Extending Higher-Order Unification to Support
Proof Irrelevance

Jason Reed

Carnegie Mellon University

September 11, 2003

What i1s Proof Irrelevance?

The idea that all proofs of a proposition are equal.

(The term appears in the literature occasionally meaning
‘irrelevance everywhere’, of all proof equality becoming trivial,
especially in proofs of the form ‘X and Y imply proof
irrelevance’ — this is not what we are talking about)

“Intensionality, Extensionality and Proof Irrelevance in Modal
Type Theory” [Pfenning ’01] treats irrelevance as a modality.

Compare with fact that both logic “linear everywhere” and

logic with linear and intuitionistic variables are possible.

Outline

I. Motivation
II. Type Theory
III. Unification

IV. Patterns

What good is Proof Irrelevance?

A couple examples, using the dependent type theory LF
|[Harper, Honsell, Plotkin ’93] as a starting point.

Examples shaped and motivated throughout by the design
choices of twelf, [Pfenning, Schiirmann ’99] an implementation
of LF and associated algorithms.

Motivation #1: adequate encodings

Motivation #2: proof compaction

Motivation #1: Adequate Encodings

e Desirable property for an encoding of a theory into a logic like
LF is adequacy, existence of a compositional bijection

between object-language terms and (canonical) LF objects.
e Compositional, i.e. substitution commutes with translation.

e Proof irrelevance as a modality makes adequate encodings of

certain concepts much easier.

Adequate Encodings (2)
Take the standard encoding of the untyped A-calculus:
tm : type lam : (tm — tm) — tm
app : tm — tm — tm

How to get ‘strict lambda calculus’, each A var to occur at least
once? (Historical footnote: Church’s original calculus like this)

Easy to code up a definition of occurrence:

occurs : (tm — tm) — type

occurs_appl : occurs (Ax.app (M x) (N x)) < occurs (Ax.(M x))
occurs_app2 : occurs (Az.app (M x) (N x)) < occurs (Az.(N x))

occurs_var : occurs (Azr.x)

So occurs (Ax.M x) type of proofs that x occurs in M

Adequate Encodings (3)

We would try lam : IIt:(tm — tm).(occurs t) — tm but it
doesn’t work right.

Generally lots of proofs that x occurs, as many as occurrences!
lam t Py # lam t P for P, # P

Failure of adequacy!

Don’t want to care about which proof of occurrence.

That is, we want an ‘irrelevant arrow’. We’'ll write brackets
around the argument to suggest:

lam : TIt:(tm — tm).[(occurs t)] — tm

Need lam t [P1] = lam t |Ps| for any proofs P;, P, to recover
adequacy.

Motivation #2: Proof Compaction

Domain: Proof-Carrying Code [Necula, Lee "96]

Problem: proofs are big — There’s a market for ways of

making them smaller.

Maybe we can omit subterms that can be recovered by the

consumer”?

This is realistic; big proofs of undecidable properties can have
lots of space-consuming little subproofs of (efficiently)
decidable properties.

Assert the existence of the little subproofs, let the consumer

reconstruct them.

Proof Compaction (2)

But what if the consumer reconstructs a different proof of the
same fact?

Coordinating reconstruction algorithms at both ends possible,
but a headache

Instead use irrelevant subproof requirements in the signature.

This permits the receiver to safely reconstruct any valid

subproof.

There’s a result that states that after replacing an irrelevant
subterm with another of the same type, the whole term is still

well-typed.
Not true in ordinary LF because of dependent types.

Another win: avoiding constructing intermediate proof terms

Extending LF Type Theory

e Normally, we can check applications for equality with the rule
'-M=M :1Iz:A.B I'FN=N":A
I'M N=M N:{N/z}B

e For irrelevant functions, we want the arguments not to matter.

So we have:
't M=M :Ix[A].B I'EN=N'":[A]
I'-M[N]=M[N']:{N/x}B

and say that any two objects at [A] are equal.

o (Just as A — B abbreviates Ilx:A.B where x doesn’t occur in
B, we’ll say [A] — B means [lx:[A].B)

Extending LF (2)

Naturally, we get terms at irrelevant-II type from irrelevant

lambdas:
Iyx:[AlFM:B

'+ Az:[A].M : 1lx:[A].B

Forces us to consider what irrelevant hypotheses mean.

Answer: x : [A] assumes that some object at type A exists, but
we are not allowed to analyze its structure, only use the bare
fact that its type is inhabited.

Knee-jerk reaction to a new kind of hypothesis: what kind of

objects can we substitute for it?

