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1 Course Description

Objective: The goal of this independent study is to develop an algorithm for
generating and interactively modifying an image based on an input sequence of
language descriptions. The idea is related to Interactive Generative Adversarial
Networks (i-GANs) [20] where a user can modify an image interactively using
a graphical user interface (GUI). Instead of using a GUI to interact with the
system, we propose a system that listens to natural language descriptions to
interactively (re-)generate images.

Background research: This study requires solid understanding of basic
deep learning approaches including feed-forward and recurrent neural networks
that can be reviewed in textbooks such as [4] (Part I and II). As background re-
search for this study, a literature survey will be conducted on recent progress on
image synthesis, in particular Generative Adversarial Networks (GANs) mod-
els [5, 10, 18, 20, 7, 21, 13, 14, 22, 16, 6, 15, 17, 11, 8, 1, 19], Variational
Autoencoders (VAEs) [9], and Flow-based models [2].

Datasets: For this study, we plan to use sketches rather than photo-
realistic imagery. This study will utilize publicly available datasets including
the human sketch dataset [3] and Google Quick! Draw dataset 1. The student is

1https://github.com/googlecreativelab/quickdraw-dataset

Figure 1: An motivational example of incremental hand drawing [12]
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expected to do further research on additional datasets as needed. Additionally,
the student will be responsible for collecting language description data over the
chosen sketch dataset using Amazon Mechanical Turk. The cost of this new
data collection will be paid by the course advisor.

Experiments: On one set of experiments, we will evaluate the image
synthesis on the final image only as follows. The algorithm will be evaluated
on the duel-learning manner. We first train a multi-class classifier that maps a
sketch to a label using the sketch dataset. Next, we use this classifier to classify
the generated sketch from our system. Finally, we compare the accuracy of the
classifier on the generated images against that of human drawings, e.g., if the
accuracy is close to that on the test dataset that includes human drawings then
it indicates comparable performance.

On the second set of experiments, we will create an online/offline game
version of our system and collect user statistics, e.g., how long each participants
engage in the game and their reactions, for future study.

Evaluation: The student and the advisor will co-author a technical pa-
per that includes a formal problem definition, related work, detailed technical
approach, experiments and results, and conclusion and future directions. The
report will be written incrementally we we keep track of the progress.
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