

Binding and Names

- Various familiar ways of handling variable binding
- HOAS, Nominal Logic, deBruijn indices, etc.
- Nominal logic easy reasoning about **disequality**, **apartness**: primitive apartness relation *a*#*b*
- HOAS does not apparently make this as easy

Example: α -inequality of λ -terms (in Nominal Logic Programming)

[taken from Cheney, Urban '06]

```
var: name \rightarrow term
lam: \langle name \rangle term \rightarrow term
aneq (lam \langle x \rangle E) (lam \langle x \rangle E') := aneq E E'
aneq (var X) (var Y) := X#Y
```

Example: α -inequality of λ -terms (in HOAS)

```
var: name \rightarrow term lam: (name \rightarrow term) \rightarrow term aneq (lam E) (lam E') := \Pi x: name. aneq (E x) (E' x) aneq (var X) (var Y) := ?
```

Problem: last clause (apparently) can't help but match even when X and Y are equal.

Even worse with usual HOAS encoding of terms where variables are not specially distinguished!

Alternate HOAS Encoding

- Actually could tediously keep track of and pass around a list of names discovered so far each time a new name is introduced
- Effectively implement apartness maually by walking through this list
- Not terrifically satisfying

Another Idea

- Use concepts from linear logic, other substructural logics to get simple encoding of apartness
 - without introducing it as primitive as in nominal logic
 - without explicit list-passing or -crawling as in HOAS above
- Will need dependent types to interact properly, too
- (Falls naturally out of logical framework HLF designed originally for other reasons)
- Will just show the fragment required

Essential Claim
Apartness relation in nominal logic can be nicely encoded by the appropriate combination of substructural and dependent types.

Plan

- Sketch appropriate **logic** for encoding
- Show how **apartness** is encoded
- Examples of **use** of apartness relation

Foreshadowing

- **Declare** X#Y as a relation, with kind something like $name \rightarrow name \rightarrow type$.
- **Define** X#Y with one clause something like ΠX : $name.\Pi Y$:name.X#Y.
- But we don't want **any** *X* and *Y* in this relation, just **different** ones
- So **consume** each argument linearly to enforce disjointness: think 'name → name → ···'
- Want some kind of **linear Pi**, so we can say something like ΠX : $name.\Pi Y$:name.X # Y.
- Affineness will matter, but we can deal with it.

- Generalize **linear Pi** (must use argument exactly once) to n-ary **Pi** Πx : $^n A$.B (must use argument exactly n times)
- The cases n = 0 (!) and n = 1 will be the important ones for us.

Judgmental Setup

 $(x:^n A)$ means: x gets used exactly n times

$$\Delta ::= x_1 :^{n_1} A_1, \ldots, x_K :^{n_K} A_K$$

$$\Gamma ::= x_1 : B_1, \ldots, x_K : B_K$$

Typing judgment:

$$\Delta$$
; $\Gamma \vdash M : C$

n-linear dependent function types

$$\frac{\Gamma; \Delta, x:^{n} A \vdash M: B}{\Gamma; \Delta \vdash \hat{\lambda}x.M: \Pi x:^{n} A.B}$$

$$\frac{\Gamma; \Delta_1 \vdash M : \Pi x : {}^n A . B \qquad \Gamma; \Delta_2 \vdash N : A}{\Gamma; \Delta_1 + n \cdot \Delta_2 \vdash M \hat{\ } N : [N/x]B}$$

$$(x : ^n A) + (x : ^m A) = (x : ^{n+m} A)$$

 $n \cdot (x : ^m A) = (x : ^{nm} A)$

Use of Variables

$$\frac{x: A \in \Gamma}{\Gamma; \ 0 \cdot \Delta \vdash x: A} \qquad \frac{}{\Gamma; \ (x:^1 A) + 0 \cdot \Delta \vdash x: A}$$

