Labelled LF Notes

Jason Reed

September 11, 2006

1 Language

1.1 Signatures, Contexts
Yu=-|X,c:A|X,a: K
Fi=-|T,z: A|T,a: world

1.2 Expressions
pgri=alp-ple
K :=Ilx:A.K |Yo.K | type
A Bu:=IIx:AB|a-S|Va.B||laB|AQp|A&B|T
M, N == Xe.M | R | (M, My) | {)
R:=c-S|z-S
Su=() | (M;8) | (mi;5)

1.3 Judgments

' K : kind
T'Fp < world
'k A:type
I'FS: K > type
I'F M < Alp]
't R= Alp|
'ES: Alp] > C[r]

1.4 Kind Formation
I'E A:type I''z: AF K : kind I'a : world - K : kind

I'FIIx : A.K : kind I'Va.K : kind

I' - type : kind

1.5 World Formation
a:world el T'Fp < world ' g < world

'k a < world I'kp-q< world I'- € < world

The relation =4cp holds between two world expressions if they are identical up
to associativity and commutativity for -, and unit laws for e.

1.6 Type Formation
T'F A:type Iz: AF B :type
I'FTIlz:A.B : type
a:KekX I'ES: K > type
T'Fa-S:type
T',a: world - B : type
I' - Va.B : type
T, : world - B : type
I'+ la.B : type
I'F A: type ' p < world
I'EAQp:type
I'FA:type I' B :type
' A& B :type

T'FT:type

1.7 Type Checking
I'FR=a-Sp] S=a85 p=acvq
'R<a-Sq
I'z: AF M < B[p] T, o : world - M < Blp]
I'F Az.M < Tlz:A.Blp| I' - M < Va.B[p]

Ik M < ({p/a}*™B)[y

T+ M < |a.B[p]
T+ M < Alg
I'FM < AQg[p]
' My < Ai]p) T'F My, < Aslp
I'F (M, My) < Ay & As[p]

I'EQ < Tip)

1.8 Type Synthesis
c:AeXx T'ES: Alg > Clr]
F'kc-S=Cr
x:Ael L' S: Ale > C[r]
''kz-S=C[r

1.9 Type Spine Kinding

Tk ():type > type
M« Al TFS:{M/z}*K > type
I'E(M;S): z:A.K > type
'+ p < world I'FS:{p/a}*MK > type
I'ES:Va.K > type

1.10 Term Spine Typing

F'E():a-S[p]>a-S[p
I'FM<«< Al TFS:{M/z}*Bp| > Clr|
'k (M;S): x:A.B[p] > Clr]
I't+ g < world I'FS:({g/a}"B)[p] > C[r]

'k S: (Va.B)p] > C|r]
L'FS:{p/a}*B[p] > C[r]
'k S:laBp] > Clr]
'k S: Alg) > Clr]
'ES:AQqp > C[r]
THS: Alp] > C[r]

Tk (m;8): Ay & As[p] > Cr]

1.11 Substitution

For uniformity of syntax:

xu=z|a
Xuz=M|p
U = A | world

The following are partial functions on terms yielding terms:

xXpv N8P
The first is also overloaded to take kinds to kinds and types to types. Let o
abbreviate {X/x}V.
1.11.1 Substitution on Kinds

o(llz:A.K) = z:(cA).(0K)
oc(Va.K) =Va.(oK)
o type = type

1.11.2 Substitution on Types

o(Ilz:A.B) = x:(cA).(0 B)

ola-S)=a-(c5)
o(Va.B) =Va.(oB)
o(la.B) = la.(oB)
o(AQp)=(cA)Q (op)
0(A& B)=0cA& oB

ol =T

1.11.3 Substitution on Terms
o(Az.M) = Az.(c M)
o{My, My) = (oM, 0 Ms)
o) =0
o(p-q)=op-oq
olc-S)=c-(c9)
{N/z}%(a-8) = [N | {N/z}“5)°
olx-S)=z-(085) (if o not a subst. for x)

{p/a}a = p

oo =« (if o not a subst. for «)
o() =0
o(M;S)=(cM;0S)
o(mi; 8) = (m;08)

1.12 Reduction

M| (N5 S)AP = (N2} |)M/
(R0 =R

[M |)74 = [M | 5]
[M | S}t =M | 8]

[M | S}4% = [M | 5]
(M1, M) | (w5 S)] 11442 = [M; | S]

Let ' M < A abbreviate I' - M < Ale]. Let J stand for any judgment.

