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Abstract

One gives Kripke semantics for modal logic by identifying a class of
worlds together with an accessibility relation between them and defining
satisfaction at a world. One may give a semantics for bunched logic in a
similar fashion by identifying the right notion of ‘point relative to which
satsifaction is defined’. This amounts intuitively to a set of resource labels
which describe the resources divided up by the bunched logical connetives.
Instead of (or, depending on circumstances, in addition to) a relational
structure requires the algebraic structure of a commutative monoid, whose
multiplication describes how resources combine.

Both of these semantics involve satisfaction clauses written against an
assumed background of classical logic. To give a ‘constructive semantics’
is to give a notion of constructive proof of satisfaction that treats logi-
cal connectives’ effect on those objects variously referred to as ‘worlds’,
‘points’, ‘resource labels’. That is, a system of labelled deduction in the
sense of Gabbay.

In that sense the contribution is a constructive resource semantics for
intuitionistic linear logic without 0.

1 Introduction

I found it expedient to use yet another variant in the space of ‘weak focalizations’
of linear logic: here positive things are entirely unfocused, but negative things
are fully focused, i.e. must continue focus when synchronous, and must be
inverted eagerly. I believe everything goes fine if you fully focus the positives,
too, but it did not seem necessary the way the negatives seemed to be. See the
comment after the cut theorem statement in section 3.

Also, if the positives are required to do inversion, then we have some kind
of substructrual context, whether ordered or ‘linear but confluent’, and that
seems begging the question just a little to explain linearity in terms of linearity.
Granted we’re still using linearity in some capacity when talking about left
focus, but since it’s just one slot and not a whole context it seems more benign.
That is, it can be accounted for by being a funny piece of syntax, without the
generality of speaking of dividing up linear contexts and so on.
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2 Negatively Focused Linear Logic

We take a polarized language with all the usual connectives of linear logic (ex-
cluding the exponential !, which is possible to treat without too much difficulty,
but clutters the development somewhat) with polarity shifts ↑ and ↓ and signed
atomic propositions a+ and a−.

Positives P ::= ↓N | P ⊗ P | P ⊕ P | 1 | a+

Negatives N ::= ↑P | P ( N | N&N | > | a−
Contexts ∆ ::= · | ∆, P

Stable Conclusions Q ::= P | a−
Conclusions J ::= N > Q | P | N

Since we decompose negative propositions only in focus, the context ∆ only
contains positives. For the sake of writing general enough conclusions for se-
quent left rules, a stable conclusion Q is defined to be a positive proposition
or a negative atom. The possible conclusions of a judgment are a negative
proposition in focus with a stable conclusion N > Q, a negative proposition N
under inversion, a positive proposition P , or a negative atom a−. So the single
judgment form is

∆ ` J

with ∆ unordered, but linear, i.e. without any tacit weakening and contraction.
The sequent calculus is

` a− > a− a+ ` a+

∆1 ` P1 ∆2 ` P2

∆1,∆2 ` P1 ⊗ P2

∆, P1, P2 ` Q

∆, P1 ⊗ P2 ` Q

∆ ` Pi

∆ ` P1 ⊕ P2

∆, P1 ` Q ∆, P2 ` Q

∆, P1 ⊕ P2 ` Q

` 1
∆ ` Q

∆, 1 ` Q ∆ ` >

∆ ` N1 ∆ ` N2

∆ ` N1&N2

∆ ` Ni > Q

∆ ` N1&N2 > Q

∆, P ` N

∆ ` P ( N

∆1 ` P ∆2 ` N > Q

∆1,∆2 ` P ( N > Q

∆ ` P

∆ ` ↑P

∆, P ` Q

∆ ` ↑P > Q

∆ ` N

∆ ` ↓N

∆ ` N > Q

∆, ↓N ` Q

The soundness and completeness of the logic are expressed by
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Theorem 2.1 (Cut) The following rules are admissible.

