
Moving Definition Variables
in Quantified Boolean Formulas

Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

Appeared in TACAS’22

Joseph Reeves 1 / 23



Overview

I Definition variables allow compact representation of
Quantified Boolean Formulas (QBF)

I Definition variables often placed in the innermost
quantifier level, causing a loss of structure

I We propose moving definition variables closer to their
respective defining variables

I We show movement improves QBF solver performance,
and is verifiable in the QRAT proof system

Joseph Reeves 2 / 23



Overview

I Definition variables allow compact representation of
Quantified Boolean Formulas (QBF)

I Definition variables often placed in the innermost
quantifier level, causing a loss of structure

I We propose moving definition variables closer to their
respective defining variables

I We show movement improves QBF solver performance,
and is verifiable in the QRAT proof system

Joseph Reeves 2 / 23



Overview

I Definition variables allow compact representation of
Quantified Boolean Formulas (QBF)

I Definition variables often placed in the innermost
quantifier level, causing a loss of structure

I We propose moving definition variables closer to their
respective defining variables

I We show movement improves QBF solver performance,
and is verifiable in the QRAT proof system

Joseph Reeves 2 / 23



Overview

I Definition variables allow compact representation of
Quantified Boolean Formulas (QBF)

I Definition variables often placed in the innermost
quantifier level, causing a loss of structure

I We propose moving definition variables closer to their
respective defining variables

I We show movement improves QBF solver performance,
and is verifiable in the QRAT proof system

Joseph Reeves 2 / 23



What are QBF?

I Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

I Examples:
I (x∨ y)∧ (x∨ y) (propositional logic x↔ y)

I ∃x∀y(x∨ y)∧ (x∨ y)

Is there a value for x such that for all values of y the
formula is true?

I ∀y∃x(x∨ y)∧ (x∨ y)

For all values of y, is there a value for x such that the
formula is true?

Joseph Reeves 3 / 23



Circuit Problem

∃x1x2∀y∃x3.(Circuit output is 1)

x1

x2

y

x3

Example: For t1 ↔ x1 ∧ x2, t1 is defined by x1, x2 with
clauses, (t1 ∨ x1 ∨ x2)∧ (t1 ∨ x1)∧ (t1 ∨ x2)

Joseph Reeves 4 / 23



Circuit Problem

∃x1x2∀y∃x3∃t1t2t3.(Circuit output is 1)

x1

x2

y

x3

t1

t2

t3

Add definition variables to capture output of each gate

Example: For t1 ↔ x1 ∧ x2, t1 is defined by x1, x2 with
clauses, (t1 ∨ x1 ∨ x2)∧ (t1 ∨ x1)∧ (t1 ∨ x2)

Joseph Reeves 4 / 23



Circuit Problem

∃x1x2t1∀y∃x3∃t2t3.(Circuit output is 1)

x1

x2

y

x3

t1

t2

t3

Example: For t1 ↔ x1 ∧ x2, t1 is defined by x1, x2 with
clauses, (t1 ∨ x1 ∨ x2)∧ (t1 ∨ x1)∧ (t1 ∨ x2)

Joseph Reeves 4 / 23



Linear Domino Game

Board with 1×N squares

I Players alternate placing dominos

I First player who can’t place
domino loses

QBF encoding of two player games

I Existential player (A) and
Universal player (B)

I If the formula is true, A has some
winning move sequence for all B
moves

Joseph Reeves 5 / 23



Linear Domino Game

∃A1 Board with 1×N squares

I Players alternate placing dominos

I First player who can’t place
domino loses

QBF encoding of two player games

I Existential player (A) and
Universal player (B)

I If the formula is true, A has some
winning move sequence for all B
moves

Joseph Reeves 5 / 23



Linear Domino Game

∃A1 ∀B2 Board with 1×N squares

I Players alternate placing dominos

I First player who can’t place
domino loses

QBF encoding of two player games

I Existential player (A) and
Universal player (B)

I If the formula is true, A has some
winning move sequence for all B
moves

Joseph Reeves 5 / 23



Linear Domino Game

∃A1 ∀B2 ∃A3 Board with 1×N squares

I Players alternate placing dominos

I First player who can’t place
domino loses

QBF encoding of two player games

I Existential player (A) and
Universal player (B)

