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ABSTRACT

This paper presents a new variant of the perceptron algo-
rithm using selective committee averaging (or voting). We
apply this agorithm to the problem of learning ranking func-
tions for document retrieval, known as the “Learning to
Rank” problem. Most previous algorithms proposed to ad-
dress this problem focus on minimizing the number of mis-
ranked document pairs in the training set. The commit-
tee perceptron algorithm improves upon existing solutions
by biasing the final solution towards maximizing an arbi-
trary rank-based performance metrics. This method per-
forms comparably or better than two state-of-the-art rank
learning algorithms, and also provides significant training
time improvements over those methods, showing over a 45-
fold reduction in training time compared to ranking SVM.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Design, Algorithms, Experimentation
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1. INTRODUCTION

Learning to rank objects has become a critical task in all
aspects of serving users’ information needs: ranking prod-
uct recommendations based on previous purchase history,
ranking online advertisements with respect to information
content on a web page and ranking news articles in order of
likely interest to users. This paper investigates the ranking
problem in the ad-hoc information retrieval domain: ranking
documents in response to users’ queries. Learning ranking
functions in this domain poses several interesting challenges.

(©ACM, (2008). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of WSDM2008, Febru-
ary 11-12, 2008, Palo Alto, California, USA.

When concerned with document retrieval and ranking, the
learning algorithm must (1) adapt to increasing richness and
complexity of document representations, (2) adapt to vary-
ing tasks and user needs, and (3) scale when applied to larger
and larger collections.

In traditional ad-hoc information retrieval systems, a rank-
ing function is developed using a small set of features de-
signed to reflect the similarity of a document to query. Typ-
ically these features include measures such as query term fre-
quency in the document, inverse document frequency of the
query terms and others. A small number of these measures
are combined using a few parameters and those parameters
are often chosen manually based on experimentation. But,
as is often the case as systems develop over time, new fea-
tures are added to the model, increasing the number of pa-
rameters that need to be tuned to optimize the performance
of the system. For example, when retrieval systems were ex-
tended to the web domain the use of link-based features and
structural document features created a much richer repre-
sentation of the documents [5]. Further exploitation of web-
centric features through link network analysis, bookmarking
and tagging trends, and clickthrough data may continue to
increase the quality of our document representations[1, 22].
Better document representations could improve the perfor-
mance of retrieval systems significantly, but adding these
features to our ranking function inevitably adds more com-
plexity to the retrieval model and more parameters that need
to be tuned.

An additional challenge in document ranking is that the ob-
jective of a retrieval system can change from task to task,
or even from user to user. In some situations such as patent
application search, users may be more interested in high
recall. In others situations such as named-page-finding, it
would be more appropriate to optimize performance metrics
designed for very high precision. In extremely large collec-
tions like the web, it is particularly important to maximize
performance at the top of the ranked list as it has been
shown that users rarely look beyond the first few retrieved
documents [1].

Finally, as collection sizes increase, the algorithms that learn
ranking functions must scale appropriately. State-of-the-art
algorithms for learning document ranking functions can be
prohibitively slow on large collections.



The question addressed in this paper is: how to efficiently
and automatically learn document ranking functions in order
to optimize a task-appropriate performance measure, partic-
ularly those that are focused at the higher end of the ranked
list.

To answer this, we propose a new method to learn ranking
functions that are biased towards maxmizing arbitrary rank-
based performance metrics (such as NDCG, MAP, Recipro-
cal Rank, etc), while keeping training time fast and scalable
to large datasets. This method, the committee perceptron,
inherits the speed and simplicity of the original perceptron
algorithm, thereby allowing the algorithm to run quickly
even on large collections. The committee perceptron al-
lows tuning of the committee size across the full operational
range, as opposed other perceptron variants which just oper-
ate at the extremes. By maintaining a committee of n-best
hypotheses during training time, we can also estimate the
performance of each hypothesis accurately for any retrieval
performance metric, yielding a more task-appropriate solu-
tion. The end result is a fast and scalable algorithm that
can be easily tuned for an arbitrary retrieval performance
metric.

