
A Modular Proof of the Completeness of Focusing

Jason Reed

February 9, 2007

1 Language

Propositions A ::= p | F+ | F−

Conclusions C ::= A | S−(n, A)
Pos Props F+, G+, H+ ::= F+ ⊗ F+ | F+ ⊕ F+ | S+(n, A) | d+ A | !F−

Neg Props F−, G−, H− ::= F+
⊸ F− | F− & F− | S−(n, A) | d− A

Unrestricted Contexts Γ ::= · | Γ, F−
tr

Linear Contexts ∆ ::= · | ∆, A res | ∆,S+(n, A) res

Active Contexts Ω ::= · | Ω, F+
act | Ω, F−

act

Basic Context Ξ ::= Γ, ∆
Full Context Ψ ::= Γ, ∆, Ω

The default judgment, if a bare proposition appears without any further
annotation, is the linear ‘resource’ truth res. The other two judgments are
(ordinary intuitionistic) truth tr and a new judgment act, ‘active truth’. Active
hypotheses are ordered; if the conclusion is active, it must be decomposed before
any hypothesis, and if any hypotheses are active, they must be decomposed in
order, right-to-left, before any further decomposition of the conclusion or other
non-active hypotheses.

If syntactic objects appear without any ± when they should have one, it
means that either polarity can be consistently applied.

Truth assumptions A tr ∈ Γ are subject to weaking, contraction, and ex-
change, linear assumptions A res ∈ ∆ subject only to exchange, and active
assumptions A act ∈ Ω subject to no structural rules apart from the associa-
tivity implicit in presenting them as a list. A comma between contexts means
multiset union, except on tr assumptions, for which it means union. It is an
invariant that two contexts both containing act assumptions should never be so
joined.

The two main judgment forms are

Ψ ⊢ C res

Ψ ⊢ F±
act

There is a third, derived judgment.

Ψ ⊢ F−
tr

1

which is defined to mean that Ψ is of the form Γ (i.e. contains only tr assump-
tions) and Γ ⊢ F−

res. Let J stand for A res or F−
tr.

The connectives d+ and d− are ‘deactivation’ operators; I believe they
roughly correspond to Girard’s polarity shift operators ↓ and ↑, respectively.
The difference is that I do not prohibit a decativation d+ between a bunch
of positive connectives, and another bunch of also positive connectives; d+

doesn’t necessarily mean a transition between positive and negative, but merely
a place where consecutive positive decompositions may pause. What happens
after those positive decompositions may be of either polarity.

In place of signed atomic propositions, there are signed (and essentially
nullary) connectives S+(n, A) and S−(n, A). The natural number n and propo-
sition A only serve as indices. That is, it is not possible for S+(n, A) ⊢ S+(n, B)
to hold if A and B differ, even if A ⊢ B. They can be equally well thought of as
(signed) propositional atoms p+

n,A and p−n, A. It just so happens to be useful to
have the indices around as bookkeeping devices for the proof of completeness,
and typographically less unpleasant to not have them as subscripts.

The way I treat signed propositions is slightly different than in prior work.
The proposition S+(n, A) actually does undergo an asynchronous decomposition
on the left (as S− does on the right) into a (subscripted) judgmental form S+ (re-
spectively, S−) on the left (resp. right) of the turnstile. Elements S+(n, A) res

of ∆, although they are not actually linear hypotheses, behave as if they were
in the sense of not being subject to contraction, and being split across multi-
plicative splits.

2 Overview

The idea is that we can write down a complex connective like (A⊕B) ⊸ (C &
D) with no internal polarity changes in the present system as (d+ A⊕d+ B) ⊸

(d− C & d− D). Whenever this proposition appears on either the left or right,
we will force all connectives to be decomposed until we reach a d± — the
only way to decompose anything will be to first ‘activate’ it, which implies a
commitment to decompose until ‘deactivation’. We can show that the process
of taking an ordinary sequent, and rewriting it so as to maximally coalesce
unipolar segments of propositions, (that is, inserting as few d± s as possible)
is complete. Now we have recovered focussed proofs as long as we decompose
asynchronous complex connectives eagerly.

3 Proof Rules

Here are all the sequent rules, beginning with init:

Γ, p ⊢ p

2

These three structural rules are ‘right activation’, ‘left activation’, and ‘copy’:

Ξ ⊢ F act

Ξ ⊢ F

Ξ, F act ⊢ C

Ξ, F ⊢ C

Ξ, F−
tr, F−

act ⊢ C

Ξ, F−
tr ⊢ C

These two are the left and right rules for the ‘deactivation’ operator d :

Ψ ⊢ A

Ψ ⊢ d± A act

Ψ, A ⊢ C

Ψ,d± A act ⊢ C

All that’s left is the usual connective left and right rules. Note that asyn-
chronous decompositions allow a full Ψ, (which permits ordered assumptions)
but synchronous decompositions restrict the remaining context to Ξ.

