
Good Worst-Case Algorithms for Insertmg and Deleting
Records in Dense Sequential Files

SUNY Albany
and

Consultant, Bell Communlcatmns Research

Abstract

Consider a file which arranges records m sequential

order, and stores them with possible empty spaces m M

consecutive pages of memory We develop an msertlon-

deletion algorithm which runs m a worst-case time

approvlmately proportional to 1og’M divided by the

page-size when the set of mampulated records has cardl-

nahty O(M)

1. Introduction

Let KEY(R) denote the key of the record R,

ADD(R) the address of the page contammg this record,

and S a tlmevarymg set of records stored m M consecu-

tlve pages of auxlhary memory Given d < D, a (d,D)-

dense representation of S will be defined as a file

satlsfymg the followmg three condltlons

1)

4
Ill)

There may be no more than N=dM records m this

sequential file (the symbol N 1s an often-used abbre-

viation for the product dM m this paper)

No page may contam more than D records

All records m this file ~111 be stored m ascending

order, that is, they will satisfy the condltlon

AWR,) i AWR,) whenever

KEY(R,) < KEY@,)

l S,,,,ported partally by NSF Grant #DCR 8412447

Pernusslon to copy wIthout fee all or part of this material IS granted
prowded that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrIght notice and the title of the
pubhcatlon and ILS date appear, and notxe IS given that copymg IS by
pexm~ss~on of the Assoclatlon for Computmg Machmery To copy
otherwIse, or to repubhsh, reqmres a fee and/or specdlc pernusslon

0 1986 ACM 0-89791-191-1/86/0500/0251 $00 75

If d = D, the dense file concept reduces to the clas-

sical notlon of a sequential file Wlederhold [Wh77] has

noted that such files are very useful when processing

several records with nearby hey values because most

auxlhary memory architectures support the fastest access

when retrlevmg sequences of records with nearby physl-

cal addresses For instance, apphcatlons with batch

processes would benefit from sequential orgamzatlon

The mam disadvantage of conventional sequential files

15, of course, that they require complete reorgamzatlon

after the insertion or deletion of a single record This
dlfflculty can be partially alleviated by leaving empty

