Names via Substructural and Dependent Types

Jason Reed

September 20, 2008

Binding and Names

Various familiar ways of handling variable binding
HOAS, Nominal Logic, deBruijn indices, etc.

Nominal logic — easy reasoning about disequality, apartness:
primitive apartness relation a#b

HOAS does not apparently make this as easy

Example: a-inequality of A-terms
(in Nominal Logic Programming)
[taken from Cheney, Urban "06]
var : name — term
lam : {(name)term — term
aneq (lam {x)E) (lam (x)E’) :— aneq E E’
aneq (var X) (var Y) :— X#Y

Example: a-inequality of A-terms
(in HOAS)
var : name — term
lam : (name — term) — term
aneq (lam E) (lam E’) :— IIx:name.aneq (E x) (E’ x)
aneq (var X) (var Y) == 7

Problem: last clause (apparently) can’t help but match even when
Xand Y are equal.

Even worse with usual HOAS encoding of terms where variables
are not specially distinguished!

Alternate HOAS Encoding

e Actually could tediously keep track of and pass around a list of
names discovered so far each time a new name is introduced

e Effectively implement apartness maually by walking through
this list

e Not terrifically satisfying

Another Idea

e Use concepts from linear logic, other substructural logics to get
simple encoding of apartness

— without introducing it as primitive as in nominal logic

— without explicit list-passing or -crawling as in HOAS above
e Will need dependent types to interact properly, too

e (Falls naturally out of logical framework HLF designed
originally for other reasons)

e Will just show the fragment required

Essential Claim

Apartness relation in nominal logic can be nicely encoded by the
appropriate combination of substructural and dependent types.

Plan

e Sketch appropriate logic for encoding
e Show how apartness is encoded

e Examples of use of apartness relation

Foreshadowing

Declare X#Y as a relation, with kind something like
name — name — type.

Define X#Y with one clause something like
[IX:name.I1Y name X#Y.

But we don’t want any X and Y in this relation, just different
ones

So consume each argument linearly to enforce disjointness:

J

think ‘name — name —o - - -

Want some kind of linear Pi, so we can say something like
[IX*name.I1Y name X#Y .

Affineness will matter, but we can deal with it.

n-ary Linear Logic

e Generalize linear Pi (must use argument exactly once) to n-ary
Pi IIx:"A.B (must use argument exactly n times)

e The cases n =0 (!) and n = 1 will be the important ones for us.

10

Judgmental Setup

(x " A) means: x gets used exactly n times
A = X1 M Al,. .., XK :JK AK
I'::= X1 :Bl,...,xK . BK

Typing judgment:
ATHM:C

11

n-linear dependent function types

A, x"A +M:B
[:AF Ax.M : TIx:"A.B

AT M : TIx"A.B [CAEN:A
I Ay+n-A rM"N : [N/X]B

(x:"A)+ (x:"A)=(x:""A)
n-(x:m"A)=x:""A)

12

Use of Variables

x:AeTl
[0-A rFx:A [(x:P A)+0-A Fx: A

13

Ordinary dependent function types

I, x:A,A+M:B
DA+ Ax.M : 1Ix:A.B

I"AFM:1Ix:A.B IbO-AFN:A
IbAFMN : [N/x]B

14

Abbreviations

Can generalize Linear Logical Framework LLF [Cervesato,
Pfenning] if we set
A — B=TIx'AB

And moreover say for convenience

A —> B=TIIx:A.B

A /o B=TIx:"A.B

15

Digression on Substructural Dependent Types

e Can be hard, so usually we only have A — B : consider

o0 : type
fam : 0 —o type

xto Fx:o0 yifam~x —o0 Fy:fam"x —oo0

xto,yifam"x —oo0 Fy“x:o0
Context splitting strands y away from x!

e Works better with ‘O-linear” type family:
fam : 0 4o type

xPo,ytfam"x —o0 ry:fam x —o0 xlorx:o

1

xto, ydfam x —o0 ry“x:o

16

Well-Formedness of Dependent Types

;A x°A + B:type I, x:A;AFB:type
[;A+TIx:"A.B : type [;A+TIx:A.B : type

e Argument of a (n-)linear I is required to “be used zero times”
in the body of the type.

e Safe generalization of requiring it not to occur (—o)

e Strict generalization because other constants used in B may
have types like C /o D, which promise that they use their
substructural argument zero times.