A

Lemma 1.1 (Weakening) If T, TV J, then T,z : A, T'F J.
Say X| for “X is defined,” and X = X’| stands for X|,X’|, and X = X',

Lemma 1.2 Make the abbreviation o; = {X;/x;}4¢.

1. Suppose 01X, 092X]|, and 09X1| Suppose x; does not occur free in Xs.
Then
0201X = {ngl/xl}AlaQXl

2. Suppose [M|S|¢ |, o1 M|, and 01S]. Then
a1[M|8]° = [o01M|018]¢ |
Theorem 1.3 (Substitution) Assume T, J, A,p are well-formed.

o f[THFX <UandT,z:UT'F J thenT,cT" FoJ.
o IfTFM <« Alp] and T S : Alp] > Clq], then T = [M | S]* : Clq.

Proof By induction. =

2 Embedding LLF

We claim that a variant of LLF embeds faithfully in the present system with

the definition
A—oB=Va.[|.(AQa) — (BQ ()

By various inversion properties, one can see that this is admissibly equivalent
to adding the two rules

Ia:world,z: AQatF M < Blp-al
'k Az.M < A— Bp]

T'F g < world ' M < Alg) I'ES:Blp-q] > Clr]
'k (M;S): A— Blp| > C|r]

The variant of LLF we have in mind is one given in canonical forms style,
with linear and unrestricted lambda conflated. The syntax of its types is

AB:i=a-S|A—B|lx:AB|A&B|T

and its term language is identical to HLF’s.
Its central typing judgments are:

F;A"LLFM@A
F;A"LLFR:>A
F;AFLLFSZA>C

where A is a context of linear hypotheses x*A, subject to exchange but not
contraction or weakening.
Its typing rules are

Abprp R=a- S S =45
AFpr R<=a- S
Dx:A;Abprp M < B
I'Abppr Adx.M < 1lx:A.B
A 2Abprp M < B
AFLLr MM < A— B
DiAbppr My <= Ay DiAbpLr My <= Ay
T;Abppr (My, My) < Ay & As

F;A FLLF <> < T

c:AeX F;A"LLFSZA>C
F;AFLLFC'Sic

rz:Ael F;AFLLFS:A>C F;AFLLFS:A>C
F;A"LLFI"S:}C F;A,l‘?Al—LLF.Z“S:}C

F;~}—LLF()2(L~S>G'S

Diobppp M <=A T;AbFppS:{M/z}*B>C
D;Abpr (M;S): Ie:A.B > C
DA Fpprp M <= A Ak S:B>C
;A A bppr (M;S): A—B>C
TAVr S:A; > C
DA bLLr (m339): Ay & Ay > C

Definition Given an LLF context A, we define a context A® as follows:
($1 : Al,...,xn : An)@ =

(ag, sworld, 21 0 (A1 Q@ @y,), ...y, s world, z, @ (A, Q@)

We also define the LLF context

ALp:(l‘iltAil,...,l‘i :Aim)

m

whenever p = cu Qg Qg cA

for every k€ 1...m.

., for distinct iq,...,im, such that z; : A;,

Remark The definition of A|, is well-defined up to commutativity and asso-
ciativity for world concatenation, because we have exchange and associativity
on contexts.

Lemma 2.1 (Factorization) Suppose A is an LLF type. If T,A® - S :
Alp] > C|[r], then there exists world s such that r =acy p - s.

Proof By induction on the typing derivation.
Case: Linear spine cons:

IA®Fg:world T ,A°FM:Alq) T,A®FS:B[p-q>C[r]
I,A®F (M;S): A— Blp] > CIr]

By induction hypothesis, r factors as (p - q) - s’ for some s’. Therefore by
associativity it also factors as p- (q-s’). Set s =¢q-s'.

Case: Ordinary spine cons:

DA M: Al TI,A®FS:{M/z}*B[p] > C[r]
I,A® & (M;S) : z:A.B[p] > C[r]

By induction hypothesis, r factors as p - s for some s, and we done.

Case: Nil:

D,AYF () Fa-S[p| > a-S[pl

Set s = e.

Case: Projection:
DA S Aylp] > Clr

F,A@ [(Wi;S)ZAl &Ag[p] >C[T‘]

By induction hypothesis, r factors as p - s for some s, and we done.

