
TinyLF: A Compact Definition of a Logical

Framework

Jason Reed

July 1, 2007

1 Introduction

By pushing some modern ideas concerning LF to their logical conclusion, one can
obtain a very concise definition of a logical framework, which has a comparably
simple metatheory. This logical framework generalizes LF slightly by including
a limited form of polymorphism. The main point, however, is not this extension
per se, but that we can support the same feature set as LF in a much more
compact way.

The central ideas are naturally the recently ubiquitous notion of restricting
attention to only canonical forms of λ-expressions, and the consequent need to
define hereditary substitution, pioneered by Watkins et al in CLF.

Another main contributing idea is that of spine form, which considers not
just single function applications but applications of heads to entire vectors of
arguments at once. Spine form still describes function abstractions in terms
of one-at-a-time λ-binding of variables. The motivation is to find a convenient
syntax in which variable binding also takes place in a ‘vectorized’ fashion. This
is obviously related to the idea of pattern-matching in functional languages.
However, in the present case, given the usual normal/atomic distinction that
serves to enforce β-normal, η-long terms, we are able to demand that functions
provide the entire pattern of their arguments, coalescing all potential curried
arguments into one sequence.

But the other salient recent piece of work where sequences of terms play an
important role is the Contextual Modal Type Theory designed to give a logical
account of operations such as raising and lowering of metavariables in unifica-
tion. In it, modal variables appear under substitutions that fill in the variable’s
arguments all at once. We take essentially the same approach while dropping
the closedness requirement on substitutions for modal variables, making our
variables still ‘contextual’ but not modal.

1

2 Syntax

The complete syntax of the language is as follows:

Base Classifiers v ::= R | type
Classifiers V ::= ΠΨ.v

Atomic Terms R ::= x[σ]
Terms M ::= λΨ̂.R

Substitutions σ ::= id | M.σ
Contexts Γ ::= · | Γ, x : V

The syntax Ψ̂ stands for just the sequence of variables found in Ψ, without
their associated types. All contexts are to be understood as dependent, with
V s on the right being in the scope of variables on their left. We will use = to
mean syntactic equality up to α-conversion.

The terms M of LF correspond to terms here; their consecutive λs have
simply been merged into one context. For example, the LF term

λx.λy.λz.z

corresponds to
λ(x, y, z).z[id]

Variable occurrences are always under substitution, the substitution being the
analogue to the spine attached to a root in spine form. Indeed, all substitutions
are are vectors of terms. To carry out a substitution, we will write {σ/Ψ},
substituting the items found in σ for the variables in Ψ. We call these term
vectors substitutions rather than spines because they associate the opposite
way.

Both the types and kinds of LF become classifiers in the present system. A
base classifier is either a base type x[σ], which corresponds to a base type a · S
in spine-form LF , or else it is the base kind type. This merger is reminiscent of
(but not quite identical to) the uniformity typical of Pure Type Systems. The
difference is that while we allow type variables x : type to appear in contexts,
the only things that can be substituted for x are base types.

Because variables in the context can have classifiers such as ΠΨ.type that are
essentially kinds, we have no need for a separate notion of signature: the context
by itself can contain a mixture of declarations of type families and constants.

3 Typing

The judgments are

Γ ` V ⇐ ok V is a well-formed classifier
Γ ` N ⇐ V N checks at classifier V
Γ ` R ⇒ v R synthesizes classifier v
Γ ` σ ⇐ Ψ σ is a valid substitution for Ψ
Γ ` Ψ ctx Ψ is a well-formed context

2

Well-formedness of classifiers is defined by two rules, one that allows forma-
tion of types and another that forms kinds:

Γ ` Ψ ctx Γ,Ψ ` R ⇒ type

Γ ` ΠΨ.R ⇐ ok

Γ ` Ψ ctx

Γ ` ΠΨ.type ⇐ ok

The remaining judgments are defined by the following rules:

Γ,Ψ ` R ⇒ v′ v = v′

Γ ` λΨ̂.R ⇐ ΠΨ.v

x : ΠΨ.v ∈ Γ Γ ` σ : Ψ

Γ ` x[σ] ⇒ v{σ/Ψ}

Γ ` id ⇐ ·
Γ ` M ⇐ V {σ/Ψ} Γ ` σ ⇐ Ψ

Γ ` M.σ ⇐ (Ψ, x : V)

Γ ` · ctx
Γ ` Ψ ctx Γ,Ψ ` V ⇐ ok

Γ ` Ψ, x : V ctx

Let X stand for any syntactic object v, v,M,R, σ, Γ. All that remains to
define is substitution X{σ/Ψ}. It is defined recursively according to a lexico-
graphic order on the structure of first Ψ, then X. We say (M/x : V) ∈ {σ/Ψ} if,
for some n, the nth item from the left in σ is M , and the nth item from the right
in Ψ is x : V . Almost all cases are homomorphic. Abbreviating θ = {σ/Ψ}, we
have

(M1. . . . Mn.id)θ = (M1θ. . . .Mnθ.id)

(V1, . . . , Vn)θ = (V1θ, . . . , Vnθ)

(Π∆.v)θ = Π(∆θ).(vθ) (λ∆̂.R)θ = λ∆̂.(Rθ)

(type)θ = type

The only interesting case is

(x[ρ])θ =
{

R{ρθ/∆} if (λ∆̂.R/x : Π∆.V) ∈ θ;
x[ρθ] otherwise.