∆1 ` P ∆2, P ` J

∆1,∆2 ` J

∆1 ` N ∆2 ` N > Q

∆1,∆2 ` Q

∆1 ` N > P ∆2, P ` Q

∆1,∆2 ` N > Q

Proof By lexicographic induction on the proposition and the structure of the
derivations.

Theorem 2.2 (Identity)

1. For any P , we have P ` P .

2. For any N , if there is a is a derivation uniform in Q from ` N > Q to
∆ ` Q, then we have ∆ ` N

Proof By induction on the structure of the proposition.

Corollary 2.3 For any N we have ↓N ` N .

Proof The left rule for ↓ allows a derivation

` N > Q

↓N ` Q

of the appropriate form.

3 Negatively Focused Labelled Logic

In the labelled logic we take the same language of propositions, but the contexts
for it will admit weakening and contraction, as well as carry extra labelling
information.

Labels p, q, r ::= α | p ∗ p | ε
Labelled Contexts Γ ::= · | Γ, P [α] | Γ, α : `

Labelled Conclusions K ::= N [p] > Q[q] | P [p] | N [p]

The label ε is to be understood as the empty collection of resources, and
∗ combines collections of resources. An appearance of a label variable α in a
context as P [α] is a binding position, as is a direct declaration of a label variable
α : `. Everywhere else that α appears is a variable use. In this way, each positive
hypothesis is marked as a distinct resource.
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The main judgment form is

Γ ` K

and we have an auxiliary notion of well-formed label, Γ `: `. It is defined by

Γ, α : ` ` α : ` Γ ` ε : `

Γ ` p : ` Γ ` q : `

Γ ` p ∗ q : `

The relation p ≡ACU q is the equivalence (i.e. symmetric, reflexive, transi-
tive) closure of Associativity, Commutativity and Unit laws for ∗ with respect
to ε, and compatibility with respect to ∗, i.e. p ∗ q ≡ACU p′ ∗ q′ if p ≡ACU p′

and q ≡ACU q′.
In the sequel we identify label expressions p and q that satisfy p ≡ACU q.
Substitution of a label p for a label variable α in q is written (p/α)q.
The rules defining the sequent calculus are

Γ ` a−[p] > a−[p] Γ, a+[α] ` a+[α]

Γ ` P1[p1] Γ ` P2[p2]

Γ ` P1 ⊗ P2[p1 ∗ p2]

Γ, P1 ⊗ P2[α], P1[β1], P2[β2] ` Q[(β1 ∗ β2/α)p]

Γ, P1 ⊗ P2[α] ` Q[p]

Γ ` Pi[p]

Γ ` P1 ⊕ P2[p]

Γ, P1[α] ` Q[q] Γ, P2[α] ` Q[q]

Γ, P1 ⊕ P2[α] ` Q[q]

` 1[ε]
Γ ` Q[(ε/α)p]

Γ, 1[α] ` Q[p] Γ ` >[p]

Γ ` N1[p] Γ ` N2[p]

Γ ` N1&N2[p]

Γ ` Ni[p] > Q[q]

Γ ` N1&N2[p] > Q[q]

Γ, P [α] ` N [p ∗ α]

Γ ` P ( N [p]

Γ ` P [r] Γ ` N [p ∗ r] > Q[q]

Γ ` P ( N [p] > Q[q]

Γ ` P [p]

Γ ` ↑P [p]

Γ, P [α] ` Q[q]

Γ ` ↑P [p] > Q[(p/α)q]

Γ ` N [p]

Γ ` ↓N [p]

Γ, ↓N [α], β : ` ` N [β] > Q[(β/α)q]

Γ, ↓N [α] ` Q[q]
The soundness and completeness of the logic are expressed by

Theorem 3.1 (Cut) The following rules are admissible.

Γ ` p : ` Γ, α : ` ` K

Γ ` (p/α)K

Γ ` P [p] Γ, P [α] ` K

Γ ` (p/α)K

Γ ` N [p] Γ ` N [p] > Q[q]

Γ ` Q[q]

Γ ` N [p] > P [q] Γ, P [α] ` Q[r]

Γ ` N [p] > Q[(q/α)r]
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Proof By lexicographic induction on the proposition and the structure of the
derivations.