I If the formula is true, A has some
winning move sequence for all B
moves

Joseph Reeves 5 / 23



Linear Domino Game

∃A1 ∀B2 ∃A3 ∀B4 Board with 1×N squares

I Players alternate placing dominos

I First player who can’t place
domino loses

QBF encoding of two player games

I Existential player (A) and
Universal player (B)

I If the formula is true, A has some
winning move sequence for all B
moves

Joseph Reeves 5 / 23



Linear Domino Game Encoding

∃A1∀B2∃A3∀B4 ∃T1 ∃T2 ∃T3 ∃T4 Problem Variables

I Attempt to place
domino i on step t

Definition Variables

I Track state of board
after each step

I Conventionally at
innermost
quantification level

Moving Definition Variables

I Right after their defining input variables

I Board state (Ti) updated after each move (Ai/Bi)

Joseph Reeves 6 / 23



Linear Domino Game Encoding

∃A1∃T1 ∀B2 ∃T2∃A3∃T3 ∀B4 ∃T4 Problem Variables

I Attempt to place
domino i on step t

Definition Variables

I Track state of board
after each step

I Conventionally at
innermost
quantification level

Moving Definition Variables

I Right after their defining input variables

I Board state (Ti) updated after each move (Ai/Bi)

Joseph Reeves 6 / 23



Definitions

I The Tseiten transformation adds many definitions

I These definitions are necessary for a compact
representation in Prenex Conjunctive Normal Form

I Automated transformations often place definition variables
in the innermost quantifier level

Joseph Reeves 7 / 23



Motivating Example

I Consider the formula ∃x1x2∀y∃t1.(t1 ↔ x1 ∧ x2)∧ . . .

I Moving t1 closer to its defining variables yields:

∃x1x2t1∀y.(t1 ↔ x1 ∧ x2)∧ . . .

Joseph Reeves 8 / 23



Motivating Example

I Consider the formula ∃x1x2∀y∃t1.(t1 ↔ x1 ∧ x2)∧ . . .

I Moving t1 closer to its defining variables yields:

∃x1x2t1∀y.(t1 ↔ x1 ∧ x2)∧ . . .

Joseph Reeves 8 / 23



Universal Reduction

I Universal Reduction removes a literal l ∈ C if l is
universally quantified and inner to all existential variables
in C

I Given ∃x1x2t1∀y.(t1 ↔ x1 ∧ x2)∧ . . . (y∨ t1)

I After moving t1, y can be removed from the clause
(y∨ t1) by universal reduction

Joseph Reeves 9 / 23



Universal Reduction

I Universal Reduction removes a literal l ∈ C if l is
universally quantified and inner to all existential variables
in C

I Given ∃x1x2t1∀y.(t1 ↔ x1 ∧ x2)∧ . . . (y∨ t1)

I After moving t1, y can be removed from the clause
(y∨ t1) by universal reduction

Joseph Reeves 9 / 23



Universal Reduction

I Universal Reduction removes a literal l ∈ C if l is
universally quantified and inner to all existential variables
in C

I Given ∃x1x2t1∀y.(t1 ↔ x1 ∧ x2)∧ . . . (y∨ t1)

I After moving t1, y can be removed from the clause
(y∨ t1) by universal reduction

Joseph Reeves 9 / 23



Proofs in QBF

I QRAT is a clausal proof system, i.e., clauses with the
QRAT property can be added or deleted from the formula

I QRAT steps are equivalence preserving

I A sequence of steps deriving the empty clause is a
refutation proof if each clause addition is QRAT

I A sequence of steps deriving the empty formula is a
satisfaction proof if each clause deletion is QRAT

I QRAT steps can be checked efficiently with the proof
checker QRAT-trim

Joseph Reeves 10 / 23



Proofs in QBF

I QRAT is a clausal proof system, i.e., clauses with the
QRAT property can be added or deleted from the formula

I QRAT steps are equivalence preserving

I A sequence of steps deriving the empty clause is a
refutation proof if each clause addition is QRAT