spaces m the sequential file and by using overflow

pointers, however, these techniques ~111 not fully solve

the dvnamlc mamtenance problem for sequential files

because much of the efficiency advantage of these files 1s

lost when records with neighboring key-values are no

longer stored close by Overflow mechanisms become

especially unmanageable when a large surge of msertlons

1s attempted m a relatively small portion of the sequen-

tial file, such bursts tend to overwhelm even the best

heurlstrcs because they mahe lmposslble the storage of

overflow records m areas even near their orlgmally

intended locations For these reasons, Wlederhold has

concluded that conventional overflow methods are

unsmtable for mamtammg sequential files In many

dynamic environments

In this article, we study an alternatIve approach

that shifts the records among adjacent pages rather than

using overflow pointers when space 1s needed for msert-

mg a record m a sequential file We show how to use

this method to athleve a worst-case record InsertIon-

deletion complevlty of 0[(log’M)/(D-d)] page-accesses m

(d,D)-dense files

251

2. Literature Survey

Let T~,N denote the worst-case number of page

accesses that a particular algorithm needs to perform a

sequence of n insertion and deletion operations on a data

structure which 1s initially empty and which never con-

tains more than N records Then the amortized com-

plexlty of tins algorithm ~111 be defined to be

Mti{T,,N/n 1 n 2 l} A few articles have discussed

algorithms for inserting and deleting records 1n data

structures smnlar to (d,D)-dense sequential files The

optimization of worst-case insertion-deletion time on

dense files has not been discussed 1n the previous htera-

ture, which has instead focused either on expected com-

plexlty under a stationary probability distribution or on

amortized complexity [Fr79, IKR80, HKW86) have

investigated the expected time for updating dense

sequential files under a variety of different probability

models Melville and Gries jMG78, MG80], Ital,

Konheim and Rodeh (IKR80] and Willard [W181] have

independently proposed several different algorithms for

controlling amortized time Our interest 1n the present

paper 1s to develop an algorithm whose amortized time 1s

the same as [IKR80, MG78, MG80, W181]‘s lmphcation

for (d,D)-dense files, bzlt whrch also prowdes

01(10g2M)/(D-d)] worst-case ttme The present paper

has been greatly influenced by technique that Lueker

and Willard [WLSS] applied to K-fold and augmented

trees (BCW-851 has calculated the amortized complex-

1ty for data structures which permit record sizes to be

variable, but which differ from the other papers on this

subject by not insisting that the record addresses satisfy

condition (m) of (d,D)-density

2. Controlling Amortized Time

This section introduces some notation and briefly

outlines an algorithm for inserting and deleting records

1n (d,D)-dense files 1n amortized time (log2M)/(D-d)

Section 4 defines a stronger algorithm that also guaran-

tees worst-case time The main purpose of the present

section 1s to outline the motivation behind the more

complex treatment appearing later

In both sections, we make the simpllfylng assump-

tion that D-d > 3pog Mj Our complexity results will

also hold for all other values of D-d, Since 1f D-d 1s small

we can treat a sequence of several consecutive pages as

one page and thereby increase the runtime coefficient by

only a constant factor The latter topic appears at the

end of Section 5

For convenience, this paper always assumes the

page addresses 1n our sequential file are integers between

1 and M Also, we will mamtaln a special binary tree,

called the cahbrator, whose every node v 1s associated

with two page-addresses, & and &‘, and which stores

inside the node v a term N,, called the rank-counter,

indicating the number of records whose page address lies

1n the range [&,A”+] The closed Interval [&,&‘I 1s

called RANGE(v), and 1t 1s defined as follows

The root’s range will be the entire file, that 1s,

PM
The left son of an internal node v will have range

[A;, L(& + A,!)/ZJ], and the right son

IN-%- + k+)PJ + b%+1
Each leaf v 1n the calibrator ~111 have & = 4.

(Thus, 1ts range will contain precisely one page)

Throughout this paper, M, denotes the number of pages

1n v’s range, that IS, M, = A,+ - & + 1

An important notation convention 1s that 0

rather than 1 denotes the depth of a tree root (some art+

cles follow the other notation convention) Also, let
g(v,r) and p(v) denote the quantities

.&A = d f
Depth(v)-tr-1 (D-d)

peg h/rl (3 1)

p(v) = N, / M, (3 2)

Define a calibrator tree to be BALANCE(d,D) 1f 1ts

every node sat&es the requirement p(v) < g(v,l) It 1s

easy to see that 1f the calibrator tree satisfies

BALANCE(d,D) then the sequential file must have

(d,D)-density (See Figures la and lb for an example)