The remainder of this paper is organized as follows: we first
describe some of the related work in this area. Then, we
present a discussion of optimization of rank-based perfor-
mance metrics with respect to learning of ranking functions.
The committee perceptron algorithm is described, followed
by experimental results comparing this algorithm to several
other ranking function learners.

2. RELATED WORK
2.1 Problem Setting

Many of the previous approaches to learning ranking func-
tions for document retrieval, as well as the approach pre-
sented here, are concerned with functions that can be pa-
rameterized by a single vector of weights, w. Documents are
represented by a vector of query-dependent feature scores,

diq = (fo(d’hq)?fl(di?(I)? R} fm(dz,q))

These feature scoring functions f; are typically derived
from low-level features used in information retrieval systems
such as term frequency or inverse document frequency, or
higher-level aggregated scores such as the score assigned by a
baseline ranking algorithm for document d; on query q. The
learning algorithms presented in this paper output scoring
functions of the form:

Score(diqg, w) =< diq, W > (1)

where < -, - > is the inner product. A final document rank-
ing is derived from this function in the obvious way, where
documents are ranked in descending order according to their
score.

The goal, then, for learning the ranking function is to find
the weight vector w that yields the best performance in the
document ranking task.

2.2 Learning Ranking Functions
Learning ranking functions for document retrieval has re-
cently become a popular research topic. RankSVM [10, 22]

adapts the SVM classification algorithm to learning ranking
functions. RankNet [7] uses a probabilistic cost function for
mis-ranking pairs of documents and trains using the gradi-
ent of this cost function. RankBoost [16] applies a boosting
algorithm (similar to AdaBoost) to the ranking problem,
combining the output of weak rankers to learn a powerful
ranking function. [30] and [19] apply the perceptron algo-
rithm to ranking (or re-ranking) in several different NLP
and IR domains.

Most of the above approaches to learning ranking functions
adapt binary classification algorithms to the this task by
constructing a training set using relative preference (or rel-
evance levels) of training instances. The ranking problem
is concerned with producing scores for instances so that the
relevant instances score higher than less relevant instances.
Using the relative preference of training instances, we can
adapt most binary classification algorithms to learn rankings
by training on pairs of instances that have differing relevance
levels. A correct classification corresponds to ranking that
pair so that the more relevant instance is scored higher than
the less relevant instance.

Some of the above learning approaches have also been adapted
to learn rankings functions to optimize specific retrieval per-
formance metrics such as NDCGJ20]. [27] and [31] present
two ways to tailor RankNet to optimize NDCG at the higher
end of the ranked list. The first approach iteratively re-
ranks smaller and smaller portions of an originally produced
ranked list of documents in order to focus on the portion of
the ranked list that has a higher likelihood of being relevant.
The second adapts RankNet’s cost function to directly opti-
mize parameters in the BM25 ranking function while maxi-
mizing NDCG on a held-out set. In recent work, [32] present
a method for adapting RankSVM to optimize average pre-
cision.

Other common approaches to optimizing specific retrieval
performance metrics include grid-search, coordinate ascent
and line-search [19, 28]. Although these methods directly
optimize any given performance metric, they are generally
considered too slow when applied to more than just a few
parameters in the model. Grid-search uses brute-force enu-
meration of all the hypotheses on a lattice in the search
space and evaluates the performance metric of interest for
each hypothesis. Line-search uses a more focused heuristic
exploration, sampling the hypothesis space around the cur-
rent hypothesis to identify a promising “direction” to move
the hypothesis for an update. Finally, coordinate ascent
is another directed heuristic exploration of the hypothesis
space, sequentially adjusting each parameter to maximize
an objective function while holding the other parameters
fixed.