Ψ, F+
act ⊢ F−

act

Ψ ⊢ F+
⊸ F−

act

Ξ1 ⊢ F+
act Ξ2, F

−
act ⊢ C

Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

Ψ ⊢ F−

1 act Ψ ⊢ F−

2 act

Ψ ⊢ F−

1 & F−

2 act

Ξ, F−

i act ⊢ C

Ξ, F−

1 & F−

2 act ⊢ C

Ψ ⊢ S−(n, A)

Ψ ⊢ S−(n, A) act
Γ,S−(n, A) act ⊢ S−(n, A)

Ψ, F+

1 act ⊢ C Ψ, F+

2 act ⊢ C

Ψ, F+

1 ⊕ F+

2 act ⊢ C

Ξ ⊢ F+

i act

Ξ ⊢ F+

1 ⊕ F+

2 act

Ψ, F+

1 act, F+

2 act ⊢ C

Ψ, F+

1 ⊗ F+

2 act ⊢ C

Ξ1 ⊢ F+

1 act Ξ2 ⊢ F+

2 act

Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2 act

Ψ,S+(n, A) ⊢ C

Ψ,S+(n, A) act ⊢ C Γ,S+(n, A) ⊢ S+(n, A) act

Γ ⊢ F−
res

Γ ⊢ !F−
act

Ψ, F−
tr ⊢ C

Ψ, !F−
act ⊢ C

4 Soundness

Theorem 4.1 (Cut Admissibility) For any Ξ1, Ξ2, Ξ, Ψ, J, C, F±, A, all of
the following hold:

TL) If Ξ1 ⊢ J and Ξ2, J ⊢ C, then Ξ1, Ξ2 ⊢ C.

P+) If Ξ ⊢ F+
act and Ψ, F+

act ⊢ C, then Ξ, Ψ ⊢ C.

P−) If Ψ ⊢ F−
act and Ξ, F−

act ⊢ C, then Ξ, Ψ ⊢ C.

RC) If Ξ ⊢ J and Ψ, J ⊢ F act, then Ξ, Ψ ⊢ F act.

3

LCL) If Ξ ⊢ J and Ψ, J ⊢ C, then Ξ, Ψ ⊢ C.

LCR) If Ψ ⊢ A and Ξ, A ⊢ C, then Ξ, Ψ ⊢ C.

Proof By lexicographic induction first on the cut judgment, and subsequently
on the derivations involved. Order the derivations Ξ, A ⊢ C in the second input
of TL, LCR so that derivations whose last rule activates the cut formula A are
smaller than those that don’t.

We write many cases in a pseudo-functional notation, writing the name of
the case as a function symbol to indicate appeals to the induction hypothesis
on a pair of derivations.

TL) (Top-level Cut) We analyze the possible cases. If either input derivation
is the init rule, we are done:

Γ, p ⊢ p

D′

Γ, ∆2, p ⊢ C
cut

Γ, ∆2, p ⊢ C

7−→ D′

D′

Γ, ∆1 ⊢ p Γ, p ⊢ p
cut

Γ, ∆1 ⊢ p

7−→ D′

We analyze cases first on the derivation of Ξ2, J ⊢ C. If it was an instance
of the left activation rule, but not for the cut judgment, we do:

D1

Ξ1 ⊢ J

D2

Ξ2, J, F±
act ⊢ C

Ξ2, J, F± ⊢ C
cut

Ξ1, Ξ2, F
± ⊢ C

7−→

LCL(D1,D2)

Ξ1, Ξ2, F
±

act ⊢ C

Ξ1, Ξ2, F
± ⊢ C

If it was an instance of the copy rule, but not for the cut judgment, we
do:

D1

Ξ1, F
−

tr ⊢ J

D2

Ξ2, J, F−
tr, F−

act ⊢ C

Ξ2, J, F−
tr ⊢ C

cut
Ξ1, Ξ2, F

−
tr ⊢ C

7−→

LCL(D1,D2)

Ξ1, Ξ2, F
−

tr, F−
act ⊢ C

Ξ1, Ξ2, F
−

tr ⊢ C

If it was an instance of the copy rule on cut judgment, we know that
Ξ1 ⊢ J is actually Γ ⊢ F−

res. The situation looks like

D1

Γ ⊢ F−
res

D2

Ξ, F−
tr, F−

act ⊢ C

Ξ2, F
−

tr ⊢ C
cut

Γ, Ξ2 ⊢ C

4

We can invoke LCL(D1,D2) to obtain Γ, Ξ2, F
−

act ⊢ C, and apply an
inference rule to get a small derivation of Γ, Ξ2, F

−
res ⊢ C. The induction

hypothesis TL on D1 and this derivation yields Γ, Ξ2 ⊢ C as required.

If it was an instance of the right activation rule, we do:

D1

Ξ1 ⊢ J

D2

Ξ2, J ⊢ F±
act

Ξ2, J ⊢ F±

cut
Ξ1, Ξ2 ⊢ C

7−→

RC(D1,D2)

Ξ1, Ξ2, J ⊢ F±
act

Ξ1, Ξ2, J ⊢ F±

The only remaining rule that could have ended the derivation of Ξ2, J ⊢ C

is an instance of the left activation rule for the cut judgment. Therefore
we know J is of the form A res, not F−

tr.

Consider possible cases for the derivation of Ξ1 ⊢ A. It could be an
instance of the left activation rule, in which case we do:

D1

Ξ1, F
±

act ⊢ A

Ξ1, F
± ⊢ A

D2

Ξ2, A ⊢ C
cut

Ξ1, Ξ2, F
± ⊢ C

7−→

LCR(D1,D2)

Ξ1, Ξ2, F
±

act ⊢ C

Ξ1, Ξ2, F
± ⊢ C

Or it could be an instance of the copy rule, in which case we do:

D1

Ξ1, F
−

tr, F−
act ⊢ A

Ξ, F−
tr ⊢ A

D2

Ξ2, F
−

tr, A ⊢ C
cut

Ξ1, Ξ2, F
−

tr ⊢ C

7−→

LCR(D1,D2)

Ξ1, Ξ2, F
−

tr, F−
act ⊢ C

Ξ1, Ξ2, F
−

tr ⊢ C

The only remaining case is the ‘principal cut’:

D1

Ξ1 ⊢ F±
act

Ξ1 ⊢ F±

D2

Ξ2, F
±

act ⊢ C

Ξ2, F
± ⊢ C

cut
Ξ1, Ξ2 ⊢ C

7−→ P±(D1,D2)

P+) (Positive Principal Cut) Based on the cut formula, we know exactly the
last rule used on both input derivations. Here the appeal to the induction

5

hypothesis is justified by the fact that the cut formula becomes smaller.
The same comments apply to the negative principal cut cases below.