The significance of the conchtion BALANCE(d,D) 1s that

it 1s a useful vehicle for mamtammg (d,D)-density All

the algorithms &cussed m this paper will rely on this

technique

Our algorithm for optirmzmg the worst-case time of

individual commands 1s a modified version of a some

what simpler algorithm which optnmzes only amortized

complexity We therefore begin our discussion with a

brief review of the latter algorithm, whose closest analog

1n the previous literature was proposed by Ital, Konheim,

and Rodeh [IKR80] (More distantly related algorithms

have appeared 1n [MG78, MG80)) The algorithm 1n this

section 1s called CONTROL 1, and until the end of sec-

tion 5 we make the simphfymg assumption that

D-d > 3[log M(CONTROL 1 consists of the following

252

steps

A) First, use the calibrator as a bmary search tree to

find the page-address of the record R that 1s to be

inserted or deleted Perform the msertlon or dele

tlon operation commanded, and increment or decre-

rf*cnt the rank-counters N, that should be changed

aiic r this operation

B) If step A has caused the cahbrator to violate the

condition BA.LANCE(d,D) temporarily then do the

followmg Let v denote the highest node vlolatmg

this balance condltlon and f, the father of v Rear-

range the records m the pages descending from f, so

that they are spread with sufficiently equal density

m this range to guarantee that every node w des-

cending from f, satisfies p(w) 5 p(f,)+l

The first step of CONTROL 1 requires CPU time

O(log(M)) and typlcally only two or three page-accesses

These costs are quite small and need concern us no

further The second step of CONTROL 1, which

requires O(MrV) page accesses, can be costly when M, 1s

large However, [IKR80] observes that MrV 1s usually a

small number when CONTROL 1 invokes step B and

that the amortized time of step B 1s O((log2M)/(D-d)) m

our cost notation

Our goal m this paper 1s to design a more elaborate

algorithm, called CONTROL 2, which converts step B’s

amortized cost O((log2M)/(D-d)) into a strict worst-case

time The mtultlon behmd this modlficatlon IS quite

simple Since shlftmg the entlre set of records descend-

mg from node f IS expensive when MI 1s a large number,

our stronger algorithm will reduce worst-case costs by

employmg an evolutionary process that gradually shifts

records m f’s range over an extended sequence of

msertlon-deletion commands when this type of rebalanc-

mg IS necessary Such an evolution redistributes the

workload It takes the small number of commands other-

wise having excessive runtime and dlvldes their worhload

over a long enough sequence of commands to assure no

mdlvldual command violates the time-bound

O((log2M)/(D-d)) The mam challenge will be to design

CONTROL 2 to operate correctly when several nodes

have activated concurrent e\olutlonary shift processes

that are operatmg m opposite dlrectlons That IS, CON-
TROL 2 must tahe several precautions to avoid \arlous

types of thrashing condltlons which could otherwise

arise It must all guarantee that the file continually

satisfy the constramt BALANCE(d,D) at the end of each

msertlon/deletlon command We deslgned one satafac-

tory algorithm for performmg the denslfymg task as

early as [W182], but the presentation m the present

paper IS much easier to understand

4. The Algorithm CONTROL.2

This chapter defines the new algorithm CON-

TROL 2, and the next chapter provides an example and

an mtultlve proof &etch Throughout our dlscusslon,

A;, A,+, g(v), N,, %, p(v) and RANGE(v) have the

same definitions as m section 3, and f, agam denotes v’s

father Four new definitions used m this section are

listed below

1) WARNING(v) This 1s a flag that normally equals 1

when p(v) 2 g(v,2/3), It equals 0 when

p(v) 5 g(v,1/3), and it IS allowed to contain either

value when g(v,1/3) < p(v) < g(v,2/3) The pur-

pose of WARNING(v) IS to slgnal when a node v’s

density comes close to vlolatmg the upper limit

g(v,l) We shall say that a node v IS m a warning

state when WARNING(v)=l, and it 1s m a non-

warning state when WARNING(v)=0

n) DIR(v) 1s a constant that equals 1 when v IS the

right son of its father, and it equals 0 when It IS a

left son

m) DEST(v) and SOURCE(v) are two pointers, called

the “destmatlon” and “source” pomters, that he tn

the range of v’s father, (henceforth denoted as

RANGE(f,)) CONTROL 2 uses these pointers to

move records from the page SOURCE(v) to

DEST(v) when v 1s m a warnmg state (I e

WARNING(v)=l) The algorithm guarantees that

no records shall ever be stored between these two

pages at the time of this source-to-destmatlon

record movement (CONTROL 2 IS obligated to

guarantee this condition because Its record move-

ment would otherwise violate part (111) of Chapter

l’s definition of a sequentially ordered density) This

record movement 1s to the left when DIR(v)=l, and

it 1s to the right when DIR(v)=0 That IS,
DEST(v) < SOURCE(v) m the first case and

DEST(v) > SOURCE(v) m the second (CON-
TROL 2 only employs the pointers DEST(v) and

SOURCE(v) when v 1s m a warning state, and the

two pointers are otherwise undefined)

The three subroutmes employed by the algorithm

CONTROL 2 are called SHIFT(v), SELECT(L) and

253

ACTIVATE(v) These three subroutines are crucial for

understanding the mainline procedure of CONTROL 2,

and we ~111 therefore discuss them first

CONTROL 2 calls SHIFT(v) only when v 1s m a

warnmg state, mdlcatmg some actlon must be taken to

prevent p(v) from eventually possibly exceedmg g(v,l)