3. RANK-BASED PERFORMANCE METRICS

& OPTIMIZATION

In the typical classification setting the objective is to min-
imize the classification error rate. In the context of learn-
ing ranking functions with pairwise document preferences,
a classification error corresponds to a mis-ranked (“discor-
dant”) document pair, or inversion in the ranked list. Al-
though this objective makes intuitive sense and allows us to
conveniently apply classification algorithms to the problem



of ranking, it may not be a sufficient objective. As a simple
example, consider a situation with three relevant and three
non-relevant documents {R, R, R, N, N, N}. The following
three rankings have the same number of inversions in the
ranked lists, @), but different Normalized Discounted Cumu-
lative Gain (NDCG), Reciprocal Rank (RR) and Average
Precision (AP) scores [4, 20]:

Ranked List Q | NDCG | RR | AP

RNRNRN/| 3 0.783 1.0 | 0.756
NRRRNN| 3 0.810 0.5 | 0.639
RRNNNR| 3 0.907 1.0 | 0.833

This is a simple example, but it clearly shows that although
minimizing @ may be a sensible goal, it is not a sufficient
metric to optimize when higher positions in the ranked list
are clearly more important than lower positions. This dis-
connect between the goal of minimizing the number of inver-
sions in the ranked list and maximizing a specific retrieval
performance metric poses significant challenges when learn-
ing ranking functions with pairwise preference training data.

In [22], it was shown that minimizing the number of dis-
cordant document pairs places a lower bound on average
precision. By a similar proof presented in the appendix, we
show that minimizing the number of inversions will place a
lower bound on any retrieval evaluation metric that can be

written as:
m .
1 7
R =
i=1

Dz m(ri,...

where Z is a measure-dependent normalization, m indicates
how far down the ranked list to look, r; is the rank of the
ith relevant document and R is the number of relevant doc-
uments. Average precision, precision at K, reciprocal rank
and R-precision are all common document retrieval evalu-
ation metrics that can be written this way. Although this
lower bound validates the pairwise-preference classification
approach to learning ranking functions, there is no guaran-
tee on the tightness of the bound. In the section below, we
explore a retrieval evaluation metrics that have a closer re-
lationship to the number of discordant document pairs, one
of which is directly maximized when reducing the number of
mis-ranked document pairs.

3.1 BPREF, RankEFF and Misranked Docu-

ment Pairs

The evaluation metric bpref [6] is also bounded from be-
low and the metric RankEff [2] is directly maximized when
minimizing the number of mis-ranked document pairs in the
ranked list. bpref was designed as a stable performance met-
ric when relevance judgments are incomplete, and RankEjff
builds upon the bpref measure, taking into account all re-
trieved non-relevant documents. Both measures are known
to correlate well with average precision in TREC data [2, 9,
6] and bpref is currently reported in annual TREC evalua-
tion results [8]. These metrics are defined as:

min(N,R) I

R - n; <r;
bprefz%Zlfzj_l (s )
i=1

min(N, R)

R N

S I(ng <
RankEﬁ:%Zl—%
i=1

where R is the number of judged relevant documents, N is
the number of judged non-relevant documents, n; and r;
are the ranks of non-relevant and relevant documents, and
I(-) € {0,1} is an indicator function. In the bpref defini-
tion above, Z;:TN’R) I(n; < r;) gives the number of non-
relevant documents up to R ranked higher than the relevant
document at rank r;, and summing over all the relevant
documents gives a value that is bounded by the number of
discordant documents pairs, Qr < . Assuming R < N,
which is a safe assumption in document retrieval, bpref can
therefore be written in terms of @ and Qr as follows:

Qr__,__Q
N xR — N X R

bpref =1 —

Similarly, we can write RankEff as:

Q

RankEﬁzl—NXR

Therefore, the traditional pairwise-preference approach to
learning ranking functions by minimizing @ is equivalent to
maximizing a lower bound on bpref and directly maximizing
RankEff. As noted in [10], care must be taken to balance the
training data across queries in order to avoid disproportion-
ately weighting those queries with more relevant documents.

Because these are well understood performance metrics and
both correlate well with MAP [2, 9, 6], we would argue
that when trying to optimize a ranking function on the
full ranked list, minimizing ) is an appropriate approach
to take. But, when desiring a ranking function that is tai-
lored more towards high-precision at the top of the ranked
list, the learning method should be adapted to maximize
evaluation metrics more sensitive to this criteria.

