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Large Language Models

Large language models
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. Large # of model parameters

. LLMs display some surprising “emergent abilities”

. LLMs harbor powerful features such as prompting interface (e.g., GPT-4 API)
. LLMs need tremendous resource to build



What is a Foundation Model?
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“On the Opportunities and Risks of Foundation Models”
Bommasani et al. Stanford CRFM 2022

Foundation models are a
replacement for task-specific
models

Large-scale pretraining on
large unlabeled datasets
Finetuning for diverse
downstream tasks

Self-supervised learning
Transfer learning



Open questions — from CGSI 2023

How to better evaluate LLMs? How to make LLMs more accessible?
How to embed cell/gene to better maintain biological contexts?
How to incorporate prior knowledge into the neural network?

How much finetuning is sufficient for a specific task/dataset? Will better designed
pre-training tasks help shorten finetuning?

How to extract the knowledge claimed to be distilled by the model?

Do we have enough data available to pretrain LLMs or Foundation Models for
various modalities in genomics?

DNA and single-cell LLMs have comparable performance compared to existing

approaches — need more challenging problems. What are the important problems
for LLMs?

Specific LLMs from molecular and cell biology literature + genomics data?
Reliable hallucinations from LLMs => new biological hypothesis?



Genomic DNA Foundation Models
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Protein/RNA/DNA
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Architecture of LLMs for genomic sequence
Choose Your Fighter (DNA Language Model):

Attention is all you need
(Viswani et al 2015)

Vanilla
Attention

)y

e Gave Rise to
immense success
in vision and NLP

e Pros: Effective,
relatively well
studied

e Cons: Quadratic
Complexity

L/
I\

Yi—1 Y;

Subquadratic
Attention

e SSMs/Mamba/Hyena/
RetNet/RNNs/RWKV/
Griffin/BASED

e Pros: Subquadratic
complexity

e Cons: Approximates
Vanilla Attention,
have trade-offs

Architecture Block Design

)

e )

-

Standard Parallel Striped

Mechanistic Design of Hybrid
Architecture (Poli et al 2024)

Hybrid

Attention

e Striped-Hyena
e Striped-Mamba

e Pros: Subquadratic

e Cons: Less well
understood, only 2
canonical striped
models

.....

Created by Oleksandr Panasovskyl
from Noun Project

——l Convolutions l

e Dilated
Convolutions

e Hyena Hierarchy
(global convs)

e Pros: Widely used,
local convs appear
effective for DNA

e Cons: may lack global
context, less
expressive to attention
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Some recent LLMs for genomic sequence

Model Paper

Nucleotide Dalla-Torre et al.
Transformer bioRxiv 2023

Zhou et al.
DNABERT-2 pl
Nguyen et al.
HyenaDNA —\ CfiPs 2023
Schiff et al.
Caduceus ICML 2024

# Parameters Architecture Training Data

500M_human_ref 480M

500M_1000G 480M Transformer
2B5 1000G 2537M BERT
2B5 multi_species 2537M

3202 human

species
multi-species

117M Transformer genome dataset

BERT from 135 species
(32.49B)

-0 5M to 6.6M Autoregresswe human reference
Long convolutions genome

~0.5M to 6.6M Bidirectional human reference

Mamba genome

human reference,

genomes, genome
from 850 different

Downstream
Tasks

epigenetic marks
prediction, promoter and
enhancer prediction,
splice site prediction

promoter prediction, TF
prediction, splice site
prediction, epigenetic
marks prediction, variant
classification

epigenetic marks
prediction, promoter and
enhancer prediction,
splice site prediction

epigenetic marks
prediction, promoter and
enhancer prediction,
splice site prediction
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Model

Evo

Genomic

Pretrained
Network (GPN)

LucaOne

Paper

Nguyen et al.

bioRxiv 2024

Benegas et al.