D1

Ξ1 ⊢ F+

1 act

D2

Ξ2 ⊢ F+

2 act

Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2 act

D′

Ψ, F+

1 act, F+

2 act ⊢ C

Ψ, F+

1 ⊗ F+

2 act ⊢ C
cut

Ξ1, Ξ2, Ψ ⊢ C

7−→ P+(D1, P
+(D2,D

′))

D′

Ξ ⊢ F+

i act

Ξ ⊢ F+

1 ⊕ F+

2 act

D1

Ψ, F+

1 act ⊢ C

D2

Ψ, F+

2 act ⊢ C

Ψ, F+

1 ⊕ F+

2 act ⊢ C

Ξ, Ψ ⊢ C

7−→ P+(D′,Di)

Γ,S+(n, A) ⊢ S+(n, A) act

D′

Ψ,S+(n, A) ⊢ C

Γ, Ψ,S+(n, A) act ⊢ C
cut

Γ, Ψ,S+(n, A) ⊢ C

7−→ D′

D1

Ξ ⊢ A

Ξ ⊢ d+ A act

D2

Ψ, A ⊢ C

Ψ,d+ A act ⊢ C

Ξ, Ψ ⊢ C

7−→ LCL(D1,D2)

D1

Γ ⊢ F−
res

Γ ⊢ !F−
act

D2

Ψ, F−
tr ⊢ C

Ψ, !F−
act ⊢ C

Γ, Ψ ⊢ C

7−→ LCL(D1,D2)

P−) (Negative Principal Cut)

D1

Ψ, F+
act ⊢ F−

act

Ψ ⊢ F+
⊸ F−

act

D2

Ξ2 ⊢ F+
act

D3

Ξ3, F
−

act ⊢ C

Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

Ξ1, Ξ2, Ψ ⊢ C

6

7−→ P−(P+(D2,D1),D3)

D1

Ψ ⊢ F−

1 act

D2

Ψ ⊢ F−

2 act

Ψ ⊢ F−

1 & F−

2 act

D′

Ξ, F−

i act ⊢ C

Ξ, F−

1 & F−

2 act ⊢ C

Ξ, Ψ ⊢ C

7−→ P−(Di,D
′)

D′

Ψ ⊢ S−(n, A)

Ψ ⊢ S−(n, A) act Γ,S−(n, A) act ⊢ S−(n, A)

Γ, Ψ ⊢ S−(n, A)

7−→ D′

D1

Ψ ⊢ A

Ψ ⊢ d− A act

D2

Ξ, A ⊢ C

Ξ,d− A act ⊢ C

Ξ, Ψ ⊢ C

7−→ LCR(D1,D2)

RC) (Right Rule Commutative)

If Ξ ⊢ J and Ψ, J ⊢ F act, then Ξ, Ψ ⊢ F act.

Note that J is necessarily a mobile judgment.

D1

Ξ ⊢ J

D2

Ψ, J ⊢ A

Ψ, J ⊢ d± A act

cut
Ξ, Ψ ⊢ d± A act

7−→

LCL(D1,D2)

Ξ, Ψ ⊢ A

Ξ, Ψ ⊢ d± A act

D1

Ξ ⊢ J

D2

Ψ, J, F+
act ⊢ F−

act

Ψ, J ⊢ F+
⊸ F−

act

cut
Ξ, Ψ ⊢ F+

⊸ F−
act

7−→

RC(D1,D2)

Ξ, Ψ, F+ ⊢ F−
act

Ξ, Ψ ⊢ F+
⊸ F−

act

D′

Ξ ⊢ J

D1

Ψ, J ⊢ F−

1 act

D2

Ψ, J ⊢ F−

2 act

Ψ, J ⊢ F−

1 & F−

2 act

cut
Ξ, Ψ ⊢ F−

1 & F−

2 act

7→

RC(D′,D1)

Ξ, Ψ ⊢ F−

1 act

RC(D′,D2)

Ξ, Ψ ⊢ F−

2 act

Ξ, Ψ ⊢ F−

1 & F−

2 act

7

D1

Ξ ⊢ J

D2

Ψ, J ⊢ S−(n, A)

Ψ, J ⊢ S−(n, A) act

cut
Ξ, Ψ ⊢ S−(n, A) act

7−→

LCL(D1,D2)

Ξ, Ψ ⊢ S−(n, A)

Ξ, Ψ ⊢ S−(n, A) act

There are three cases for ⊗, depending on whether J propagates to the
left, the right, or both branches.