4. THE PERCEPTRON ALGORITHM & ITS

VARIANTS

The perceptron algorithm, originally proposed by Rosen-
blatt in 1958 [29], is an error-minimization online learner
that uses a simple additive update rule. It can be show that
given linearly separable data, the perceptron will converge
to a solution that perfectly classifies the data. The reader
is referred to [17] for this convergence proof and analysis of
the perceptron algorithm’s mistake bounds.

The perceptron algorithm has been applied to document
ranking function learning [19], and this paper extends that
approach. Table 1 describes several variants of the percep-
tron algorithm as applied to document ranking. The algo-
rithm description throughout this paper assumes that rele-
vance judgments in the test collection are binary, but this
can be easily extended to cases with graded relevance levels.
In that case, relevant/non-relevant document pairs can be
formed by any pair of documents with differing relevance



Table 1: Perceptron Algorithm Variants for Docu-
ment Ranking Function Learning.

Input: Number of iterations 7', List of training document
pairs S = R X N = {(dngq,drq)} where d, is non-relevant
and d, is relevant to query ¢

Output: Parameter Vector w

1. Initialize ¢ = 0, success counter ¢; = 0, initial param-
eters w°, query balancing factor n, = 1/|S,| where S,
are the training instances for query gq.

2. Fort=0,...,T:

For each training sample (dnq,drq) € S:
If Score(dng, w') > Score(d,q, w') then
update: W' = w' + ny(drq — dng)
i=1+1
Else update: ¢; =¢; + 1
3. Output (for several variants of the algorithm):
Last: w'

Pocket: w! where | = arg max; ¢;
Average: -+ >, ciw; where Z =), ¢

judgments. Note also that the perceptron algorithm typi-
cally uses a global learning rate n for the weight updates.
We do away with this learning rate in our implementation,
and instead balance the weight updates across queries with a
per-query balancing factor 4. This is in the same spirit as a
technique presented in [10] for balancing RankSVM training
across queries.

Since each weight update in the perceptron simply adds
(or subtracts) the document vector to or from the current
weight, we can express the weight vector learned up to a
given time as follows:

w' =w’+ Z Nq®iqdiq

dig€RUN

where R U N are the union of relevant and non-relevant
documents to this query, |aiq| is the number of times a doc-
ument was mis-ranked during the training, and is positive
(negative) for relevant (non-relevant) documents. Note that
aiq can be zero if a document is never mis-ranked during
training. Our document scoring function given in equation
1 can be re-parameterized in terms of the a’s and written
as follows (assuming the initial weight vector w° is zero):

Score(djq, a) = Z NqQiqg < djqr,dig > (2)

d;q€RUN

where RUN are all the relevant and non-relevant documents
in our training set. This dual form of the learned perceptron
weights is often used to apply kernel methods to the percep-
tron learner, substituting the dot product, < -,- > with a

suitable kernel, such as the polynomial or Gaussian kernel.

Although the perceptron is elegant and simple, with prov-
able convergence properties and mistake bounds, it can be
quite unstable when applied to data that is not linearly sep-
arable. Many variants of the perceptron algorithm have
been proposed to alleviate this problem, ranging from at-
tempts to maximize the classification margin with SVM-like
constraints [13, 25], to voting or averaging schemes[17], to
down-weighting “noisy” samples in the training set [23].

Voting and averaging of the learned hypotheses has led to
improvements in the perceptron’s performance and stability.
The original perceptron algorithm simply returned the last
learned weights vector. This approach, however, could lead
to learning poor hypotheses because the weight vector may
have been recently updated with noisy examples and only
tested against very few training instances. Gallant proposed
the “longest survivor” or “pocket perceptron” to get around
this problem[18]. In this algorithm, the weight vector is re-
turned that correctly classified the most training instances
in a row. Freund and Schapire proposed the “voted percep-
tron” which returns all the learned weight vectors and com-
posed a final classifier by letting each intermediate learner
vote on new instances, weighting the votes by the number
of correct classifications made during training, ¢; [17]. This
approach can be expensive, and an approximation to voting
is often used by averaging all the weight vectors[11]. In [24],
a “selective voting” approach was taken which only used a
subset of the learned weights, choosing a threshold B and
setting ¢; = 0 for i < B.