Ordinary dependent function types

 Γ , x : A; $\Delta \vdash M : B$

 Γ ; $\Delta \vdash \lambda x.M : \Pi x:A.B$

 Γ ; $\Delta \vdash M : \Pi x : A . B$ Γ ; $0 \cdot \Delta \vdash N : A$

 Γ ; $\Delta \vdash M \ N : [N/x]B$

Abbreviations

Can generalize Linear Logical Framework LLF [Cervesato, Pfenning] if we set

$$A \multimap B \equiv \Pi x^{1}A.B$$

And moreover say for convenience

$$A \rightarrow B \equiv \Pi x : A . B$$

$$A \not\multimap B \equiv \Pi x^{0}A.B$$

Digression on Substructural Dependent Types

• Can be hard, so usually we only have $A \multimap B$: consider o: type

 $fam: o \multimap \mathsf{type}$

$$x : o \vdash x : o$$
 $y : fam^x \multimap o \vdash y : fam^x \multimap o$
 $x : o$, $y : fam^x \multimap o \vdash y^x : o$

Context splitting strands *y* away from *x*!

• Works better with '0-linear' type family:

$$fam: o \not - o type$$

$$x:^{0} o$$
, $y:^{1} fam^{\hat{}} x \multimap o \vdash y: fam^{\hat{}} x \multimap o \qquad x:^{1} o \vdash x: o$

$$x:^{1} o$$
, $y:^{1} fam^{\hat{}} x \multimap o \vdash y^{\hat{}} x: o$

Well-Formedness of Dependent Types

$$\frac{\Gamma; \Delta, x:^{0} A \vdash B : \mathsf{type}}{\Gamma; \Delta \vdash \Pi x:^{n} A.B : \mathsf{type}} \qquad \frac{\Gamma, x: A ; \Delta \vdash B : \mathsf{type}}{\Gamma; \Delta \vdash \Pi x: A.B : \mathsf{type}}$$

- Argument of a (n-)linear Π is required to "be used **zero** times" in the body of the type.
- Safe generalization of requiring it **not** to occur (*─*)

Encoding Apartness

```
name: type.
```

#: name /o name /o type

 $irrefl: \Pi X:^{1} name. \Pi Y:^{1} name. (X \# Y \hookrightarrow \top)$

That's it!

Encoding Apartness

name: type.

#: name → name → type

 $irrefl: \Pi X:^{1} name. \Pi Y:^{1} name. (X \# Y - T)$

Note that:

- X # Y short for $\#^X Y$
- \frown T because other names besides X and Y may be present (The intro rule for \top is just $\overline{\Gamma; \Delta \vdash \langle \rangle : \top}$)
- Linear hypotheses of names consumed in **derivation** of apartness and not in **formation** of the apartness relation

```
var : name +∘ term
```

 $lam: (name \neq \circ term) \rightarrow term$

 $_:$ aneq (lam E) (lam E') \backsim (Πx :\frac{1}{2}name.aneq (E^x) (E^x)

 $_: aneq (var X) (var Y) \hookrightarrow X \# Y$

··· (more cases, just as in nominal logic program)

```
var : name \not term

lam : (name \not term) → term

_ : aneq (lam E) (lam E') \hookrightarrow (\Pi x:\frac{1}{2}name.aneq (E^x) (E'^x))
```

- $_:$ aneq (var X) (var Y) $\backsim X \# Y$
 - Functions over names are 0-linear dependent functions.

```
var: name \not \leftarrow term
lam: (name \not \leftarrow term) \rightarrow term
\_: aneq (lam E) (lam E') \frown (\Pi x:^1 name.aneq (E^x) (E'^x))
\_: aneq (var X) (var Y) \frown X\#Y
```

- Functions over names are 0-linear dependent functions.
- Linear functions automatically propagate the set of names.

```
var: name \not \leftarrow term
lam: (name \not \leftarrow term) \rightarrow term
\_: aneq (lam E) (lam E') \hookrightarrow (\Pi x:^1 name .aneq (E^x) (E'^x))
\_: aneq (var X) (var Y) \hookrightarrow X\#Y
```

- Functions over names are 0-linear dependent functions.
- Linear functions automatically propagate the set of names.
- 1-linear dependent function abstracts over new name.