DEST(v)‘s mltlal value IS determmed before CON-

TROL 2 makes this subroutine call, the three steps of

this subroutme assign SOURCE(v) a new value, move

records from the page SOURCE(v) to DEST(v), and then

modify the value of DEST(v) The purpose of the

“source-to-destmatlon” record movement IS to perform

an operation that will eoentvally lower p(v)‘s value The

formal algorlthmlc definition of SHIFT(v) appears below,

and an example dlustratmg how CONTROL 2 employs

this subroutine appears m Section 5

1) In the respective cases where DIR(v)=1 and 0,

define SOURCE(v) to be the least (respectnely

greatest) address to the right (left) of DEST(v) that

contams one or more records

2) Define UP(v) to be the set of nodes x where

DEST(v) E RANGE(x) but

SOURCE(v) 6 RANGE(x) Move as many records

from the location SOURCE(v) to DEST(v) as IS pos-

sible untd either SOURCE(v) 1s vacated or some

x E UP(v) has p(x) 2 g(x,O) (Naturally, this record

movement should be performed m a manner con-

sistent with the sequential storage order m the

(d,D)-dense file Thus, If there 1s msufflclent space

m DEST(v) to store all the records from the loca-

tlon SOURCE(v), then prlorlty should be given to

moving records from SOURCE(v) to DEST(v) with

lower key values when DIR(v)=l, and to moving

records with higher hey values when DIR(v)=0)

3) Let X* denote the node of least depth m UP(v) satis-

fying p(x’) 2 g(u*,O) at the end of step 2 If such a

node exists then set DEST(v)=

a) A$ + 1 (when DIR(v)=l)

b) A,. - 1 (whw DIR(v)=O)

The mamlme of CONTROL 2 will make a subrou-

tme call to SHIFT(v) only when v IS m a warning state,

1 e the flag WARNING(v)=1 Often there shall be

several different nodes v that have warning flags raised

over them, and the mamlme of CONTROL 2 will have

to decide which of these several ehglble nodes should

next be the object of the shift operation described m the

previous paragraph Such declslons are made by a

subroutine, called SELECT(L), whose argument L 1s that

leaf which was the most recent recipient of the user’s

record msertlon or deletion command SELECT(L) uses

the procedure defined below to decide which node v

should be the next reclplent of a shift operation The
example m Chapter 5 will explain how CONTROL 2

uses this subroutine

1) Fmd the lowest ancestor (Y of the leaf L such that

some proper descendant /3 of Q 1s m a warning state,

I e WARNING(P)=1

2) Let v denote one of the nodes of greatest depth

among the descendants of (Y that are m a warning

state SELECT(L) will return this node name when

CONTROL 2 calls It

The last subroutine employed by CONTROL 2 IS

ACTIVATE(w) CONTROL 2 calls ACTIVATE(w)

when a non-warning state node w satisfies

p(w) 2 g(w,2/3) This subroutine, accordmgly, raises w

mto a warning state, and it performs the corresponding

mltlahzatlon tasks of assigning DEST(w) its starting

value and making a “roll-back” change on the DEST(y)

pointer of any warning state node y satlsfymg the double

relation DEST(y) E RANGE(f,) c RANGE(f,,) (This

“roll-back” mtmtlvely represents our algonthm’s method

for preventing fatal thrashes between two warning state

nodes whose destination pomters are traversing overlap-

pmg ranges) The formal definition of ACTIVATE(w)%

procedure appears below, and the example m Chapter 5

explains how CONTROL 2 uses this subroutine

1) Raise w mto a warning state, i e set
WARNING(w)=1

2) Set DEST(w) =

a) At if DIR(w)=l,

b) AC If DIR(w)=0

3) Apply the rollback rule 0 below to change

DEST(y)‘s value when DIR(y)=O,
RANGE(f,) > RANGE(f,) and

AC <_ DEST(y) 5 Al: - 1, and use the rollback

rule 1 for the mirror image of this case where

DIR(y)=l, RANGE(f,) > RANGE(f,) and

AC + 1 5 DEST(y) 5 Af;