Another method of making the perceptron more stable when
applied to noisy non-linearly separable data is to “clean”
the data while training [19, 23]. One of these techniques,
referred to as the a-bound, attempts to minimize the im-
pact of a single training observation on the final learned
hypothesis. While proceeding through a training iteration,
if an instance is mis-classified more than a pre-determined
number of times, that instance is removed from training set
for future iterations. This in effect puts a bound on the «
weights in the dual form of the perceptron, equation 2. The
bound on « can be specified as a fraction of the number of
iterations through the data.

S. COMMITTEE PERCEPTRON

In this section we describe the committee perceptron algo-
rithm in detail. Because this algorithm is a straightforward
extension to the average- and pocket-perceptron algorithms,
we expect the same theoretical properties of those algo-
rithms apply to the committee perceptron as well. In ex-
tending those algorithms, the committee perceptron allows
optimization across a full range of committee sizes instead
of just the extremes.

Most basically, the committee perceptron votes or averages
the n-best learned hypotheses instead of all of the hypothe-
ses. This simple modification would not initially seem to
provide a significant advantage over the average perceptron.
But, as will be shown later, the committee perceptron ap-
proaches a better solution faster than other variants, and the
“best” hypotheses selected for voting can be biased towards
an arbitrary retrieval performance metric. Table 2 presents



Table 2: Committee Perceptron Algorithm for Doc-
ument Ranking Function Learning.

Input: Number of iterations T', Committee Size Ncom,, List
of training document pairs S = R x N = {(dnq,drq)} where
dy, is non-relevant and d, is relevant to query gq

Output: Set of Parameter Vectors and their success coun-
ters K = {(w",cx)|k =1... Neom}

1. Initialize ¢ = 0, success counter ¢; = 0, initial param-

eters w®, committee K = (), query balancing factor

ng = 1/|S4| where S, are the training instances for
query g.

2. Fort=0,...,T:

For each training sample (dnq,drq) € S:
If Score(dng, w') > Score(d,q, w') then
(wmi“, Cmin) € K 8.t. Cmin = ming cx € K
If ¢; > cmin then
add (w',¢;) to K
while | K| > Naup
remove (W™, cpmin) from K
update: W' = w' + ny(drq — dng)
t=1+1
Else update: ¢; =¢; + 1

3. Output: K

the committee perceptron algorithm.

The committee perceptron proceeds like the traditional per-
ceptron algorithm, iterating through the training instances
and updating the hypothesis weight vector w' after each
ranking mistake. Before the current hypothesis is updated,
it is considered for induction into the committee. The hy-
pothesis is added to the committee if its success counter ¢; is
greater than the minimum success counter of the hypothe-
ses already in the committee or if the committee has not
reached its maximum size yet, Ncom. If the committee size
exceeds Ncom when a new hypothesis is added to the com-
mittee, the hypothesis with the minimum success counter in
the committee is retired in order to keep the committee size
fixed.

In the voted- or pocket-perceptron algorithms, performance
of a hypothesis is judged only by the number of examples
correctly ranked in a row, i.e. its success counter ¢;. But, by
maintaining a committee of hypotheses, we can form a more
accurate and potentially more task-appropriate estimate of
the performance of those hypotheses. At the end of train-
ing, each hypothesis can be evaluated against a hold-out
development set using a user-specified performance metric.
Hypotheses are then combined in some weighted scheme us-
ing their performance as the weights. This has the effect of
favoring hypotheses that perform better with regard to this
performance metric.