Left:

D′

Ξ′ ⊢ J

D1

Ξ1, J ⊢ F+

1

D2

Ξ2 ⊢ F+

2

Ξ1, Ξ2, J ⊢ F+

1 ⊗ F+

2
cut

Ξ′, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

7−→

RC(D′,D1)

Ξ′, Ξ1 ⊢ F+

1

D2

Ξ2 ⊢ F+

2

Ξ′, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

Right:

D′

Ξ′ ⊢ J

D1

Ξ1 ⊢ F+

1

D2

Ξ2, J ⊢ F+

2

Ξ1, Ξ2, J ⊢ F+

1 ⊗ F+

2
cut

Ξ′, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

7−→

D1

Ξ1 ⊢ F+

1

RC(D′,D2)

Ξ′, Ξ2 ⊢ F+

2

Ξ′, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

Both:

D′

Γ ⊢ G−
res

D1

Ξ1, G
−

tr ⊢ F+

1

D2

Ξ2, G
−

tr ⊢ F+

2

Ξ1, Ξ2, G
−

tr ⊢ F+

1 ⊗ F+

2
cut

Γ, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

7−→

RC(D′,D1)

Γ, Ξ1 ⊢ F+

1

RC(D′,D2)

Γ, Ξ2 ⊢ F+

2

Γ, Ξ1, Ξ2 ⊢ F+

1 ⊗ F+

2

D′

Ξ1 ⊢ J

D1

Ξ2, J ⊢ F+

i act

Ξ2, J ⊢ F+

1 ⊕ F+

2 act

cut
Ξ1, Ξ2 ⊢ F+

1 ⊕ F+

2 act

7−→

RC(D1,D2)

Ξ1, Ξ2 ⊢ F+

i act

Ξ1, Ξ2 ⊢ F+

1 ⊕ F+

2 act

(No case for S+(A) act)

8

D1

Γ ⊢ G−
res

D2

Γ, G−
tr ⊢ F−

res

Γ, G−
tr ⊢ !F−

act

cut
Γ ⊢ !F−

act

7−→

RC(D1,D2)

Γ ⊢ !F−
res

Γ ⊢ !F−
act

LCL) (Left Rule Commutative, Cut Formula on Left) If Ψ has no act

assumptions, appeal to TL on the same derivations. Otherwise split cases
on the rightmost proposition in Ψ.

D1

Ξ ⊢ J

D2

Ψ, J, A ⊢ C

Ψ, J,d A act ⊢ C
cut

Ξ, Ψ,d A act ⊢ C

7−→

LCL(D1,D2)

Ξ, Ψ, A ⊢ C

Ξ, Ψ,d A act ⊢ C

For ⊸, we need to split on subcases depending on whether J propagates
to the left branch, or the right branch, or both.

Left:

D′

Ξ′ ⊢ A

D1

Ξ1, A ⊢ F+
act

D2

Ξ2, F
−

act ⊢ C

Ξ1, Ξ2, A, F+
⊸ F−

act ⊢ C
cut

Ξ′, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

7−→

LCL(D′,D1)

Ξ′, Ξ1 ⊢ F+
act

D2

Ξ2, F
−

act ⊢ C

Ξ′, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

Right:

D′

Ξ′ ⊢ A

D1

Ξ1 ⊢ F+
act

D2

Ξ2, A, F−
act ⊢ C

Ξ1, Ξ2, A, F+
⊸ F−

act ⊢ C
cut

Ξ′, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

7−→

D1

Ξ1 ⊢ F+
act

LCL(D′,D2)

Ξ′, Ξ2, F
−

act ⊢ C

Ξ′, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

Both:

D′

Γ ⊢ G−
res

D1

Ξ1, G
−

tr ⊢ F+
act

D2

Ξ2, G
−

tr, F−
act ⊢ C

Ξ1, Ξ2, G
−

tr, F+
⊸ F−

act ⊢ C
cut

Γ, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

9

7−→

LCL(D′,D1)

Γ, Ξ1 ⊢ F+
act

LCL(D′,D2)

Γ, Ξ2F
−

act ⊢ C

Γ, Ξ1, Ξ2, F
+

⊸ F−
act ⊢ C

D1

Ξ1 ⊢ J

D2

Ξ2, J, F−

i act ⊢ C

Ξ2, J, F−

1 & F−

2 act ⊢ C
cut

Ξ1, Ξ2, F
−

1 & F−

2 act ⊢ C

7−→

LCL(D1,D2)

Ξ1, Ξ2, F
−

i act ⊢ C

Ξ1, Ξ2, F
−

1 & F−

2 act ⊢ C

(No case for S−(n, A) act)

D′

Ψ ⊢ J

D1

Ξ, J, F+

1 act ⊢ C

D2

Ξ, J, F+

2 act ⊢ C

Ξ, J, F+

1 ⊕ F+

2 act ⊢ C
cut

Ψ, Ξ, F+

1 ⊕ F+

2 act ⊢ C

7−→

LCL(D′,D1)

Ψ, Ξ, F+

1 act ⊢ C

LCL(D′,D2)

Ψ, Ξ, F+

2 act ⊢ C

Ψ, Ξ, F+

2 ⊕ F+

2 act ⊢ C

D1

Ξ ⊢ J

D2

Ψ, J, F+

1 act, F+

2 act ⊢ C

Ψ, J, F+

1
⊗ F+

2
act ⊢ C

cut
Ξ, Ψ, F+

1
⊗ F+

2
act ⊢ C

7−→

LCL(D1,D2)

Ξ, Ψ, F+

1 act, F+

2 act ⊢ C
cut

Ξ, Ψ, F+

1 ⊗ F+

2 act ⊢ C

D1

Ξ ⊢ J

D2

Ψ, J,S+(n, A) ⊢ C

Ψ, J,S+(n, A) act ⊢ C
cut

Ξ, Ψ,S+(n, A) act ⊢ C

7−→

LCL(D1,D2)

Ξ, Ψ,S+(n, A) ⊢ C
cut

Ξ, Ψ,S+(n, A) act ⊢ C

D1

Ξ ⊢ J

D2

Ψ, J, F−
tr ⊢ C

Ψ, J, !F−
act ⊢ C

cut
Ξ, Ψ!F−

act ⊢ C

7−→

LCL(D1,D2)

Ξ, Ψ, F−
tr ⊢ C

Ξ, Ψ, !F−
act ⊢ C

10

LCR) (Left Rule Commutative, Cut Formula on Right) If Ψ has no act

assumptions, appeal to TL on the same derivations. Otherwise split cases
on the rightmost proposition in Ψ.