Lemma 2.2 (Soundness) Suppose A is a valid LLF context, and A is a valid
LLF type. If T,A® F M : Alp] (up to permutation of T, A®) then T Al, FrLr
M: A

Similarly if T,A® = S : Alp] > C[r] (up to permutation of T',A®) and
r=acup-q, then ;A Frpp St A>C.

Proof By induction on the typing derivation.

Case: Linear lambda:
A% o, sworld,z: AQa, M : Blp - ay)
I,A® F Xz M - A — Blp]

By the induction hypothesis, we get Iy A,z : Abppre M : B. By rule,
we get IA|, Frpp Ae.M : A— B.

Case: Regular lambda:
[,A® z: A+ M: B
[,A® ¢ \z.M : z:A.B[p]

By the induction hypothesis, we get I,z : A; A, Frpre M : B. By rule,
we get I‘;ALp Fror Az M : Ilz:A.B.

Case: Linear variable:
[,A° S Ala,] > O]
r:AQa, c A® [,A®ES:AQ aglg > Cr
[A®F2-S:Clr

By lemma, r factors as q - a; for some ¢, and by induction hypothesis

DAL Fopr S A>C
By rule, (since 2 : A @ a, € A® means we must have had = : A € A)

LAl Abpprx-S:C
as required, because Al = Al =Al z: A
Case: Ordinary variable:
z:Ael T,A®FS: Al > C[r]
DAY x-S:C[r]

By induction hypothesis
F;ALT Fror S:A>C

By rule,
F;ALTFLLF$‘S:A>C

as required.
Case: Linear spine cons:
[LA®Fg:world T,A°FM:Algq] T,A°FS:Bp-q > C[r]
[,A°F (M;S): A— Blp] > Cr]

By lemma, r factors as p - ¢ - s for some s. By induction hypothesis
F;A[q l_LLF M: A
F7AL5 FrorS:A>C

By assumption r = p-¢’ for some ¢’. But we know then that p-q-s = p-¢/,
so by cancellativity of - we infer ¢’ = ¢ - s. By rule,

AL Foore (M;8): A—B>C
as required.
Case: Ordinary spine cons:
LA M: Al T,A°FS:[M/z]“B[p| > Cr]
T,A® - (M;S) : lz:A.Blp| > C[r]
Let g be such that p-q¢ =acy r. By induction hypothesis
I;Al Foer S [M/2]*B > C
Iyobpprp M A

by rule,
Al b (M;S) - Hz:A.B > C

as required.

Case: Nil:

[,A°E():a-S[p]>a-S[p
The only ¢ such that p-q = p is €. By rule,
T;obrpr J:a-S>a-S
as required.
]
Definition Let aa be the concatenation of all worlds in A©,

XXX should probably state weakening, exchange explicitly

Lemma 2.3 (Completeness) Suppose all relevant things are valid. (e.g. sup-
pose T well-formed, suppose A a valid type in T')

o [fF;AFLLF M¢A, then F,A@ FM@A[O[A]
o IfT;Abrrr R= A, then T, A® - R = Alaa]

o IfT;Abpr S: A>C, thenT, A’ + S : Alp] > Clg|, for any A’ that
extends A® and any p such that A’ F p : world, for some ¢ =acu ana - p.

Proof By induction on the derivation.

Case:
F;AI—LLFR:>G'S S:aS/

F;A"LLFR@CL'SI
Immediate by applying rule to induction hypothesis, since apn =acv aa.

Case:
F,.’L‘ : A,A Fror M < B

IAbppr Adx.M < 1lx:A.B

By ih., Iz : A,A® F M < Blaa]. By exchange and rule application,
A F \z.M < Tlz:A.Blaa].

Case:
F; A,IAA Fror M < B

F;A FLLF .M <= A—oB

By ih., 'A% a, : world,z : A @ a, F M < Blaa - o). By rule
application, I', A® - \z.M < A —o Blaa].

Case:
r:Ael F;A}—LLFSZA>C

F;A"LLF,Z'S#O

By i.h., (choosing p = €) we have I',A® S : Ale] > C[aa]. By rule
application (since z: A € T') we get [, A® -z - S = Claa].

