
Extending Higher-Order Unification to Support
Proof Irrelevance

Jason Reed

Carnegie Mellon University

September 11, 2003

1



What is Proof Irrelevance?

• The idea that all proofs of a proposition are equal.

• (The term appears in the literature occasionally meaning

‘irrelevance everywhere’, of all proof equality becoming trivial,

especially in proofs of the form ‘X and Y imply proof

irrelevance’ — this is not what we are talking about)

• “Intensionality, Extensionality and Proof Irrelevance in Modal

Type Theory” [Pfenning ’01] treats irrelevance as a modality.

• Compare with fact that both logic “linear everywhere” and

logic with linear and intuitionistic variables are possible.

2



Outline

I. Motivation

II. Type Theory

III. Unification

IV. Patterns

3



What good is Proof Irrelevance?

• A couple examples, using the dependent type theory LF

[Harper, Honsell, Plotkin ’93] as a starting point.

• Examples shaped and motivated throughout by the design

choices of twelf, [Pfenning, Schürmann ’99] an implementation

of LF and associated algorithms.

• Motivation #1: adequate encodings

• Motivation #2: proof compaction

4



Motivation #1: Adequate Encodings

• Desirable property for an encoding of a theory into a logic like

LF is adequacy, existence of a compositional bijection

between object-language terms and (canonical) LF objects.

• Compositional, i.e. substitution commutes with translation.

• Proof irrelevance as a modality makes adequate encodings of

certain concepts much easier.

5



Adequate Encodings (2)

• Take the standard encoding of the untyped λ-calculus:

tm : type lam : (tm→ tm)→ tm

app : tm→ tm→ tm

• How to get ‘strict lambda calculus’, each λ var to occur at least

once? (Historical footnote: Church’s original calculus like this)

• Easy to code up a definition of occurrence:

occurs : (tm→ tm)→ type

occurs app1 : occurs (λx.app (M x) (N x))← occurs (λx.(M x))

occurs app2 : occurs (λx.app (M x) (N x))← occurs (λx.(N x))

occurs var : occurs (λx.x)

...

• So occurs (λx.M x) type of proofs that x occurs in M

6



Adequate Encodings (3)

• We would try lam : Πt:(tm→ tm).(occurs t)→ tm but it

doesn’t work right.

• Generally lots of proofs that x occurs, as many as occurrences!

• lam t P1 6= lam t P2 for P1 6= P2

• Failure of adequacy!

• Don’t want to care about which proof of occurrence.

• That is, we want an ‘irrelevant arrow’. We’ll write brackets

around the argument to suggest:

lam : Πt:(tm→ tm).[(occurs t)]→ tm

• Need lam t [P1] = lam t [P2] for any proofs P1, P2 to recover

adequacy.

7



Motivation #2: Proof Compaction

• Domain: Proof-Carrying Code [Necula, Lee ’96]

• Problem: proofs are big — There’s a market for ways of

making them smaller.

• Maybe we can omit subterms that can be recovered by the

consumer?

• This is realistic; big proofs of undecidable properties can have

lots of space-consuming little subproofs of (efficiently)

decidable properties.

• Assert the existence of the little subproofs, let the consumer

reconstruct them.

8



Proof Compaction (2)

• But what if the consumer reconstructs a different proof of the

same fact?

• Coordinating reconstruction algorithms at both ends possible,

but a headache

• Instead use irrelevant subproof requirements in the signature.

• This permits the receiver to safely reconstruct any valid

subproof.

• There’s a result that states that after replacing an irrelevant

subterm with another of the same type, the whole term is still

well-typed.

• Not true in ordinary LF because of dependent types.

• Another win: avoiding constructing intermediate proof terms

9



Extending LF Type Theory

• Normally, we can check applications for equality with the rule

Γ `M = M ′ : Πx:A.B Γ ` N = N ′ : A

Γ `M N = M ′ N ′ : {N/x}B

• For irrelevant functions, we want the arguments not to matter.

So we have:

Γ `M = M ′ : Πx:[A].B Γ ` N = N ′ : [A]

Γ `M [N ] = M ′ [N ′] : {N/x}B

and say that any two objects at [A] are equal.

• (Just as A→ B abbreviates Πx:A.B where x doesn’t occur in

B, we’ll say [A]→ B means Πx:[A].B)

10



Extending LF (2)

• Naturally, we get terms at irrelevant-Π type from irrelevant

lambdas:
Γ, x : [A] `M : B

Γ ` λx:[A].M : Πx:[A].B

• Forces us to consider what irrelevant hypotheses mean.

• Answer: x : [A] assumes that some object at type A exists, but

we are not allowed to analyze its structure, only use the bare

fact that its type is inhabited.

• Knee-jerk reaction to a new kind of hypothesis: what kind of

objects can we substitute for it?

• New typing judgment: Γ `M : [A]. Think “M is an irrelevant

object at type A” or “M is an inhabitation witness for type A”

11



Irrelevance Rules

• Defining inference rule: ([Γ′] just means x1 : [A1], . . . xn : [An])

Γ, Γ′ `M : A Γ, [Γ′] ` A : type

Γ, [Γ′] `M : [A]

Note hypothesis rule is still merely Γ, x : A ` x : A not

anything that would allow Γ, x : [A] ` x : A. (Γ, x : [A] ` x : [A]

is admissible)

• x : [A] is a weaker hypothesis than x : A, and M : [A] is a

weaker assertion than M : A; When judging M : [A] one gets to

use irrelevant hypotheses ‘unbracketed’.