PNAS 2023

He et al.
bioRxiv 2024

# Parameters

/B Parameters

66M Parameters

1.8B Parameters

Architecture

Striped Hyena

Dilated
Convolutions

Transformer

Downstream

Training Data Tasks

Protein, ncRNA, fithess

2.7M prokaryotic prediction, gene
and phage expression prediction,
genomes CRISPR and Transposon

sequence generation

TAIR10 reference
genome of
Arabidopsis Variant effect prediction
thaliana from
EnsemblPlants

Protein Interactions with

Proteins, ncRNA and
DNA, RNA and  pNA, ncRNA interactions

Protein data across with protein, ncRNA and

: DNA, DNA interactions
169,861 SPECIes with protein, ncRNA and

DNA
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Nucleotide Transformer

Pre-trained BERT for DNA sequences on * Downstream prediction tasks:
humans, 1000 genomes, and
multispecies

Non-overlapping K-mer tokenization
Context length of 12K bp

Input DNA
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Dalla-Torre et al. bioRxiv 2023

Probabilities of all tokens
per token position

<V><9J19VV><N><D901VO>

promoter region, TFBS, splice site, functional
variants identification
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HyenaDNA

Pre-trained next token prediction for DNA sequences using a convolution-
based architecture

Tokenization: Nucleotide base-pair resolution
Advantages: Long context modeling (~1M context length)

Disadvantages: Not quite clear if this convolutional architecture has the
capacity to match transformers
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Evo

» Autoregressive (next-token prediction)
pretrained on prokaryotic and phage
genomes

= Striped Hyena architecture:
combination of 29 hyena layers and 3
attention layers

= Demonstrates that aspects of protein
and ncRNA can be evaluated through
a model trained on DNA sequences

Nguyen et al. bioRxiv 2024
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Single-cell Foundation Models (scFMs)
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General structure of scFMs

(R

,00007
Cell  Sentence of genes Initial embedding Transformer Final embedding
\_ . (w/ attention)
Expression value
embedding |
Pooling
Gene embedding

|
/ 1 Pooling

Trained Gene embedding Cell embedding - Sample embedding
- gene network - cell-type annotation - patient outcome
- gene dosage sensitivity - batch integration

- perturbation prediction

< /




Cell

Tokenization for cells

(R

Xn

Sentence of genes Initial embedding Transformer Final embedding

AN

(w/ attention)

Gene embeddings ordered by their expression value (Geneformer)
Gene embeddings + binned expression value embeddings (scGPT, scBERT)
Gene embeddings + expression value embeddings (scFoundation)

Gene embedding by protein language model (UCE)
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Cell

Network structures and training strategies

Sentence of genes

Initial embedding

(R

Xn

Transformer

/ (w/ attention)

- Autoregressive pretraining (scGPT)

Geneformer, scFoundation)

Final embedding

- Masked language modeling (MLM) pretraining (scBERT,
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2022

2023

2024

scBERT

Geneformer

scGPT

scFoundation

UCE

scMulan

NicheFormer

Timeline of scFMs

# Parameters

SM

40M

51M

100M

650M
+15B pLM (fixed)

368M

S50M

Training
data size

1M
30M
33M

S50M

46M

10M

110M

Highlights
> Scalability: Performer
> Gene networks inference

> Generative pretraining
(cell & gene prompt)

> Scalability: reduced input length
> Integration: confounding factors
regressed out

> Cross-species integration: utilizes
pLM (ESM-2) for gene embedding

> Multi-tasking: query by prompts
> Richer pretraining: metadata

> Integration: dissolved & spatial
assays

Paper

Yang et al.,

Nat Mach Intell 2022

Theodoris et al.,
Nature 2023

Cui et al.,
Nat Methods 2024

Hao et al.,
Nat Methods 2024

Rosen et al.,
bioRxiv 2023

Bian et al.,
RECOMB 2024

Schaar et al.,
bioRxiv 2024
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= Pretrained on ~30 million human single-

cell transcriptomes

= Utilizes rank value encoding, normalizing
gene expression levels across the

pretraining corpus

Single-cell
transcriptome

Theodoris et al. Nature 2023

—

Rank value encoding

Ranked genes —

Geneformer

Gene T

= Transformer with MLM pretraining,
Incorporating positional encoding to
represent a gene’s relative
expression level

Transformer encoder unit

Gene H
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Gene A
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Gene L

= - Contextual gene
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scGPT

Masked-attention transformer

* Pretrained on ~33 million single-cell
transcriptomes

= Generative pre-training with gene- and Masked Generative
Gene 3 A multi-head training
cell-prompt attention

= Utilizes value binning to convert )
expression counts into relative values

A Generative training B Generation steps during inference

—

=

| | ‘ |
cellemb ' genes& ! genes cellemb ' genes

cellemb ' Step1'  genes cellemb'  Step1-2 ' genes
<cls> expression to predict <cls> to predict <cls>  prediction to predict <cls> prediction to predict
Teacher forcing training Step 1 Step 2 Step 3

Cui et al. Nat Methods 2024
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scFoundation