The Encoding In Action

(abbreviate *name* as *n*)

$$x_1 : {}^{1} n$$
, $x_3 : {}^{1} n \vdash T$ $x_2 : {}^{1} n \vdash x_2 : n$ $x_4 : {}^{1} n \vdash x_4 : n$

$$x_1 : {}^{1} n$$
, $x_2 : {}^{1} n$, $x_3 : {}^{1} n$, $x_4 : {}^{1} n \vdash x_4 \# x_2$

$$x_1 : {}^{1} n$$
, $x_2 : {}^{1} n$, $x_3 : {}^{1} n$, $x_4 : {}^{1} n \vdash aneq (var x_4) (var x_2)$

Recall: $irrefl : \Pi X:^{1} name.\Pi Y:^{1} name. (X#Y \longrightarrow \top)$

$$x_1 : {}^{1} n$$
, $x_3 : {}^{1} n \vdash T$ $x_2 : {}^{X} n \vdash x_2 : n$ $x_2 : {}^{X} n \vdash x_2 : n$ $x_1 : {}^{1} n$, $x_2 : {}^{1} n$, $x_3 : {}^{1} n$, $x_4 : {}^{1} n \vdash x_2 \# x_2$ $x_1 : {}^{1} n$, $x_2 : {}^{1} n$, $x_3 : {}^{1} n$, $x_4 : {}^{1} n \vdash aneq (var x_2) (var x_2)$

Problem: no $X \in \mathbb{N}$ s.t. X + X = 1

Encoding a Programming Language with Store

```
eval: store \rightarrow exp \rightarrow result \rightarrow type
letref: val \rightarrow (val \rightarrow exp) \rightarrow exp \% let x = ref v in e
let!: val \rightarrow (val \rightarrow exp) \rightarrow exp \% let x = (!v) in e
loc : name +∘ val
\_: eval \ S \ (let ref \ V \ E) \ R \hookrightarrow \Pi \ell^{1} n. \ eval \ ((\ell, V) :: S) \ (E \ (loc^{\ell})) \ R
\_: eval \ S \ (let! \ (loc \ ^L) \ E) \ R \hookrightarrow (lookup \ S \ ^L \ V \ \& \ eval \ S \ (E \ V) \ R)
lookup: store \rightarrow name \not - val \rightarrow type
_{-}:lookup((N,V)::S)^{N}V \hookrightarrow \top
_{-}: lookup ((N',_{-})::S)^{N} V \hookrightarrow (N#N' \& lookup S^{N} V)
```

Reasoning in a Programming Language with Store

```
wfstore: store \rightarrow type
notin: name \neq \circ store \rightarrow type
\_: wfstore \ nil \smile \top
\_: wfstore ((N, \_) :: S) \hookrightarrow (notin^N S \& wfstore S)
\_: notin ^ N nil \hookrightarrow \top
\_: notin ^ N ((N', \_) :: S) \hookrightarrow (notin ^ N S & N # N')
Or: could use substructural features directly, for shorter or more
expressive encoding
wfstore': store \rightarrow type
\_: wfstore' \ nil \hookrightarrow \top \ (or \ just \_: wfstore' \ nil)
```

 $_{-}: \Pi x:^{1} name .(wfstore' S \longrightarrow wfstore' ((x, _{-}) :: S))$

Related Work

- *n*-ary use functions [Wright, Momigliano]
- 0-ary use ("irrelevant") functions [Pfenning, Ley-Wild]
- RLF [Ishtiaq, Pym]
- HLF
 - Designed for statement of metatheorems for Linear LF.
 - Does n-linear Π s above, and more (e.g. some of BI)
 - Prototype implementation

Conclusion

- Substructural dependent types can imitate nominal logic programming techniques
- Practical?
- In what ways does it do even better?