This completes the definition of TinyLF.

4 Results

The things we are trying to prove are fairly standard, and so too are the methods
for the most part. In preparation for the substitution property, we show that
substitutions commute properly. In preparation for the identity property, we
show that η-expansions are two-sided units with respect to substitution.

Lemma 4.1 X{σ/Ψ} = X{σ/Ψθ}.

3

Proof By induction on Ψ, then X. The interesting case is when X = x[ρ], and
(λ∆̂.R/x : Π∆.V) ∈ {σ/Ψ}. In this case (λ∆̂.R/x : Π(∆θ).(V θ)) ∈ {σ/Ψθ}.
We reason that

R{ρ{σ/Ψ}/∆}
= R{ρ{σ/Ψθ}/∆} i.h. on ρ < x[ρ]
= R{ρ{σ/Ψθ}/∆θ} i.h. on ∆ < Ψ

Lemma 4.2 If FV (X) ∩ Ψ̂ = ∅, then X{σ/Ψ} = X.

Proof Straightforward induction.

The above lemma is exemplary of the fact that substitution {σ/Ψ}, as should
be expected from a hereditary substitution, does not really care about the exact
structure of the types Ψ, but only the Π-skeleton of them.

Let J stand for an arbitrary judgment of the system.

Lemma 4.3 (Weakening) If Γ,Γ′ ` J , then Γ,∆,Γ′ ` J .

Proof Straightforward induction.

Lemma 4.4 If (M/x : V) ∈ {σ/Ψ} and Γ ` σ ⇐ Ψ, then Γ ` M ⇐ V {σ/Ψ}.

Proof Straightforward induction.

Lemma 4.5 (Interchange) If FV (σ) ∩ ∆̂ = ∅, then X{ρ/∆}θ = Xθ{ρθ/∆}

Proof By induction on first the undordered pair (∆,Ψ), and subsequently X.
For all the homomorphism cases, it’s just X that gets smaller. This includes
the case of X = x[ω] where x is in neither ∆̂ nor Ψ̂. The interesting cases are

• x ∈ Ψ̂ and (λΩ̂.R/x : ΠΩ.v) ∈ {σ/Ψ} = θ. In this case we reason that

x[ω]{ρ/∆}θ
= x[ω{ρ/∆}]θ
= R{ω{ρ/∆}θ/Ω}
= R{ωθ{ρθ/∆}/Ω} i.h. on ρ < x[ρ]
= R{ρθ/∆}{ωθ{ρθ/∆}/Ω} Lemma 4.2
= R{ωθ/Ω}{ρθ/∆} i.h. on (Ω,∆) < (∆,Ψ)
= x[ω]θ{ρθ/∆}

To justify the second induction hypothesis appeal, we need FV (ρθ)∩ Ω̂ =
∅, but this is true because the variables Ω̂ are bound inside σ.

• x ∈ ∆̂ and (λΩ̂.R/x : ΠΩ.v) ∈ {ρ/∆}. In this case we reason that

4

x[ω]{ρ/∆}θ
= R{ω{ρ/∆}/Ω}θ
= Rθ{ω{ρ/∆}θ/Ω} i.h. on (Ω,Ψ) < (∆,Ψ)
= Rθ{ωθ{ρθ/∆}/Ω} i.h. on ρ < x[ρ]
= R{ωθ{ρθ/∆}/Ω} Lemma 4.2
= x[ωθ]{ρθ/∆}
= x[ω]θ{ρθ/∆}

Lemma 4.6 (Substitution) If Γ,Ψ,Γ′ ` J , and Γ ` σ : Ψ, then Γ,Γ′θ ` Jθ.

Proof By induction on first the Π-skeleton structure of Ψ (ignoring the identity
of all occurring variables and all embedded substitutions) and subsequently the
derivation of J . The interesting cases are:

Case:
Γ,Ψ,Γ′ ` M ⇐ V {ρ/∆} Γ,Ψ,Γ′ ` ρ ⇐ ∆

Γ,Ψ,Γ′ ` M.ρ ⇐ (∆, x : V)

Reason that

Γ,Γ′θ ` ρθ ⇐ ∆θ i.h.
Γ,Γ′θ ` Mθ ⇐ V {ρ/∆}θ i.h.
Γ,Γ′θ ` Mθ ⇐ V θ{ρθ/∆} Lemma 4.5
Γ,Γ′θ ` Mθ ⇐ V θ{ρθ/∆θ} Lemma 4.1

and form the derivation

Γ,Γ′θ ` Mθ ⇐ V θ{ρθ/∆θ} Γ,Γ′θ ` ρθ ⇐ ∆θ

Γ,Γ′θ ` Mθ.ρθ ⇐ (∆θ, x : V θ)