D1

Ψ, B ⊢ A

Ψ,d± B act ⊢ A

D2

Ξ, A ⊢ C
cut

Ξ, Ψ,d± B act ⊢ C

7−→

LCR(D1,D2)

Ξ, Ψ, B ⊢ C

Ξ, Ψ,d± B act ⊢ C

D1

Ξ1 ⊢ F+
act

D2

Ξ2, F
−

act ⊢ A

Ξ1, Ξ2, F
+

⊸ F−
act ⊢ A

D′

Ξ′, A ⊢ C
cut

Ξ1, Ξ2, Ξ
′, F+

⊸ F−
act ⊢ A

7−→

D1

Ξ1 ⊢ F+
act

LCR(D2,D
′)

Ξ2, Ξ
′, F−

act ⊢ A

Ξ1, Ξ2, Ξ
′, F+

⊸ F−
act ⊢ A

D1

Ξ1, F
−

i act ⊢ A

Ξ1, F
−

1 & F−

2 act ⊢ A

D2

Ξ, A ⊢ C
cut

Ξ1, Ξ2, F
−

1 & F−

2 act ⊢ C

7−→

LCR(D1,D2)

Ξ1, Ξ2, F
−

i act ⊢ C

Ξ1, Ξ2, F
−

1 & F−

2 act ⊢ C

(No case for S−(n, A) act)

D1

Ψ, F+

1 act ⊢ A

D2

Ψ, F+

2 act ⊢ A

Ψ, F+

1 ⊕ F+

2 act ⊢ A

D′

Ξ, A ⊢ C
cut

Ξ, Ψ, F+

1 ⊕ F+

2 act ⊢ C

7−→

LCR(D1,D
′)

Ξ, Ψ, F+

1 act ⊢ C

LCR(D2,D
′)

Ξ, Ψ, F+

2 act ⊢ C

Ξ, Ψ, F+

1 ⊕ F+

2 act ⊢ C

D1

Ψ, F+

1 act, F+

2 act ⊢ A

Ψ, F+

1 ⊗ F+

2 ⊢ A

D2

Ξ, A ⊢ C
cut

Ξ, Ψ, F+

1 ⊗ F+

2 act ⊢ C

11

7−→

LCR(D1,D2)

Ξ, Ψ, F+

1 act, F+

2 act ⊢ C

Ξ, Ψ, F+

1 ⊗ F+

2 act ⊢ C

D1

Ψ,S+(n, A) ⊢ A

Ψ,S+(n, A) act ⊢ A

D2

Ξ, A ⊢ C
cut

Ξ, Ψ,S+(n, A) act ⊢ C

7−→

LCR(D1,D2)

Ξ, Ψ,S+(n, A) ⊢ C

Ξ, Ψ,S+(n, A) act ⊢ C

D1

Ψ, F−
tr ⊢ A

Ψ, !F−
act ⊢ A

D2

Ξ, A ⊢ C
cut

Ξ, Ψ, !F−
act ⊢ C

7−→

LCR(D1,D2)

Ξ, Ψ, F−
tr ⊢ C

Ξ, Ψ, !F−
act ⊢ C

5 Completeness

Here are a few expedient refinments of the existing syntactic categories:

Right sides γ ::= A res | F−
act

Passives a± ::= p | S±(n, A)
Passive contexts ξ ::= · | ξ, a+

Here by ‘passive’ it is meant things that can not be activated.
In order to show completeness, we define several relations

A ⇀ B F± ⇀± G± Ψ ⇀ctx Ξ γ ⇀conc C

A ⇀± a± Ψ ⇀ctx ξ A ⇀conc a−

which in some sense ‘erase’ the choice of how propostions were coalesced to-
gether. The ⇀-relations cooperate to insert a lot of d± s to accomplish this.
Completeness works by ‘pulling back’ provability of things on the right of ⇀s
to the left. The difference between the subscript and superscript versions of the
relations corresponds to different inductive stages of the completeness proof.
The subscript versions are stronger, and allow only expressions that are already
more ‘passive’.

They are defined by

F± ⇀± G±

F± ⇀ G± p ⇀ p

A ⇀ B

A ⇀± S±(0, B) S±(n, p) ⇀± S±(n + 1, p)

12

F− ⇀− G−

F−
act ⇀conc G−

A ⇀conc C

A ⇀conc C

A ⇀− C

A ⇀conc C

Ψ ⇀ctx Ξ A ⇀+ B

(Ψ, A) ⇀ctx (Ξ, B) () ⇀ctx ()

Ψ ⇀ctx Ξ F− ⇀− G−

(Ψ, F−
tr) ⇀ctx (Ξ,S−(0, G−) tr)

Ψ ⇀ctx Ξ F+ ⇀+ G+

(Ψ, F+
act) ⇀ctx (Ξ, G+)

Ψ ⇀ctx Ξ

Ψ ⇀ctx Ξ

S±(n, p) ⇀± S±(n + 1, p)

F+

1 ⇀+ G+

1 F+

2 ⇀+ G+

2

F+

1 ⊗ F+

2 ⇀+ d+ G+

1 ⊗ d+ G+

2

F+

1 ⇀+ G+

1 F+

2 ⇀+ G+

2

F+

1 ⊕ F+

2 ⇀+ d+ G+

1 ⊕ d+ G+

2

F−

1 ⇀− G−

1 F−

2 ⇀− G−

2

F−

1 & F−

2 ⇀− d− G−

1 & d− G−

2

F+

1
⇀+ G+

1
F−

2
⇀− G−

2

F+

1
⊸ F−

2
⇀− d+ G+

1
⊸ d− G−

2

F± ⇀± G±

d± F± ⇀± d± G±

A ⇀ B

d± A ⇀± S±(0, B)

F− ⇀− G−

!F− ⇀+!(S−(0, G−))

Lemma 5.1 (Simple Identity)

1. If A ⇀ B, then B ⊢ B.

Proof Follows the usual identity theorem for unfocused logic, by induction
on B. This is because every proposition in the image of ⇀ has deactivations
d± around every propositional connective, so that it essentially admits every
unfocused proof.