I A sequence of steps deriving the empty formula is a
satisfaction proof if each clause deletion is QRAT

I QRAT steps can be checked efficiently with the proof
checker QRAT-trim

Joseph Reeves 10 / 23



Proofs in QBF

I QRAT is a clausal proof system, i.e., clauses with the
QRAT property can be added or deleted from the formula

I QRAT steps are equivalence preserving

I A sequence of steps deriving the empty clause is a
refutation proof if each clause addition is QRAT

I A sequence of steps deriving the empty formula is a
satisfaction proof if each clause deletion is QRAT

I QRAT steps can be checked efficiently with the proof
checker QRAT-trim

Joseph Reeves 10 / 23



Proofs in QBF

I QRAT is a clausal proof system, i.e., clauses with the
QRAT property can be added or deleted from the formula

I QRAT steps are equivalence preserving

I A sequence of steps deriving the empty clause is a
refutation proof if each clause addition is QRAT

I A sequence of steps deriving the empty formula is a
satisfaction proof if each clause deletion is QRAT

I QRAT steps can be checked efficiently with the proof
checker QRAT-trim

Joseph Reeves 10 / 23



Proofs in QBF

I QRAT is a clausal proof system, i.e., clauses with the
QRAT property can be added or deleted from the formula

I QRAT steps are equivalence preserving

I A sequence of steps deriving the empty clause is a
refutation proof if each clause addition is QRAT

I A sequence of steps deriving the empty formula is a
satisfaction proof if each clause deletion is QRAT

I QRAT steps can be checked efficiently with the proof
checker QRAT-trim

Joseph Reeves 10 / 23



Performing Movement

Problem: Cannot change Q-Level of a variable in QRAT

Solution: Introduce fresh variable x ′ at desired Q-Level

x ′ replaces x in formula through clause additions/deletions:

1. Add the defining clauses δ(x ′) and δ(x ′).

2. Add the equivalence clauses x↔ x ′.

3. Add and remove the remaining clauses ρ(x) and ρ(x).

4. Remove the equivalence clauses x↔ x ′.

5. Remove the defining clauses δ(x) and δ(x̄).

Joseph Reeves 11 / 23



Performing Movement

Problem: Cannot change Q-Level of a variable in QRAT

Solution: Introduce fresh variable x ′ at desired Q-Level

x ′ replaces x in formula through clause additions/deletions:

1. Add the defining clauses δ(x ′) and δ(x ′).

2. Add the equivalence clauses x↔ x ′.

3. Add and remove the remaining clauses ρ(x) and ρ(x).

4. Remove the equivalence clauses x↔ x ′.

5. Remove the defining clauses δ(x) and δ(x̄).

Joseph Reeves 11 / 23



Performing Movement

Problem: Cannot change Q-Level of a variable in QRAT

Solution: Introduce fresh variable x ′ at desired Q-Level

x ′ replaces x in formula through clause additions/deletions:

1. Add the defining clauses δ(x ′) and δ(x ′).

2. Add the equivalence clauses x↔ x ′.

3. Add and remove the remaining clauses ρ(x) and ρ(x).

4. Remove the equivalence clauses x↔ x ′.

5. Remove the defining clauses δ(x) and δ(x̄).

Joseph Reeves 11 / 23



Moving Variables

I Given a set of definitions (definition type, definition
variable, and defining variables)

I A definition variable can be moved to its innermost
defining variable

I Iterate from outer Q-level inwards, moving all possible
definition variables

Joseph Reeves 12 / 23



Moving Variables

I Given a set of definitions (definition type, definition
variable, and defining variables)

I A definition variable can be moved to its innermost
defining variable

I Iterate from outer Q-level inwards, moving all possible
definition variables

Joseph Reeves 12 / 23



Moving Variables

I Given a set of definitions (definition type, definition
variable, and defining variables)

I A definition variable can be moved to its innermost
defining variable

I Iterate from outer Q-level inwards, moving all possible
definition variables

Joseph Reeves 12 / 23



CNF-based Definition Detection Tools

Kissat

I Detects definitions independently

I Syntactic patterns: AND/OR, XOR, ITE, BiEQ

I Semantic using internal solver Kitten

Cnftools

I Hierarchical detection, starting with root clauses
(max-variable or min-blocked heuristic)