= Trained on 50 million cells

» scFoundation designs read-depth-aware (RDA) modeling pretraining task:

* Downsample gene expression to create cells with varying read counts
* Reconstructs original expression counts via MLM strategy

= RDA pretraining task enables the learning of relationships between cells with
different read depths

Reconstruction loss

4 Model
0 0 — T
Bayesian 1 2810 © iy .
down | T Mask [} '
. |sampling 7] Mask [ T h L ...
- e
l Nonzero '

»

N I G-

,_ Pooling \

Cell embedding

Hao et al. Nat Methods 2024
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Leveraging prior knowledge for improved gene embeddings

Gene embeddings can be trained de novo, but prior knowledge may help:

= (Gene2vec
. Distributed representation based on co-expression (used in scBERT)

= GenePT (Chen and Zou)

. Use GPT-3.5 to generate gene embeddings from gene description.

However, because each gene Is treated as a separate entity, knowledge about
one gene is not transferable to another. Also, recognizing similarity of genes
across species is important for a universal model.

= Universal Cell Embeddings (UCE)

. Uses protein LLM to embed a sample’s genes with protein products
. Protein products make genes across species more comparable

27



UCE framework

UCE samples genes by expression value and
orders them by chromosomal loci

The Universal Cell Embedding Model _ _ o
Binary expression prediction

Transformer using cell + gene’s protein

f Cell )

Representation
Sample genes

- @ | 33 Layers '
A O by expression, 650M Parameters embedd Ngs
ol — | sort by genomic
w location.
g @ Embedding
v of Cell C
O (H
o |\ : * -
O\ .
T p - & G, Prote.m
= @ Training Only Embedding
Ll>j h k MaSk 20% Of
8 expressed genes. Objective
_—all] | 5°mplemanyG, Was G, expressed
Expression _from the cell’s genes. | : in cell C?
Input ( ]
ANA Exgr ession .N.N.N.N. Represent each gene token using
of a single cell el[s][&][¥][x] large protein language models
Genes embedded by a protein LM Rosen et al. bioRxiv 2023
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Promises and challenges

* Foundation models for genomes and cells seem to have potentials

. Pretraining on large number of cells will discover intrinsic interaction of genes
. Pretrained models are easily adaptable to multiple tasks to enable biological findings

= But biology is complicated and its “language” is likely much harder to model
than natural languages.

. Biological data involve many confounding factors
. Biological questions are often not mathematically well-defined
. In this data driven era: "what is the best question to ask”™
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Challenge: how to be more foundational?

Geneformer scGPT hgrnan_
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= Limited robustness:
. Although trained on millions of cells, current foundation models struggle with different assays
In zero-shot settings (Kedzierska et al. bioRxiv 2023).

. Pretraining often fails to separate biology from noise and sometimes has no effect
(Boiarsky et al. bioRxiv 2023)

= Do we need more training data or different modeling approaches to make the
models truly FMs?
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Challenge: Jack of all trades, master of none

PBMC myeloid data
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* Training inefficiency (Boiarsky et al. bioRxiv 2023):
. EXpensive pretraining and finetuning do not always outperform simple specialized methods

= Questions:
. How do we assess the effectiveness of the strategy and output embeddings?
. How can we better harness the power of the models?



Challenge: Where are the nails?

FMs promise to be powerful hammers, but surprisingly, many biological
guestions do not look like nalls

Many methods excel in supervised tasks, but single-cell omics is mainly
exploratory, with significance beyond routine supervision

What exciting biological discoveries can foundation models enable?

. Can a model answer a question it was not trained for?
. Can a model uncover unique data characteristics without a predefined question?

Pool of questions LLMs can answer

Pond of questions biologists have
Sea of questions to be asked...
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Challenge: Mechanistic insights from the FMs?

= ||Ms trained on massive amounts of texts have shown to have emergent
ablilities such as reasoning.

= Current FMs have demonstrated promising results in diverse downstream
tasks, but how such predictions are made remains a black box.

= Can single-cell foundation models explain and reason about the predictions?

For example:
. What are the molecular mechanisms that lead to the specific transcriptomic changes due

to a genetic perturbation?
. What are the key molecular pathways that define a cell (sub)type?
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Interpretable ML in the era of LLMs

nature methods

Perspective https://doi.org/10.1038/s41592-024-02359-7

Applying interpretable machinelearning
incomputational biology—pitfalls,
recommendations and opportunities for
new developments

Valerie Chen
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