The success of this proof approach depends on the imposition of eager inver-
sion for negative propositions on the right. Otherwise, it would not be obvious
how to maintain the invariant that negative propositions are cut against neg-
ative propositions at the same world. Consider the commutative case (which
uses a conjectural variant of the ↓ left rule, critically not actually allowed in the
system above)

Γ, P [b] ` N [p]

Γ, ↓P [r] ` N [(r/β)p] Γ, ↓P [r] ` N [(r/β)p] > Q[q]

Γ, ↓P [r] ` Q[q]

The reason for left focus is more basic — it is the place where hypotheses at
complex labels (not single variables) makes sense.

Theorem 3.2 (Identity)

1. For any P , we have P [α] ` P [α].

2. For any N , if there is a is a derivation uniform in Q from β : ` ` N [β] >
Q[(β/α)p] to Γ ` Q[p], then we have Γ ` N [α] XXX not quite right yet

Proof By induction on the structure of the proposition.

Corollary 3.3 For any N we have ↓N [α] ` N [α].

Proof The left rule for ↓ allows a derivation

↓N [α], α : ` ` N [α] > Q[p]

↓N [α] ` Q[p]

of the appropriate form.

4 Embedding

The labelled logic conservatively extends linear logic in the sense of the two
results below. First some preliminary definitions. The expression Γ

∣∣
p

for a p

consisting of a product of a subset of the world variables declared by positive
hypotheses in Γ is defined to be the linear context arising from taking precisely
those positive hypotheses. Formally,

Γ
∣∣
p

= ∆

(Γ, P [α])
∣∣
p∗α

= ∆, P Γ
∣∣
ε
= ·
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Besides that definition it’s useful to be able to say by itself that p is actually
a subset of the variables in Γ, (that is, it does not duplicate any of them) written
p ⊆ Γ

p ⊆ Γ

p ∗ α ⊆ Γ, α : `

p ⊆ Γ

p ∗ α ⊆ Γ, P [α] ε ⊆ Γ

The intent then is that Γ
∣∣
p

should only be invoked if it’s already known that
p ⊆ Γ.

If we have a linear context ∆ = P1 . . . Pn then α∆ is a product of fresh label
variables of the same length as ∆, i.e. α1 ∗ · · · ∗ αn and ∆[α∆] is defined to be
P1[α1] . . . Pn[αn].

Theorem 4.1 (Soundness)

1. If p ⊆ Γ and Γ ` P [p] then Γ
∣∣
p
` P .

2. If p ⊆ Γ and Γ ` N [p] then Γ
∣∣
p
` N .

3. If p ⊆ Γ and Γ ` N [q] > Q[p] then there is an r such that p ≡ACU q ∗ r
and Γ

∣∣
r
` N > Q.

Proof By induction on the derivation. XXX I cannot quite see yet how to do
the cases of 3 for the shifts, but everything else looks good.

Theorem 4.2 (Completeness) Let ∆ be given and let Γ be a context extend-
ing ∆[α∆]. Suppose Γ ` p : `.

1. If ∆ ` P then Γ ` P [α∆].

2. If ∆ ` N then Γ ` N [α∆].

3. If ∆ ` N > Q then Γ ` N [p] > Q[p ∗ α∆].

Proof By induction on the derivation.

4.1 Additive Falsehood 0

What to do about 0 is not clear. Taking it to be defined in the two systems by

∆, 0 ` Q Γ, 0[α] ` Q[p]

breaks soundness, because you can then prove ↓(a−&(a− ( ↑0)) ` 0 in the
labelled system and not in linear logic. Yet this seems to be the correct right
rule for 0 in the labelled system, and not for instance something like

Γ, 0[α] ` Q[α ∗ p]

which would at least näıvely rule out using 0 when it’s not currently ‘really in
the linear context’.
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