10

Case:
P;A"LLFSZA>C

F,A,IAA Frrrpx-S=C

A% o, sworld,z: AQa, F S : Alay] > Claa - oy i.h.
[LA? a, :world,z: A @Qa, S : AQa,[e] > Claa -a,] by rule
A% a, tworld,z: AQa, Fx-S= Claa - ay,) by rule.

Case:

I Froor ()ZCL-S>CL'S
Immediate. Here ap =€, and '+ () : a- S[p] > a-S[p] and p- e =acv p.

Case:
;-bppp M= A T;Abpe S:{M/z}*B>C
D;Abpr (M;S) : Iz:A.B > C
Let A’ extending A® and p such that A’ - p < world be given.
DA S {M/z}2B[p] > C[q] by i.h.
(¢ =acu aa - p)
T+ M < Al i.h.
A" M < Ale weakening.
A" (M;S) : Iz A.Blp| > Clq] by rule.
Case:
F;A1|_LLFM<:A F;AQFLLFSZB>C
AL A bppr (M;S): A—B > C
Let A’ extending AP, AY and p such that A’ - p < world be given.
DA S {M/2}2B[p-aa,] > Clq] by i.h.
(g =acv an, - (p-aa,))
DAY - M <= Alaa,] i.h.
IA'"F M < Alaa,] weakening.
A" (M;8): A— Bp] > Clq] by rule.
[

3 Embedding BI

3.1 BI

Here is the bunched sequent calculus: (XXX need to show that this works vis-
a-vis the standard presentation, by eliminating the need for explicit weakening

rule!)
T(A;A) g C

DiAFer A rA) by O

11

T,Abp; B Abpr A T(B)bp C
Thpr A—B I'(A, A—B) bp; C
T;Abp; B AbgrA T(B)bp C
Thpr A—B T(A;A— B)bp C
Thpr A1 ThprAs T'(A4;) g C
Thpr A & Ay T(A; & Ay) Fpr C
Thpr T

3.2 Labellings

Here is an auxiliary data structure that contains both the structural information
of a bunched context, and the label information of an HLF context:

Labellings L :=-| (L, L) | (L; L) | z : Alp]

Labellings are identified up to the same sort of associative and commuta-
tive laws that bunched contexts respect. Variable names may be shared across
additive context joins.

We define below some typing rules that establish whent these two threads
of information are compatible.

Here are the two functions h, b that project out the HLF and BI information.

() = b() =1,
h(Ly, Ly) := h(Ly),h(Ls) b(L1, Ly) := b(L1),b(Ls)
(Ll, LQ) h(Ll) U h(LQ) b(Ll7 Lg) = b(Ll), b(Lg)
h(z: Alp) ==z: A@p bla: Alp]) = A

The relation +— takes in a labelling and emits a world that says what re-
sources are required to use the whole context.

Li—p Ly — pa Li—p Ly—p

e (L1, L2) = p1-p2 (L1;L2) —p
Note that already we can see that a labelling that has two ;-subtrees with
different resources are somehow ‘ill-typed’. Here are the full typing rules, using
the notation L (L2) as in BI for a labelling-with-hole L; that has Lo as a subtree
occupying that hole:

62 |_ Ll(LQ) : lab

= unit contract
at-:lab &t Li(L2; Ls) : lab
ak L:lab &t Li(La,x : Alp]) : lab Ly q
me mm
a,fF (L,z: AlF]) : lab @t Li(y: Blp-q]) : lab

12

at L:lab Lw—gq at Li(L2;x : Alp]) : lab Ly—p
ae am
at (Lyz: Alq]) : lab &t Li(y: Blp]) : lab

The first character of each two-letter rule means ‘additive’ or ‘multiplicative’,
and the second character means ‘extend’ or ‘merge’.

3.3 Completeness
Lemma 3.1 Ifz: AcT, then T+ nf(z) : Ale].

Lemma 3.2 IfaF Li(Ls) — q, and Lo — p and Ly — p, then &+ Ly(L}) —
q.
Lemma 3.3 If &t Li(Ls) : lab, then there exists g such that Ly — q.

Lemma 3.4 Ifat L :lab and L’ is identical to L except that the types in it
differ, then so too @t L’ :lab. Moreover, if L — p, then also L' — p.

Proposition 3.5 (Completeness) Ifdt L:lab and L — p and b(L) bFpr A,
then there exists M such that & : world, h(L) - M < Alp].

