like nails

§ Many methods excel in supervised tasks, but single-cell omics is mainly 
exploratory, with significance beyond routine supervision

§ What exciting biological discoveries can foundation models enable?
• Can a model answer a question it was not trained for?
• Can a model uncover unique data characteristics without a predefined question?
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Challenge: Mechanistic insights from the FMs?

§ LLMs trained on massive amounts of texts have shown to have emergent 
abilities such as reasoning.

§ Current FMs have demonstrated promising results in diverse downstream 
tasks, but how such predictions are made remains a black box.

§ Can single-cell foundation models explain and reason about the predictions?

For example:
• What are the molecular mechanisms that lead to the specific transcriptomic changes due 

to a genetic perturbation?
• What are the key molecular pathways that define a cell (sub)type?
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Interpretable ML in the era of LLMs
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Chen # and Yang # et al. Nature Methods, in press

Valerie Chen

Wendy Yang

Ameet Talwalkar