One final advantage of the committee perceptron over the

Table 3: Collection sizes in the LETOR dataset,
showing the average number of judged document
per query and the percentage of relevant documents

in that set at each relevance levels.
Collection Features | Queries | Docs/Q %Rel
OHSUMED 25 106 152.24 | 16% / 14%
TREC 2003 44 50 983.42 1.0%
TREC 2004 44 75 988.93 0.6%

average perceptron is that it enables us to use true voting
schemes rather than just averaging the hypotheses. When
classifying new examples with the voted perceptron algo-
rithm, each intermediate hypothesis must score the exam-
ple and sort the list of document to produce its vote. With
large amounts of training data, data that is far from being
linearly separable, or a high number of iterations through
the data, the number of generated hypotheses can be quite
large. This situation can make voting impractical in general.
But, when limiting the number of hypotheses that can place
a vote by using a committee, voting is a much more practical
strategy. In the context of pairwise preference learning of
ranking functions, (weighted) majority voting corresponds
to Borda-counting or BordaFuse [3]. In this work, we apply
hypothesis averaging and BordaFuse to produce the final
system output, weighting each hypothesis by a function of
its performance on the validation set.

Note that this algorithm is a direct generalization of the
previously presented perceptron variants. Setting Neom = 1
corresponds to the pocket-perceptron and setting Neom =
oo corresponds to the average-perceptron algorithms, when
using an hypothesis averaging combination strategy.

6. EXPERIMENTAL RESULTS

In this section we will describe experiments conducted with
the committee perceptron, and compare its performance
to two state-of-the-art rank learning algorithms, RankSVM
[10, 22] and RankBoost [16].

6.1 Datasets

The experiments presented here were all conducted using the
recently released Learning to Rank (LETOR) Benchmark
dataset [26]. This dataset attempts to provide a standard
set of document-query features over several test collections
for use in learning document ranking functions. These fea-
tures were extracted from all the query-document pairs in
the OHSUMED collection and the .GOV test collection us-
ing the queries and judgments from the TREC 2003 and
2004 web track topic distillation tasks[15, 14]. The rele-
vance judgments in the TREC collections are binary and in
the OHSUMED collection are graded in three levels: “defi-
nitely relevant”, “possibly relevant” and “not relevant”. The

LETOR dataset also contains standardized train/validation/test

splits for 5-fold cross validation. The sizes of each collection
in the datset, as well as the percent relevant documents for
each relevance level, are shown in table 3.

Some of the document-query features provided in this col-
lection are query term frequency in title or abstract (for
OHSUMED), BM25 score, and P(query|document) with
various smoothing parameters from the language modeling



retrieval model [33]. The reader is referred to [26] for a de-
tailed explanation of the feature sets. In our experiments,
the query-docuent feature values were normalized on a per-
query basis to the [0, 1] interval using the linear scaling sug-
gested by the producers of the LETOR dataset and no ad-
ditional feature selection or processing was done.

6.2 Algorithm Performance

We evaluate the performance of our algorithm across various
parameter settings and against two state-of-the-art base-
line algorithms that have been widely used in document
ranking function learning: RankSVM][22] and RankBoost
[12]. Throughout these experiments we evaluate against
the validation set using NDCG@10 as a representative high-
precision performance metric. The algorithm described above
does not make any assumptions about the performance met-
ric to be optimized, and any high-precision performance
metric could be substituted in its place. The validation set
was used to select the number of iterations to run (7') and
used to set the weights for the committee member combi-
nation strategies: weighted averaging and weighted Borda
count.

Unless otherwise noted, all test results reported are 5-fold
cross validation results, with the number of iterations T
chosen to maximize NDCG@10 on the validation set. All
weights in the perceptron algorithms are initialized to ze-
ros. Test results varying the committee and subcommittee
sizes up to 100 members did not show significant differences
in performance, and settings in this range are used in all
of the tests described here. Additionally, we employed an
a-bound of 0.85 for all perceptron variant tests as described
above, removing instances that were misclassified in more
than 85% of the iterations through the data. As noted in
[19], this technique improved the stability of the algorithm
over all of the perceptron variants. The exact values of the
committee sizes and a-bound was chosen from preliminary
experimentation, and we leave selecting these parameters in
a more principled way as future work.