a) Roll-back Rule 0: Set DEST(y) = ArT

b) Roll-back Rule 1: Set DEST(y) = AC

The mtultlon behind the roll-back rules IS that some pos-

sible future mvocatlons of the subroutme SHIFT(w) may

undo the previous record movements of the subroutine

254

SHIFT(y), and step 3 of ACTIVATE(w) corrects for this

anticipated problem by rolling back DEST(y) mto the

furthermost posltlon that could have been affected by

this conflict (This puts DEST(y) m a position to correct

any damage done m the future by SHIFT(w)) These

points will become clearer as we describe the mainline of

CONTROL 2 m the next several paragraphs

Figure 2 illustrates the procedure employed by the

mamlme of CONTROL 2 The argument Z of this sub-

routme consists of an msertlon or deletion command,

and J represents an integer that should be assigned a

value greater than n((log2M)/(D-d)), for CONTROL 2 to

properly manipulate a BALANCE(d,D) file occupymg M

pages Until the end of section 5, we also require

D-d > 3 [log Ml The slgmEcance of these two lower

bounds will be explained later

Figure 2 formally defines the four steps of the algo-

rithm CONTROL 2 Its first step 1s similar to the ana-

log for CONTROL 1 It simply inserts or deletes the

record indicated by the user’s command Z and then

accordmgly changes the N, counters m the calibration

tree The second and third steps of CONTROL 2 check

to see whether any of the changes m N, have caused

p(w) either to fall beneath g(w,1/3) or rise above

g(w,2/3), CONTROL 2’s response to the first change 1s

to lower w into a non-warning state if it was not previ-

ously there, slmllarly if w was previously m a non-

warning state, CONTROL 2’s response to the second

change consists of calling ACTIVATE(w) to raise w mto

a warnmg state The fourth step of CONTROL 2 IS the

aspect of this procedure which guarantees the

BALANCE(d,D) condltlon (that IS, the requirement that

all nodes v satisfy p(v) 5 g(v,l)) This step consists of J

repetitions of a cycle that Erst calls SELECT(L) to

choose a node v that should have Its density decreased,

then calls SHIFT(v) to perform an operation whose

repetition will nlt~&ely cause a decrease m p(v)‘s value,

and finally checks to see whether any node should have

Its warning flag lowered because the previous step

decreased its density sufficiently (See Figure 2 for more

details)

It 1s easy to verify that all records m the time vary-

mg set S are stored m sequential order under the algo-

rlthm CONTROL 2 The non-trivial aspect 1s to show

that if D-d > 3 Fog Ml and If J > n{ log2M/(D-d)}

then CONTROL 2 will also guarantee that every cahbra-

tion tree node v Will satisfy the condition
BALANCE(d,D) Our interest m this theorem arises for

two reasons The Erst IS that the time cost of the algo-

rithm CONTROL 2(Z,J) can be approximated as being

proportional to J m a quite realistic cost model that

counts only auxihary page accesses Our theorem shall
thus imply that worst-case time O((log2M)/(D-d)) IS

sufflclent for CONTROL 2 to guarantee the rondltlons

BALxi\C E(d,D) and (d,D)-density when
(D-a\ > 3 Dog w The second mterestmg point 1s that

our a@ thm and complexity model generalize to Eles

not ne,essarily satisfying the constraint

P-4 > 3 i-b rvrl, using one further idea outlined at

the end of section 5

The mtmtlon behind CONTROL 2’s good perfor-

mance is that if J > n((log2M)/(D-d)} then the

repeated apphcatlons of J SHIFT operations m step 4

prevents p(v) from ever exceedmg g(v,l) because the

aggregate effect of several shifts lowers p(v) to a safe

value satlsfvmg p(v) < g(v,1/3) before such a vlolatlon

can occur In order to appreciate the significance of

CONTROL 2, It must be remembered that the retrieval

of a “stream” of records with consecutive hey values

will be faster m a sequential Ele than m a B-tree

(because the latter entails much disk arm movement

when consecutive records are not stored m adjacent loca-

tlons) Update costs are probably somewhat higher

under CONTROL 2 than under B-tree algorithms, but

the advantage of storing records m sequential order ~111

make CONTROL 2 desirable m those apphcatlons where

frequent stream retrieval requests make the reduced

disk-arm movement a significant savings Note that

CONTROL 2, unlike B-trees, 1s programmed to access

consecutive pages m one fell swoop during update opera-

tions Typically J should E 18

Some readers may wonder how a procedure as com-

phcated as CONTROL 2 was conceived The answer IS
that CONTROL 2 1s a more elaborate version of the