Lemma 5.2 (Completeness)

13

1. If F+ ⇀+ G+, Ξ ⊢ G+
act, and Ψ ⇀ctx Ξ, then Ψ ⊢ F+

act.

2. Suppose F+ ⇀+ G+ and Ξ ⊢ G+. If any of the following hold

(a) If Ψ ⇀ctx Ξ

(b) If Ψ ⇀ctx Ξ

then Ψ ⊢ F+.

3. If F− ⇀− G−, Ξ, G−
act ⊢ C, Ψ ⇀ctx Ξ, γ ⇀conc C, then Ψ, F−

act ⊢ γ.

4. Suppose F− ⇀− G− and Ξ, G− ⊢ C. If any of the following hold

(a) If Ψ ⇀ctx Ξ and γ ⇀conc C

(b) If Ψ ⇀ctx Ξ and γ ⇀conc C

(c) If Ψ ⇀ctx Ξ and γ ⇀conc C

then Ψ, F− ⊢ γ.

5. If A1 ⇀ B1 and A2 ⇀ B2, and B1 ⊢ B2, then A1 ⊢ A2.

Proof By lexicographic induction on the case, and the derivations involved.

1. The main split is on cases of the derivation D⇀ of F+ ⇀+ G+, naming
D the derivation of Ξ ⊢ G+

act. After we get past the cases of ⇀+ that
result in a S+, however, everything is more syntax-directed, and the final
rules both D⇀ and D are determined by the top-level connective of G+,
so we just describe the case analysis in terms of D.

Case:

D⇀ = S+(n, p) ⇀+ S+(n + 1, p)

therefore it must be that

D = S+(n + 1, p) ⊢ S+(n + 1, p) act

Hence Ψ must be S+(n, p), and thus the goal is to show S+(n, p) ⊢
S+(n, p), but this is immediately derivable with a single rule appli-
cation.

Case:

D⇀ =

D′

⇀

A2 ⇀ B

d+ A2 ⇀+ S+(0, B)

and

D = S+(0, B) ⊢ S+(0, B) act

By inversion on the rules defining ⇀ctx and ⇀+, we know Ψ must be
a single hypothesis A1 such that A1 ⇀ B. By induction hypothesis

14

(5) on this fact together with D′
⇀ and Lemma 5.1 we can conclude

that there is a derivation D′′ :: A1 ⊢ A2 and form the derivation

D′′

A1 ⊢ A2

A1 ⊢ d+ A2 act

All the subsequent cases are determined by the top-level connective
of G+.

Case:

D =

D′

Ξ ⊢ G+

Ξ ⊢ d+ G+
act

We know that F+ is such that F+ ⇀+ G+, and we must show
Ψ ⊢ d+ F+

act. Apply the induction hypothesis part (2a) to D′ to
obtain Ψ ⊢ F+ and construct the derivation

Ψ ⊢ F+

Ψ ⊢ d+ F+
act

Case:

D =

D1

Ξ1 ⊢ G+

1

Ξ1 ⊢ d+ G+

1 act

D2

Ξ2 ⊢ G+

2

Ξ2 ⊢ d+ G+

2 act

Ξ1, Ξ2 ⊢ d+ G+

1 ⊗ d+ G+

2 act

We know F+

i ⇀+ G+

i . Split Ψ into Ψ1, Ψ2 such that Ψi ⇀ctx Ξi.
Apply the induction hypothesis part (2a) to D1,D2 to obtain Ψi ⊢
F+

i . Construct the derivation

Ψ1 ⊢ F+

1

Ψ1 ⊢ F+

1 act

Ψ2 ⊢ F+

2

Ψ2 ⊢ F+

2 act

Ψ1, Ψ2 ⊢ F+

1 ⊗ F+

2 act

Case:

D =

D′

Ξ ⊢ G+

i

Ξ ⊢ d+ G+

i act

Ξ ⊢ d+ G+

1 ⊕ d+ G+

2 act

We know F+

i ⇀+ G+

i . Apply the induction hypothesis part (2a) to

15

D′ to obtain Ψi ⊢ F+

i . Construct the derivation

D′

Ψ ⊢ F+

i

Ψ ⊢ F+

i act

Ψ ⊢ F+

1 ⊕ F+

2 act

Case:

D =
Γ ⊢ S−(0, G−)

Γ ⊢ S−(0, G−) act

Γ ⊢!S−(0, G−) act

In this case, for some F−

2 ,

D⇀ =
F−

2 ⇀− G−

!F−

2 ⇀+!(S−(0, G−))

Further analyzing the remaining structure of the derivation D′, the
only rule that can be applied is a copy from Γ. Since Γ arose from
⇀ctx, it only contains propositions of the form S−(0, G′−) for various
G′− such that F ′ ⇀ G′ and F ′

tr ∈ Ψ. Since copied assumptions
retain activation, this only succeeds if we copy S−(0, G−). Hence
F−

1 tr must have been in Ψ, for some F−

1 such that F−

1 ⇀− G−.
Moreover Ψ must consist only of tr assumptions. By Lemma 5.1,
G− ⊢ G−. By the induction hypothesis part(5), F−

1 ⊢ F−

2 . By an
evident weakening lemma, and the fact that Ψ happens to have only
true hypotheses, we have D′′ :: Ψ ⊢ F−

2 act. Therefore construct the
derivation

D′′

Ψ ⊢ F−

2

Ψ ⊢ !F−

2 act

2.