Looking at the learning rates of several perceptron variants,
some trends are clear. The results in figure 1 show that
the committee perceptron approaches a stable solution in
many fewer iterations than both the pocket- and average-
perceptron algorithms. This solution also consistently out-
performs the other perceptron variants. Throughout our ex-
perimentation, the hypothesis learned from the committee
perceptron reached its maximum performance on the vali-
dation set before roughly 50 iterations through the training
data, whereas the average perceptron continued to improve
even after 500 iterations.

Table 4 shows the performance of the committee perceptron
and other perceptron variants as compared to two state-
of-the-art rank learning algorithms, RankSVM [10, 22] and
RankBoost [16]. In all tests, the committee perceptron per-
forms comparably to these state of the art algorithms, and
significantly better than the average- and pocket-perceptron
variants. Statistically significant performance improvements

over both baseline algorithms were seen in some of the OHSUMED

and TD2003 dataset tests. In all cases where the baseline al-
gorithms outperformed the committee perceptron, that dif-
ference is not statistically significant. All statistical signifi-

Performance on OHSUMED collection validation set
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Figure 1: NDCG@10 and MAP on the OHSUMED
collection validation set across iterations for several
perceptron variants. Average — average perceptron,
Pocket = pocket perceptron, Com 20 = committee
perceptron with committee size of 20.



Table 5: Training Time of the Committee Percep-
tron algorithm (50 iterations, Ncom = 20) compared

to RankSVM. All times are in seconds.
Fold Committee Perceptron | RankSVM
1 462.85 27487.40
2 527.14 35887.08
3 489.62 28584.22
4 414.18 7328.77
5 375.01 6902.77
Average 453.76 21238.05

cance is at the p < 0.05 level with a one-tailed paired t-test.

As observed by Liu et. al. [26], the performance of the
baseline algorithms on the TD2004 dataset raises some in-
teresting questions. The TD2003 and TD2004 datasets are
built from the same document collection using the same fea-
tures, only the queries are different. There are more queries
in the TD2004 collection (75) than the TD2003 collection
(50), and the increase in training set size likely accounts
for the increased performance across all algorithms between
the two TD collections. The magnitude of the increase, how-
ever, is dramatically different across the algorithms. Both
RankSVM and the committee perceptron realize less than a
20% performance improvement across the TD collections,
but the RankBoost performance gain is more than 70%.
There are several possibilities for this discrepancy: the dif-
ference between the linear ranking functions of RankSVM
and the perceptron variants vs. the non-linear nature of
RankBoost’s final ranking function, the implicit feature se-
lection performed by RankBoost, or a combination of these
factors. Additionally, Liu et. al. [26] suggest that this per-
formance difference may be indicative of inherent instability
in RankBoost. We leave further investigation of this phe-
nomenon for future work.

6.3 Running Time Analysis

We evaluated our algorithm’s running time against the pop-
ular SVM implementation, SVM'"* 1[21], which supports
learning ranking functions from pairwise preference data.
These tests were performed on the OHSUMED corpus, and
the results in table 5 show training time for each training
fold. These results show that our algorithm is more than 45
times faster to train than RankSVM on this dataset. Note
that this could be considered a worst-case comparison: our
committee perceptron algorithm implementation is in Java?,
whereas SVM!*9"* is implemented in C.

7. CONCLUSION & FUTURE WORK

In this paper we present a new variant of the perceptron
algorithm, the committee perceptron, and applied it to the
problem of learning document ranking functions. This algo-

rithm is a generalization of the pocket- and average-perceptron

algorithms, allowing optimization across the full operational
range of committee sizes rather than just the extremes. By
maintaining a set of n-best hypotheses, the committee per-
ceptron algorithm is also capable of being tuned to favor
hypotheses that perform better on an arbitrary retrieval

"http://svmlight.joachims.org/
Zhttp://java.sun.com/

performance metrics. We applied this algorithm to learn-
ing of document ranking functions for ad-hoc retrieval and
compared against two baseline algorithms applied to this
problem, RankSVM and RankBoost. The committee per-
ceptron algorithm performs comparably to or better than
two state-of-the-art algorithms on three large public domain
corpora, and also is capable of being trained in a fraction
of the time — more than a 45-fold decrease in training time
as compared to RankSVM. Tests show that the commit-
tee perceptron algorithm more quickly approaches a better
hypothesis than other variants of the perceptron algorithm
such as the pocket- and average-perceptron.