• Γ `M : A implies Γ `M : [A].

• See the tech report for why Γ, [Γ′] ` A : type needed.

12



Higher-Order Pattern Unification

• How twelf, for instance, thinks of unification. Used for type

reconstruction, logic programming queries.

• Higher-order: allow variables to be of function type.

• Restricted to the pattern fragment [Miller ’91], because we

want unification to be decidable and have unique most

general unifiers.

• The fact that type reconstruction relies on unification is a big

motivation for this: don’t want type-checking to be

undecidable or have an ambiguous answer.

• [Dowek, Hardin, Kirchner, Pfenning ’96] worked out an algorithm

for this case; we extended it to cover LF with irrelevance.

• Just few interesting corner cases — see paper for details

13



Unification

• Stepping back a bit, a unification problem looks like

∃U1 . . .∃Un.M1

.
= N1 ∧ · · ·Mn

.
= Nn

• Find terms for U1, . . . , Un so all equations satisfied, or

determine that no such exist.

• Must allow open (allowing ∃-quantified variables to occur)

instantiations, or else immediate undecidability! For instance,

∃U.∃V.U
.
= c V . Answer: U ← c V

• Otherwise, exists closed term at V ’s type? Undecidable.

14



Unification (2)

• Irrelevance means that equations that look straightforward are

actually trivial in the same way as the above one.

• Consider

∃U.c [k]
.
= c [U ] (∗)

• If this were

∃U.c k
.
= c U

We’d just assign U ← k.

• But in (∗), the equation holds no matter what U is set to; to

get most general unifier, we don’t instantiate U .

15



Unification (3)

• Sometimes we need to introduce new variables. Consider

∃U.(λx.c [x]
.
= λx.U)

Since U is quantified on the outside, it doesn’t make sense to

say U ← c [x].

• But the argument to c here is irrelevant!

• We can introduce V , instantiate U ← c [V ] and the equation

λx.c [x] = λx.c [V ] holds, because of irrelevant application.

• In fact this is the most general unifier.

• Compare ∃U.(λx.c x
.
= λx.U), which fails.

16



Unification (4)

• ∃U.U
.
= c U fails.

• U appears rigid on the right, ‘occurs-check’ fails.

• ∃U.U
.
= c [U ]? Introduce new variable V ;

• U ← c [V ] gives c [V ] = c [c [V ]]. This is the most general

unifier!

17



So...

• Why not replace every term M [N ] with M [V ] for fresh V ?

Def’n of equality lets us.

• Better yet, why not replace with M ∗, where ∗ is a magic new

term such that ∗ = ∗?

• Answer: We don’t just want to solve the question of

unifiability, but unification. We mean to find actual

unifiers, and provide as much inhabitation information as

possible to potential algorithms downstream.

• Overagressive insertion of variables or placeholders suboptimal

in this aspect.

18



Patterns

• When we come down to an equation like U M1 M2 M3

.
= N ,

things get hard. Got to build N out of Mi, but Mi may be

messy.

• A pattern [Miller ’91] is where we restrict variables U, V, etc.

to occur only applied to distinct local (i.e. once bound by λ)

variables.

Pattern: λx.λy.λz.U z x

Not: λx.λy.λz.U x x

Not: λx.λy.λz.U (c y)

Not: λx.λy.λz.U (V x y z)

∃U.U z x
.
= c z (x z) =⇒ U ← λz.λx.c z (x z)

∃U.U x x
.
= x =⇒??? U ← λx1.λx2.x1? U ← λx1.λx2.x2?

19



Patterns (2)

• Pattern restriction makes unification decidable, and most

general unifiers always exist. Current definition is sound with

irrelevance, but we can squeeze more patterns out of it.

• Turns out we can allow irrelevant applications of any

argument at all. Normal args must still be distinct bound

variables.

• Pattern: λx.λy.U y [c x y] x [V y y]

• Pattern: U [M ] for any M . e.g.

∃U.U [M ]
.
= c [N ] =⇒ U ← λz:[A].c [N ]

• Any substitution for U that satisfies the eq’n must be equal to

λz:[A].c [N ]!

20



Unification with Irrelevance

• Turn all of these intuitions into an algorithm; technical details:

• Soundness and completeness go as usual, showing that

transition rules maintain unifiers.

• Termination because they make the problem smaller according

to the right metric

• Pattern unification with irrelevance is decidable, has unique

most general unifiers

• Extensible to the so-called dynamic pattern fragment by

postponing constraints.

• We have a prototype implementation based on twelf

21



Summary

• Proof irrelevance as a modality is useful for expressing

adequate encodings and guaranteeing the safety of flexible

proof reconstruction.

• Known algorithm for higher-order pattern unification

modified to work in a type theory with irrelevance.

• Known definition of higher-order pattern has a simple

generalization to irrelevant arguments.

• Questions?

22