simpler algorithm CONTROL 1, which attamed

0((log”M)/(D-d)) amortized time A general rule of

thumb 1s that manq amortized time controlhng pro-

cedures can be transformed mto worst-case controlling

procedures with the same complexity, (for instance, see

[WL85]) The results outlmed in this paper should

interest the data base designer both because of their

potential practical applications and because the general

techniques may be relevant to other types of problems

255

5. Main Analysis And An Example

This chapter provides an example and some lemmas

which explam the mtultlon behind the procedure CON-

TROL 2

Henceforth, the term measurable time instance

refers to a moment when CONTROL 2 has Just com-

pleted executmg one of the steps of 1,2,3,4a,4b, or 4c

and It 1s about to commence executmg the next of these

SIX steps We ~111 call a measurable moment type-i off lt
lmmedlately follows the execution of step 1 The terms

flag-stable refers to a measurable moment of type 3,4a

or 4c, and the term flag-unstable refers to the remam-

mg measurable moments of types 1,2 or 4b The term

p(x,t) refers to the value of p(x) at the time t Flag-

stable measurable moments are so named because they

satisfy the followmg proposltlon

Fact 6.1. If t 1s a flag-stable moment and x IS a

calibration tree-node then

4 p(G) I .&J/3) implies that WARNING(x)=0 at

the time t, 1 e that x 1s m a non-warmng state, and

b) d p(x,t) 2 g(x,2/3) for a non-root node x then

WARNING(x)=1 at this time, I e that x 1s m a

warnmg state

The proof of Fact 5 1 IS an lmmedlate consequence

of the algorlthrnlc defimtlon of CONTROL 2, and It IS

omitted It should be emphasized that Facts 5 1A and

5 1B do not hold for flag-unstable moments For

instance, suppose an msertlon in step 1 causes p(x) to

increase from an initial value less than g(x,1/3) to a final

value greater than g(x,2/3) Then WARNING(y) ~111

not be set equal to 1 until the CONTROL 2’s step 3,

lmpljmg that the type-l and type-2 moments follo~mg

this event will violate the condltlon (b) by havmg

p(x) > g(x,2/3) and WARNING(x)=0

Throughout this paper, the symbols DEST(v,t) and

SOURCE(v,t) denote the positions of v’s destmatlon and

source pomters at the time t Also, N,(t) denotes the

value of N, at this time, and SET(A-,A+,t) denotes the

set of records whose address hes m the closed interval

[A-,A+] at the time t The symbol SET(v,t) 1s an abbre

viatlon for SET(A;,At,t) The last three defimtlons

imply that the cardmahty of SET(v,t) equals N,(t) Sets

of the form SET(A-,A+,t) are called timesets.