Proof By induction on the derivation of b(L) Fpg; A.
Case:

F; A l_BI A
Since b(L) =T; A and L — p, we know L is of the form L’;x : A[p], and
so h(L) =h(L')Uxz: AQ p. Because xz : A @ p € h(L), it follows from
Lemma 3.1 that there is an M such that & : world, h(L) - M < A Q p[e].
By inversion also & : world, h(L) - M < A[p] as required. (XXX why is
the context valid?)

Case:
T(A;A) Fpr C
I'(A) gy C
We're given a labelling L such that L — p and b(L) = T'(A). Hence L
is of the form L;(L2). By the rule contract, & b Lq(Ls; L2) : lab, and it
can be seen that b(Lq(L2; L2)) = T'(A; A), and Li(Lo; Lg) — p, and also
h(L1(L2;L2)) = h(Li(L2)). Therefore the induction hypothesis yields
a :world,h(Ly(Ls)) F M < Alp], as required.
Case:
I'NArpr B
T'tpr A—B
We're given a labelling L such that L — p and b(L) = I". By rule me,
we have &,8 + (L,z : A[f]) : lab. Noting that b(L,z : A[g]) = (T, A)
and (L,z : A[f]) — (p-), apply the induction hypothesis to obtain
a,f,h(L),z : A QB+ M < Blp-f]. By rule, &h(L) - \a. M <
A —o BJp], as required.

13

Case:

Case:

Case:

Abpgr A I'(B)Fpr C
F(A,A—OB) l_BI C
We're given a labelling L such that L — p and b(L) = I'(A, A— B).
Hence L is of the form L;(Lo,z : A—o B[r]). Let ¢ be such that Ly — ¢

by Lemma 3.3. By the rule mm, we have & - Ly(y : B[r - ¢q]) : lab. By
induction hypothesis we get M, N such that

a, h(Ly) = M <« Alg|

a,h(Ly),y: BQ (r-q) F N < C[p]

which can be weakened to
't M < Alq] (%)

Lyy:B@(r-q)F N« Clp (%)
for I' = &, h(L1(Lg,x : A— Br])), and we need to find N’ such that

I'HN' < C[p|

Consider the n-expansion of x at type A — B, and note that it is of the
form Az.M'. By Lemma 3.1

C'EXz2.M': A— B Qrle]

hence by inversion there is a derivation of I’y : world, 2 : A @ a = M’ :
B @ (r-a)[e]. By rule application from (x) we can get I' - M < A @ g[e] so
substitution of ¢ for a and M for z yields I' - {M/2}A%IM’ : B @ (r-q)]e].

Doing one more substitution, for y in (xx), we get

D {{M/3499M [y} PO ON <= COfp) ()
So let N = {{M/2}A®IM" [y} B0,

F;AI‘B[B
F"B[AAB

We're given a labelling L such that L — p and b(L) = I'. By rule ae,
we have @ F (L;x : Alp]) : lab. Noting that b(L;z : A[p]) = (T'; A) and
(L;z : Alp]) — p, apply the induction hypothesis to obtain & h(L),z :
AQpk M < Blp|. By rule, @ h(L) - Az.M < A — Blp|, as required.

AbFpgr A I'(B)bkpr C
F(A,A — B) FB] C

14

Case:

Case:

Case:

We're given a labelling L such that L — p and b(L) = T'(A; A — B).
Hence L is of the form Li(Lg;x : A — B[r]). Note that Ly — r. XXX
we know this by well-formedness of the labelling, right? By the rule am,
we have @+ Li(y : B[r]) : lab. XXX we are swapping in one r subtree for
another; need to show that — is invariant up to this kind of surgery By
induction hypothesis we get M, N such that

a,h(Ls) F M < Alr]
a,h(L1),y: B@Qrt N < C[p|
and we need to find N’ such that
a,h(Ly),h(Ly),z: A— BQrk N < Clp]

So let N' = {aM/y}N. XXX two finicky issues here: 1 expansion, and
the flattening action on contexts of h — just need to imitate the — case

I'kpr A1 I'Fpr A2

T'kpr A1 & A,
We have a labelling L such that ' = b(L), L — p, & - L : lab. By
induction hypothesis, there are My, My such that & : world, h(L) - M, <
A,[p] for i € {1,2}. By rule, a: w0r|d7h(L) H <M1,M2> <A & Az[p}