I Syntactic patterns: AND/OR, BiEQ, FULL

I Weaker semantic checking

I Monotonic checking

Joseph Reeves 13 / 23



CNF-based Definition Detection Tools

Kissat

I Detects definitions independently

I Syntactic patterns: AND/OR, XOR, ITE, BiEQ

I Semantic using internal solver Kitten

Cnftools

I Hierarchical detection, starting with root clauses
(max-variable or min-blocked heuristic)

I Syntactic patterns: AND/OR, BiEQ, FULL

I Weaker semantic checking

I Monotonic checking

Joseph Reeves 13 / 23



Definition Detection Tools Evaluation Setup

I 494 formulas from QBFEVAL’20

I 10 second timeout for each detection tool

I Kissat iterates over all variables once or until timeout

I Cnftools iterates over root variables until timeout

Joseph Reeves 14 / 23



Found and Moved Definitions

100 101 102 103 104 105 106
100

101

102

103

104

105

106

combined

to
ol

s

KISSAT

CNFTOOLS(mv)
CNFTOOLS(mb)

1

100 101 102 103 104 105 106
100

101

102

103

104

105

106

combined
to

ol
s

KISSAT

CNFTOOLS(mv)
CNFTOOLS(mb)

1

Joseph Reeves 15 / 23



Moved Definitions by Type

I Movement in 157 formulas (found definitions in all 494)

I No semantic definitions moved by Kissat

I Cnftools slow, e.g., finds small portion of XORs,
but finds monotonic definitions

I Combination important to maximize movement

Joseph Reeves 16 / 23



Definition Movement Evaluation Setup

I 157 formulas with variable movement

I 5000 second timeout (with movement + Bloqqer time)

I Bloqqer run for 100 seconds

I Solvers Caqe and RareQS work well with preprocessors

I Solvers DepQBF and GhostQ discourage preprocessing

Joseph Reeves 17 / 23



Original Vs. Movement

0 1,000 2,000 3,000 4,000 5,000
30

40

50

60

70

80

CPU time

so
lv

ed
in

st
an

ce
s

Caqe-m

GhostQ(ce)-m

GhostQ(ce)-o

Caqe-o

RareQS-m

RareQS-o

DepQBF-m

DepQBF-o

GhostQ(p)-m

GhostQ(p)-o

Figure: Cumulative number of solved instances

Joseph Reeves 18 / 23



Bloqqer Vs. Movement then Bloqqer

0 1,000 2,000 3,000 4,000 5,000

40

60

80

100

CPU time

so
lv

ed
in

st
an

ce
s

Caqe-m-b

Caqe-b

RareQS-m-b

RareQS-b

DepQBF-m-b

GhostQ(ce)-m-b

GhostQ(ce)-b

DepQBF-b

GhostQ(p)-m-b

GhostQ(p)-b

Figure: Cumulative number of solved instances after applying Bloqqer (-b) or
movement then Bloqqer (m-b).

I Bloqqer solves an additional 3 formulas after movement

Joseph Reeves 19 / 23



Instances Solved

I Bloqqer bad for for GhostQ and DepQBF

I Bloqqer better than movement alone for others

I Options with movement give best results

Joseph Reeves 20 / 23



PGBDDQ and Ldomino Benchmark

0 1,000 2,000 3,000 4,000 5,000

10

20

30

CPU time

N
Manual

Move

End

Figure: Boards of size N with definition variable placement: End - innermost
quantifier level; Moved - variables moved; Manual

I End placement leads to memory outs

I Movement leads to time outs

Joseph Reeves 21 / 23



Future Work

I More possible movement (semantic for Kissat and
monotonic for Cnftools)

I Might not move all the way to defining variables

I Definition information may be useful to solvers or
preprocessors directly

Joseph Reeves 22 / 23



The authors are supported by the NSF under grant
CCF-2108521.

A special thanks to the Star Exec community.

Questions?

Joseph Reeves 23 / 23