New typing judgment: I' = M : [A]. Think “M is an irrelevant
object at type A” or “M is an inhabitation witness for type A”

Irrelevance Rules

Defining inference rule: ([I'’] just means x1 : [A1],... 2, : [Ay])
I, FM:A
[T M : [A]

Note hypothesis rule is still merely I'yx : AF x : A not
anything that would allow I'x : [A]Fx: A. (I',z: [A] Fx: [4]
is admissible)

x : [A] is a weaker hypothesis than = : A, and M : [A] is a
weaker assertion than M : A; When judging M : [A] one gets to
use irrelevant hypotheses ‘unbracketed’.

'+ M : Aimplies I' = M : [A].

See the tech report for why I', [I] - A : type needed.

Higher-Order Pattern Unification

How twelf, for instance, thinks of unification. Used for type

reconstruction, logic programming queries.
Higher-order: allow variables to be of function type.

Restricted to the pattern fragment [Miller '91], because we
want unification to be decidable and have unique most

general unifiers.

The fact that type reconstruction relies on unification is a big
motivation for this: don’t want type-checking to be

undecidable or have an ambiguous answer.

[Dowek, Hardin, Kirchner, Pfenning ’96] worked out an algorithm

for this case; we extended it to cover LF with irrelevance.

Just few interesting corner cases — see paper for details

Unification

Stepping back a bit, a unification problem looks like

qU;...3U0,,. My = N1 AN---M,, = N,
Find terms for Uy, ..., U, so all equations satisfied, or

determine that no such exist.

Must allow open (allowing 3-quantified variables to occur)
instantiations, or else immediate undecidability! For instance,

JU.AV.U =c V. Answer: U «—cV

Otherwise, exists closed term at V’s type? Undecidable.

Unification (2)

Irrelevance means that equations that look straightforward are
actually trivial in the same way as the above one.

Consider
AU.c k] = ¢ [U] (%)
If this were
dU.ck=cU
We’d just assign U « k.

But in (x), the equation holds no matter what U is set to; to
get most general unifier, we don’t instantiate U.

Unification (3)
Sometimes we need to introduce new variables. Consider
AU.(A\z.c [x] = Ax.U)

Since U is quantified on the outside, it doesn’t make sense to

say U « ¢ [x].
But the argument to c here is irrelevant!

We can introduce V, instantiate U < ¢ [V] and the equation

Azx.c [x] = Az.c [V] holds, because of irrelevant application.

In fact this is the most general unifier.

Compare 3U.(Azx.c z = Ax.U), which fails.

Unification (4)
JU.U = ¢ U fails.
U appears rigid on the right, ‘occurs-check’ fails.
JU.U = ¢ [U]? Introduce new variable V;

U« ¢ |V] gives ¢ [V]| = ¢ [c [V]]. This is the most general

unifier!

So...

Why not replace every term M [N] with M [V] for fresh V7
Def’n of equality lets us.

Better yet, why not replace with M *, where * is a magic new
term such that x = %7

Answer: We don’t just want to solve the question of
unifiability, but unification. We mean to find actual
unifiers, and provide as much inhabitation information as

possible to potential algorithms downstream.

Overagressive insertion of variables or placeholders suboptimal
in this aspect.

Patterns

¢ When we come down to an equation like U My My M3 = N,
things get hard. Got to build N out of M;, but M, may be

messy.

e A pattern [Miller '91] is where we restrict variables U, V, etc.
to occur only applied to distinct local (i.e. once bound by \)
variables.

Pattern: Ax.\y.\z.U z x
Not: Az \y.\z.U x x
Not: Ax. Ay \z.U (c y)
Not: Az Ay \z.U (V xz y z)
WU zx=cz(xz)=—=U«— Az x.cz (x 2)

AU.U z x =2 =777 U «— Ax1.) \x0.217 U «— A\x1.\T9.227

Patterns (2)

Pattern restriction makes unification decidable, and most
general unifiers always exist. Current definition is sound with

irrelevance, but we can squeeze more patterns out of it.

Turns out we can allow irrelevant applications of any
argument at all. Normal args must still be distinct bound
variables.

Pattern: \z.A\y.U y [c x y] x [V y ¥
Pattern: U [M] for any M. e.g.

JU.U [M] =c¢ [N] = U « Az:|A].c [N]

Any substitution for U that satisfies the eq’'n must be equal to
Az:[A].c [N]!

Unification with Irrelevance

Turn all of these intuitions into an algorithm; technical details:

Soundness and completeness go as usual, showing that

transition rules maintain unifiers.

Termination because they make the problem smaller according

to the right metric

Pattern unification with irrelevance is decidable, has unique

most general unifiers

Extensible to the so-called dynamic pattern fragment by

postponing constraints.

We have a prototype implementation based on twelf

Summary

Proof irrelevance as a modality is useful for expressing
adequate encodings and guaranteeing the safety of flexible

proof reconstruction.

Known algorithm for higher-order pattern unification

modified to work in a type theory with irrelevance.

Known definition of higher-order pattern has a simple

generalization to irrelevant arguments.

Questions?