17

Encoding Apartness

name : type.
: name +o name 4o type
irrefl : TIX:'name ITY : name. (X#Y o— T)

That’s it!

18

Encoding Apartness

name : type.
: name +o name 4o type
irrefl : TIX:'name ITY 1 name. (X#Y o— T)

Note that:

o X#Y shortfor# XY

e o— T because other names besides X and Y may be present

(The intro rule for T is just T:AF () T)

e Linear hypotheses of names consumed in derivation of
apartness and not in formation of the apartness relation

19

Encoding a-inequality
var : name +o term
lam : (name +o term) — term
_:aneq (lam E) (lam E') o— (ITx:'name.aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

-+ - (more cases, just as in nominal logic program)

20

Encoding a-inequality
var : name +o term

lam : (name 4o term) — term

_:aneq (lam E) (lam E') o— (ITx:'name.aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.

21

Encoding a-inequality
var : name +o term
lam : (name +o term) — term
_:aneq (lam E) (lam E’) o— (ITx:'name.aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.

e Linear functions automatically propagate the set of names.

22

Encoding a-inequality
var : name +o term

lam : (name +o term) — term

_:aneq (lam E) (lam E') o— (ITx:'name .aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.
e Linear functions automatically propagate the set of names.

e 1-linear dependent function abstracts over new name.

23

The Encoding In Action
(abbreviate name as n)

1 1

xyin, x3tn b T Xoln Fxyim xelm Fxgim
X190, x: n, x3tn, xa:tn kg
x1:2n, xp:tn, x3:tn, xq:t n v aneg (var xy) (var x;)

Recall: irrefl : TIX:' name ITY: name. (X#Y o— T)

x1in, x3in b T Xo Xn Fxyinm Xo Xn Fxyinm

1 1

n, X4 : 1 F Xo#X

1

n, xq: n Faneq (var xp) (var xy)

Problem: no X e Ns.t. X+ X =1

24

Encoding a Programming Language with Store
eval : store — exp — result — type
letref : val — (val — exp) — exp % letx = refvine
let! : val — (val — exp) — exp % letx = (lv)ine
loc : name +-o val
_:eval S (letref V E) R o— TI€:'n. eval (¢, V) :: S) (E (loc”€)) R
_:eval S (let! (loc” L) E) R o— (lookup S"L'V & eval S (E V) R)
lookup : store — name +o val — type
_tlookup (N ,V)::S)" N Vo-T
_tlookup (N’ ,-)::S)" N V o— (N#N’ & lookup S~ N V)

25

Reasoning in a Programming Language with Store
wfstore : store — type
notin : name +o store — type
_:wfstore nil o— T
:wfstore (N ,) 2 S) o= (notin™ N S & wfstore S)
_cnotin™ N nil o= T
_:notin” N (N’ ,.):S)o—(notin™” N S& N#N’)

Or: could use substructural features directly, for shorter or more
expressive encoding

wfstore’ : store — type
_: wfstore’ nil o— T (or just _ : wfstore’ nil)

_: Thx:tname (wfstore’ S —o wfstore’ ((x,.) 2 S))

26

Related Work

e n-ary use functions [Wright, Momigliano]
e (-ary use (“irrelevant”) functions [Pfenning, Ley-Wild]
e RLF [Ishtiaq, Pym]
e HLF
— Designed for statement of metatheorems for Linear LE.

— Does n-linear I1s above, and more (e.g. some of BI)

— Prototype implementation

27

Conclusion

e Substructural dependent types can imitate nominal logic
programming techniques

e Practical?

e In what ways does it do even better?

28

Thanks

29