There are several refinements remaining in the development
of this algorithm and applying it to the problem of learning
ranking functions. The performance on the TD2004 collec-
tion shows that there is still room for significant improve-
ment in the algorithm presented here. Future work includes
investigating why RankBoost so dramatically outperforms
the others on that collection, and if there are any features
of RankBoost that can be integrated into the committee
perceptron.
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APPENDIX

Let r,e; be a “perfect” ranking where all relevant documents
are ahead of all non relevant documents and let rsys be a
system produced ranking. Define a class of ranking perfor-
mance metrics as

1 m .

(2

CI)Zm(rs T l) = =5 —_
s yss Tre 7 E

r

i=1

where Z is a measure-dependent normalization, m indicates
how far down the ranked list to look, and r; is the rank of
the ith relevant document in the system produced ranking.
This class of ranking performance includes many commonly
used measures retrieval, and their definitions in terms of ®
are given in table 6.

Table 6: Some common retrieval performance met-
rics expressed in terms of Z and m, where &7, =

1
72;117»%

| Dzm | Z | m |
Awverage Precision | R R
Precision at K K | mpst. rym, <K Trmggq
Reciprocal Rank 1 1
R-Precision R | myst. rm, S R< Ty

We will show that this class of performance metrics is bounded
from below when minimizing the number of inversions in a
ranked list. The following theorem and proof are a general-
ization of the bound on average precision presented in [22],
and the proof here closely follows that proof.

THEOREM 1. let rrei, Tsys and @z m (Tsys, Tret) be as defined
above. If R is the number of relevant documents, Q is the
number of discordant document pairs or inversions between
Trel and Tsys, then our performance metric is bounded from

below by:
-1 2
R+1 U
o (")) (£Y)
=1
PROOF. In a perfect ranking, the sum of relevant ranks is:

R R+1
= (")

For each inversion of a relevant and non-relevant docu-
ment in this ranking, we reduce the rank (increase r;) by
one thereby adding one to this sum. So, in general we can
express this sum as

ZTi—Q+<R;_1) (3)

1
(bZ,m(Tsym Trel) > E

. Similarly, we can focus on the top m < R relevant docu-
ments in that ranking and let Q),, be the number of inver-
sions involving only those documents.

m R
Zm—Qm+<m;1>§Zm (4)
i=1 i=1

Given this relationship, we can take Q,, as fixed and ex-
press the lowest value of our performance metric ®z ., as
the following integer optimization problem:



minimize:

i

1 m .
q)Z,m (rsy37 T'rel) = E Z — (5)
=1

subject to:

Zrz‘:Qer(m;l) ©6)

1<rm<...<7Tm (7)

T1,...,Tm integer (8)

Removing the last two constraints in this optimization prob-
lem only lowers the minimum value, and therefore still presents
a solution to that lower bound. Without those constraints,
this becomes a convex optimization problem and can be
solved with Lagrange multipliers. The Lagrangian is:

L(Tl,---,Tm,ﬁ):%Z%-Fﬁ

i=1 "

Differentiating with respect to the r; gives the following:

6L(T17"'7Tm7ﬂ) gzl =2
— e = Z 7+ (10)

Setting 10 equal to zero, solving for r; and substituting back

into 9 gives:
m+1
Qm+ ( 9 )

Taking the derivative with respect to 3 gives:

OL(r1,...,"m, ) Lm - m+ 1
— ﬂ/ﬁZ;\/E Qm+< ) )

Setting 12 equal to zero, solving for # and substituting back
into 11 gives the following solution:

@ (")) (£
BGE)

By equations 3, 4 and 13, we have proven the theorem. 0O

L(rl,,..,rm,ﬂ)—Q\/gz;\ﬁ—ﬂ
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