(a) By inversion on the rules defining ⇀ctx, the only applicable rule is
right activation. Appeal to the induction hypothesis part (1).

(b) Here we proceed by analyzing the top connective of the rightmost
active assumption in Ψ. If there are none, we can appeal to the i.h.
part (2a).

Case: Ψ = Ψ′, F+

1 ⊗F+

2 act. Hence Ξ = Ξ′,d+ G+

1 ⊗d+ G+

2 . It is easy
to construct a derivation of G+

1 , G+

2 ⊢ d+ G+

1 ⊗ d+ G+

2 by using
Lemma 5.1, so by cut we have Ξ′, G+

1 , G+

2 ⊢ G+. By induction
hypothesis (2b) we obtain Ψ′, F+

1 act, F+

2 act ⊢ F+. By rule,
Ψ′, F+

1 ⊗ F+

2 act ⊢ F+.

16

Case: Ψ = Ψ′, F+

1 ⊕F+

2 act. Hence Ξ = Ξ′,d+ G+

1 ⊕d+ G+

2 . It is easy
to construct a derivation of G+

i ⊢ d+ G+

1 ⊕ d+ G+

2 for both i

using Lemma 5.1, so by cut we have Ξ′, G+

i ⊢ G+ for both i. By
induction hypothesis (2b) we obtain Ψ′, F+

i act ⊢ F+. By rule,
Ψ′, F+

1 ⊕ F+

2 act ⊢ F+.

Case: Ψ = Ψ′, !F−

0 act. Hence Ξ = Ξ′, !(S−(0, G−

0)). It is easy to
construct a derivation of S−(0, G−

0
) tr ⊢!(S(0, G−

0
)) by using

Lemma 5.1, so by cut we have Ξ′,S−(0, G−

0) tr ⊢ G+. By in-
duction hypothesis (2b) we obtain Ψ′, F−

0 tr ⊢ F+. By rule,
Ψ′, !(F−

0) act ⊢ F+.

Case: Ψ = Ψ′,d+ A act. Here there are two subcases depending on the
derivation Ψ ⇀ctx Ξ.
In the first, Ξ = Ξ′,d+ G+

0 , and A is of the form F+

0 such that
F+

0
⇀+ G+

0
for some G+

0
. It is easy to construct a derivation of

G+

0 ⊢ d+ G+

0 by using Lemma 5.1, so by cut we have Ξ′, G+

0 ⊢
G+. By induction hypothesis (2b) we obtain Ψ′, F+

0 act ⊢ F+.
By one rule application, Ψ′, F+

0 ⊢ F+. By another, Ψ′,d+ F+

0 act ⊢
F+.
In the second, Ξ = Ξ′,S+(0, B) and A ⇀ B for some A, B. It
is trivial to construct a derivation of S+(0, B) ⊢ S+(0, B) using
Lemma 5.1 so by cut we have Ξ′,S+(0, B) ⊢ G+. By induction
hypothesis (2b) we obtain Ψ′, B ⊢ F+. By rule, Ψ′,d+ B act ⊢
F+.

Case: Ψ = Ψ′,S+(n, A) act. We know Ξ = Ξ′,S+(n + 1, B). It is
trivial to construct a derivation of S+(n + 1, B) ⊢ S+(n + 1, B)
using Lemma 5.1 so by cut we have Ξ′,S+(n + 1, B) ⊢ G+. By
induction hypothesis (2b) we obtain Ψ′,S+(n, B) act ⊢ F+.

3. By the definition of ⇀ctx, the only propositions in Ξ are of the form
S−(0, A) tr, S+(0, A) and S+(n, p) for n ≥ 1. Split cases on the derivation
D of Ξ, G−

act ⊢ C, and subsequently on F− ⇀− G− if necessary.

Case: D is a copy of some assumption S−(0, G−

0
) tr. Then C = S−(0, G−

0
),

and Ξ is empty of any resource assumptions. Ψ is therefore of the
form Γ, F−

1 tr such that F−

1 ⇀− G−

0 . The γ such that γ ⇀− C must
be of the form F−

2 where F−

2 ⇀− G−

0 . We must show Γ, F−

1 tr ⊢ F−

2 ,
but this follows from the induction hypothesis (5), and weakening.

Case: The derivation of F− ⇀− G− is

S−(n, p) ⇀− S−(n − 1, p)

and

D = S−(n − 1, p) act ⊢ S−(n − 1, p)

Hence Ψ must be S−(n, p), and the goal is to show S−(n, p) ⊢
S−(n, p), which follows immediately.