I'(A) Fpr C
['(A; & Ag) by C
We have a labelling L such that T'(4; & As) =b(L), L — p, &+ L : lab.
Hence L is of the form Lg(x : A1 & As[q]). Consider L' = Lo(y : Ai[q]).
Evidently @ + L’ : lab and L’ — p. By induction hypothesis, there is M
such that such that & : world, h(L") F M < C[p]. This can be weakened
to

a:world, h(L),y: A; Qg+ M < Clp) (%)
The n-expansion of x at type 4; & Az @ ¢ is some pair (N7, N3), and by
Lemma 3.1,

a:world,h(L) F (N1, No) < Ay & Ay Q gle]
By inversion and rule application,
a:world, h(L) F N; < A; Q g¢]
Hence we can substitute into (x) and achieve

& : world, h(L) F {N;/y}*®1M < Clp|

I'kpr T
By rule, @ h(L) F () : T[p].

15

3.4 Soundness

Restriction is a partial operation; if none of the clauses below is satisified it is
undefined.

(Lo s Alo]) |y = (L), Alo]
(La: Alal)ly = (L) (agp)
(Lyz: Alp))l, = (L1,), = : Alp]
(Liz: Alp)) |y = (L), z - Alg] (P #q)

We say @ b L : lab® if there is a proof of & - L : lab using only rules u, me, ae.
Say p < q if there exists r such that p-r = q.

Proposition 3.6 (Soundness) Suppose @ - L : lab™. Suppose L — q.
o I[fT'F M <« Alp], and T'|, = h(L), and p < q, then b(L) F-pr A.

e Ifd :world,h(L) - S < Alp] > C[r], and p,r < g, then b(L|,) Fpr A
implies b(L|,) Fpr C.

Proof By induction on the typing derivation. The cases for the additive pair
and unit are easy. The remaining cases are introductions and eliminations for
—, —o, the variable case, and the nil spine case.

Case:
D

a,h(L)F S : Alp] > Clr]
z:AQpeh(L) dh(L)-S:AQple > Cr]
a,h(L)Fz-S < Clr]

From z: A @ p € hL we know that = : A[p] € L, which by Lemma XXX
gives b(L|,) - A. By the induction hypothesis on D, we conclude b(L/|,.) I-
C, as required.

Case:
D

& B,h(L),z: AQ B+ M < Blp-]
a,B,h(L),z: AQB+ M < Ba (p-3)[p]
& B, h(L)FXe.M <A@ [— Ba(p-5)p
a&h(L)F A x.M <VY3.AQ3 — BQ (p-3)[p]
&, (L) F \z.M < A— B[p|

Because (h(L),z : A @ 3) = h(L,x : A[f]) and (L,z : A[B])],5 =
(Ll,),z : A[p], the induction hypothesis can be applied to D, yielding
b(L|,), AF B. By rule, b(L|,) - A—o B, as required.

16

Case:
D

Y, h(L),z: AQpk M < B[p|
,h(L)F Ae. M < AQp — Blp)
a,h(L)l—Am.M@AéB[p]

Because (h(L),z : A @ 3) = h(L,z : A[3]) and (L,x : A[p])|,5 = (Ll,),z :
A[f], the induction hypothesis can be applied to D, yielding b(LL),AF B. By
rule, b(L|,) = A—o B, as required.

|

Ale])
({X — A/p}L),x : B & Xola])

{A/p}(L,2: Blo]) = ({A/p}L),z: Bla]) (& p)
{A/p}(L; 2 : Blg]) = ({A/p}L); = : Blg))

't M: Alp) 't S: Bp] > Cr]
F(M;S): A— Blp] > Clr]

Here i.h. gives us b(L|,) = A, and b(L|,) - B implies b(L|,.) - C. We assume
b(L|,) = A — B and try to show b(L|,) - B. But this is fairly easy!

{A/p}-
{A/pa}(L,z : Bla })

A~ S

I'HM:Algl TFS:Blpg > Clr]
F(M;S): A— Blp] > C|r]

Here i.h. gives us b(L|,) = A, and b(L|,,) F B implies b(L|,) - C. We
assume b(L|,) - A— B and try to show b(L|,q) = B. We can get that
b(Ll|,,L|,) - A® (A—o B) and cut to get b(L|,, L|,) = B. All we need is that
b(Ll,,) is a stronger context than b(L|,, L|,), but this is true.

D
Pq

17