Case:
x : Π∆.v ∈ Γ,Ψ,Γ′ Γ,Ψ,Γ′ ` ρ : ∆

Γ,Ψ,Γ′ ` x[ρ] ⇒ v{ρ/∆}
To show:

Γ,Γ′θ ` x[ρ]θ ⇒ v{ρ/∆}θ

By Lemmas 4.5 and 4.1 it suffices to show

Γ,Γ′θ ` x[ρ]θ ⇒ vθ{ρθ/∆θ}

and we know already by i.h. that

Γ,Γ′θ ` ρθ ⇐ ∆θ

5

If (λ∆̂.R/x : Π∆.v) ∈ θ, then by Lemma 4.4 we know we have a derivation
that looks like

Γ,∆θ ` R ⇐ vθ

Γ ` λ∆̂.R ⇐ (Π∆.v)θ

and by weakening and i.h. (on ∆θ < Ψ) and Lemma 4.1 we get

Γ,Γ′θ ` R{ρθ/∆} ⇒ vθ{ρθ/∆θ}

as required. Otherwise, observe that (Γ,Γ′)θ = Γ, (Γ′θ) by Lemma 4.2,
and form the derivation

x : Π∆θ.vθ ∈ Γ, θΓ′ Γ,Γ′θ ` ρθ : ∆θ

Γ,Γ′θ ` x[ρθ] ⇒ vθ{ρθ/∆θ}

Here is how we define ηV (x), the η-expansion of a variable at a classifier V ,
and IΨ, the expanded identity substitution for the context Ψ.

ηΠΨ.v(x) = λΨ̂.x[IΨ]

I· = id IΨ,x:V = ηV (x).IΨ

Lemma 4.7 (Unit Laws for η-expansion)

1. If Γ ` R ⇒ v, then R{IΨ/Ψ} = R

2. If Γ ` ρ ⇐ ∆, then I∆{ρ/∆} = ρ

3. If Γ ` ρ ⇐ ∆, then ρ{IΨ/Ψ} = ρ

4. If Γ ` N ⇐ V , then N{IΨ/Ψ} = N

5. If Γ ` V ⇐ ok, then V {IΨ/Ψ} = V

6. If Γ ` ∆ ctx, then ∆{IΨ/Ψ} = ∆

Proof By induction.

1. Say R = x[ρ]. The interesting case is when λ∆̂.x[I∆]/x : Π∆.v ∈ {IΨ/Ψ}.
Here we want to show x[ρ] = x[I∆{ρ{IΨ/Ψ}/∆}]. By one application of
i.h. this is the same as x[I∆{ρ/∆}], and by another we’re done.

2. By typing, of ρ we know that

I∆ = ηV1(x1).ηVn(xn).id

ρ = λΨ̂1.R1, . . . , λΨ̂n.Rn.id

supposing that Vi = ΠΨi.vi. We want to show

(ηV1(x1).ηVn
(xn).id){ρ/∆} = ρ

6

so it suffices to show

ηVi(xi){ρ/∆} = λΨ̂i.Ri

Let’s carry out the eta-expansion on the left:

λΨ̂i.xi[IΨi]{ρ/∆}

We know that λΨ̂i/x : Vi ∈ {ρ/∆}, so this is

λΨ̂i.Ri{IΨi{ρ/∆}/Ψi}

However, FV (IΨi
) ∩ ∆̂ = ∅, so this is

λΨ̂i.Ri{IΨi
/Ψi}

which by induction hypothesis is

λΨ̂i.Ri

as required.

3. Straightforward.

4. Straightforward.

5. Straightforward.

6. Straightforward.

Lemma 4.8 (Identity) Suppose ` Γ ctx.

1. If x : V ∈ Γ, then Γ ` ηV (x) ⇐ V .

2. If Γ ` Ψ ctx, then Γ,Ψ ` IΨ ⇐ Ψ.

Proof By induction.

1. Form the derivation
x : ΠΨ.v ∈ Γ Γ,Ψ ` IΨ ⇐ Ψ

Γ,Ψ ` x[IΨ] ⇐ v{IΨ/Ψ}

Γ ` λΨ̂.x[IΨ] ⇐ ΠΨ.(v{IΨ/Ψ})

which by the previous lemma is as required.

2. The empty context case is immediate. Otherwise, form the derivation

Γ,Ψ, x : V ` ηV (x) ⇐ V {IΨ/Ψ} Γ,Ψ ` IΨ ⇐ Ψ

Γ,Ψ, x : V ` ηV (x).IΨ ⇐ Ψ, x : V

from uses of the i.h. and previous lemma.

7