17

Case: The derivation of F− ⇀− G− is

D′

A1 ⇀ B

d− A1 ⇀− S−(0, B)

and

D = S−(0, B) act ⊢ S−(0, B)

By inversion on the rules defining ⇀conc, we know γ must be A2 such
that A2 ⇀ B. By induction hypothesis (5) on this fact together
with D′ and Lemma 5.1 we can conclude that there is a derivation
D′′ :: A1 ⊢ A2 and form the derivation

D′′

A1 ⊢ A2

d− A1 act ⊢ A2

Case:

D =

D′

Ξ, G− ⊢ C

Ξ,d− G−
act ⊢ C

We know that F− is such that F− ⇀− G−, and we must show
Ψ,d− F−

act ⊢ γ. Apply the induction hypothesis part (4c) to D′ to
obtain Ψ, F− ⊢ γ and construct the derivation

Ψ, F− ⊢ γ

Ψ,d− F−
act ⊢ γ

Case:

D =

D1

Ξ, G−

1 ⊢ C

Ξ,d− G−

1 act ⊢ C

D2

Ξ, G−

2 ⊢ C

Ξ,d− G−

2 act ⊢ C

Ξ,d− G−

1 & d− G−

2 act ⊢ C

We know F−

i ⇀− G−

i . Apply the induction hypothesis part (4c) to
D1,D2 to obtain Ψi, F

−

i ⊢ γ. Construct the derivation

Ψ, F−

1 ⊢ γ

Ψ, F−

1 act ⊢ γ

Ψ, F−

2 ⊢ γ

Ψ, F−

2 act ⊢ γ

Ψ, F−

1 & F−

2 act ⊢ γ

18

Case:

D =

D1

Ξ1 ⊢ G+

Ξ1 ⊢ d+ G+
act

D2

Ξ2, G
− ⊢ C

Ξ2,d
− G−

act ⊢ C

Ξ1, Ξ2,d
− G+

⊸ d− G−
act ⊢ C

We know F± ⇀± G±. Apply the induction hypothesis part (2b)
and (4c) to D1,D2 respectively to obtain Ψ1 ⊢ F+ and Ψ2, F

− ⊢ γ.
Construct the derivation

Ψ1 ⊢ F+

Ψ1 ⊢ F+
act

Ψ2, F
− ⊢ γ

Ψ2, F
−

act ⊢ γ

Ψ1, Ψ2, F
+

⊸ F−
act ⊢ γ

4.

(a) By inversion on the rules defining ⇀ctx, ⇀conc the only applicable
rule is left activation. Appeal to the induction hypothesis part (3).

(b) The proof is structurally identitcal to part (2b), appealing to part
(4a) if there are no active assumptions left in Ψ.

(c) Here we proceed by analyzing the top connective of the conclusion,
if the conclusion is active. If it is not, we can appeal to the i.h. part
(4b).

Case: γ = F+

1 ⊸ F−

2 act. Hence C = d+ G+

1 ⊸ d− G−

2 . We have
Ξ, G− ⊢ d+ G+

1
⊸ d− G−

2
. It is easy to construct a derivation of

G+

1 ,d+ G+

1 ⊸ d− G−

2 ⊢ G−

2 by using Lemma 5.1, so by cut we
have Ξ, G+

1 , G− ⊢ G−

2 . By induction hypothesis (4c) we obtain
Ψ, F+

1 act, F− ⊢ F−

2 act. By rule, Ψ, F− ⊢ F+

1 ⊸ F−

2 act.

Case: γ = F−

1 & F−

2 act. Hence C = d− G−

1 & d− G−

2 . It is easy
to construct a derivation of d− G−

1 & d− G−

2 ⊢ G−

i for both i

using Lemma 5.1, so by cut we have Ξ, G− ⊢ G−

i for both i. By
induction hypothesis (4c) we obtain Ψ, F− ⊢ F−

i act. By rule,
Ψ, F− ⊢ F−

1 & F−

2 act.

Case: γ = d− A act. Here there are two subcases depending on how
the translation went.
In the first, C = d− G−

0 , we know A is of the form F−

0 such that
F−

0 ⇀− G−

0 for some G−

0 . It is easy to construct a derivation of
d− G−

0 ⊢ G−

0 by using Lemma 5.1, so by cut we have Ξ, G− ⊢ G−

0 .
By induction hypothesis (4c) we obtain Ψ, F− ⊢ F−

0
act. By one

rule application, Ψ, F− ⊢ F−

0 . By another, Ψ, F− ⊢ d− F−

0 act.
In the second, C = S−(0, B) and A ⇀ B for some A, B. It
is easy to construct a derivation of S−(0, B) ⊢ S−(0, B) so by
cut we have Ξ, G− ⊢ S−(0, B). By induction hypothesis (4c) we
obtain Ψ, F− ⊢ B. By rule, Ψ, F− ⊢ d− B act.

19

Case: γ = S−(n, A) act. We know C = S−(n − 1, B). It is easy to
construct a derivation of S−(n + 1, B) ⊢ S−(n + 1, B) so by cut
we have Ξ, G− ⊢ S−(n + 1, B). By induction hypothesis (4c) we
obtain Ψ, F− ⊢ S−(n, B) act.

5. Easy division into three cases, depending on the syntactic form of B1, B2.
If they are atoms, we immediately have p ⊢ p. If Bi are of the form
G+

i , then appeal to case (2b) to obtain F+

1 act ⊢ F+

2 , and apply the left
activation rule to get F+

1 ⊢ F+

2 . Otherwise Bi are of the form G−

i , and we
appeal to case (4c) to obtain F−

1
⊢ F−

2
act and apply the right activation

rule to obtain F−

1 ⊢ F−

2 .

Corollary 5.3 A ⊢ A for all A.

Proof Follows from part (5) and Lemma 5.1.

Corollary 5.4 Focussing is complete.

Proof Focussing is just the above deductive system where connectives of the
same polarity have been maximally coalesced, and asynchronous connectives
are eagerly decomposed. The lemma establishes that we can freely remove d s
that don’t change polarity, because under ⇀ they can be mapped identically to
d , just as every other boundary between connectives. Furthermore, by cutting
against sequents like F+

1 act ⊢ F+

2 and F−

1 ⊢ F−

2 act, we can see that eager
activation of asynchronous connectives is complete.

20