Example 5 2. We will now illustrate an example

where CONTROL 2 mserts and deletes records m a

sequential file conslstmg of 8 pages whose density param-

eters are D=l8 and d=9 The cahbrdtlon tree for this

file appears m Figure 3 The symbols L,,L, Ls denotes

its leaves, and vl,vz v7 denotes Its internal nodes

Throughout our example, it is assumed that J 1s the page

m the sequential file that corresponds to the leaf L,, that

IS the leaf L, satisfies the equality AL, = AL: = J

In our example, t, denotes a flag-stable measurable

moment, and NL,(tr) indicates the number of records that

CONTROL 2 stores m the leaf-page L, at the time t,

We will mahe frequent references to the table m Figure

4, whose (i,J)-th entry mclicates the value of NL,(tr) Our

example assumes that CONTROL 2’s parameter J=3

and that Z, and Z, are two msertion commands given to

this algorithm

Let t, denote the measurable moment Just before

the command Z, 1s given The first row m Figure 4 In&-

cates the dlstrlbution of records at this time The row

indicates that all calibration tree nodes satisfy

p(x,to) < g(x,2/3), and It IS therefore legitimate (I e con-

sistent with Fact 5 1) to assume that all cahbration tree

nodes are m a non-warning state at the time t, when our

example begins

Suppose .Z, IS a command to insert a record mto the

page 8 Then step 1 of CONTROL 2 will increment the

values of each of NLg N,,, NV3 and NV1 As this change

causes p(Ls) 2 g(Ls,2/3) and p(v3) 2 g(v,2/3), step 3 of

CONTROL 2 will raise Ls and vs mto urarnrng states

and assign DEST(Ls) and DEST(v,) the lmtlal values of

7 and 1, respectively Our example has t, denote the

flag-stable moment at the end of step 3 when these

actions are completed

Smce J=3 m our example, CONTROL 2 next exe

cutes three iterations of step 4 The first execution of

step 4a notices that Ls has depth greater than vJ, and

therefore SELECT returns the vertex Ls The procedure

SHIFT(Ls) m step 4b will then

1) set SOURCE(Ls) = 8

2) move precisely 6 records from page 8 to 7,

Smce the second action lowers p(Ls) to a value under

g(Ls,1/3), step 4c of the procedure CONTROL 2 will

change L, into a non-warning state In our example, t,

denotes the moment after these actions are completed

The second execution of step 4 will occur between

the times t, and t, At the time t,, only vs IS m a warn-

mg state Therefore SELECT ~111 return v3, and step 4b

will consequently execute SHIFT(v3) The first part of

this procedure sets SOURCE(v3) = 2, Its second part

256

actually performs no record movements (because p(L1)

already exceeded g&,0) at the time when SHIFT was

called), the third part of SHIFT(v3) then sets

DEST(v& = 2 CONTROL 2 therefore performs no

record movements between the times t, and t,, but It

assigns DEST(v) a new value during this period

The third execution of CONTROL 2 IS the same as

the second, except that it attempts to move records

between the pages 4 and 2, rather than 2 and 1 The

latter movement 1s successful, and Figure 4 indicates the

resulting state of the sequential file at the time t,

Since J=3 m our example, CONTROL 2 will have

completed J executions of step 4 at the end of the time

t, The instance t, thus denotes the time when CON-

TROL 2 has completed execution of the command Z,

Let Z, denote the next command given to CON-

TROL 2, and suppose this command IS an order to insert

a record mto the page 1 The latter causes

p(L,) 2 g(L,,2/3), and step 3 of CONTROL 2 will there

fore call the subroutine ACTIVATE(L,) This subrou-

tme raises L, into a warning state and sets

DEST(L,) = 2 and DEST(v3) = 1 The third action IS

due to ACTIVATE’s roll-bath rule 1, and it 1s the first

occasion m our example where a roll-bath rule 1s

employed In our example, t, denotes the measurable

moment following the execution of ACTIVATE(LI)

The remainder of the command Z, IS similar to the

command Z, It consists of three executions of step 4,

whose effect on the sequential file 1s indicated by the

three rows of Figure 4 for the times ts,t, and ts The

first iteration of step 4b calls the subroutine SHIFT(L,)

to move thirteen records from the page 1 to 2

(SHIFT(L,) stops the record movement after the thlr-

teenth record transfer because p(L,) 2 g(L,,O) at this

time) Step 4c of CONTROL 2 ~111 then notice that

p(L,,ts) 5 g(L,,1/3), and it will accordmgly lower L,

mto a non-warning state The mam action m the second

execution of step 4 consists of a subroutine call to

SHIFT(vs) that moves eleven records from page 2 to 1

(SHIFT(v3) halts the record transfer after the eleventh

record movement because p(L1) 2 g(L,,O) at that time)

A second action of SHIFT(vs) consists of setting

DEST(vz) = 2 at the end of this procedure The third

execution of step 4 makes another subroutine call to

SHIFT(v,), whose effect 1s to move five records from

page 5 to 2 (record movements stop after the fifth record

transfer because p(vq) 2 g(vq,O) at this time) At the

end of this lteratlon, step 4c lowers vQ mto a non-

warning state on account of the fact that

p(vz) 2 g(v3,1/3) At the end of this example, all nodes

m the calibration tree have returned to a non-warning

state, and the eighth row m Figure 4 indicates the record

dlstrlbution

The algorithm CONTROL 2 1~ intended for apphca-

tions where the File F always has cardmahty less than

dM and where J, d and D satisfy the mequalities (5 1)

and (5 2) below

(D-d) > 3 rlogM1 (5 1)

J > Q{ r @x”Wl / (D-4) (5 2)

Theorem 5 5 shall state that CONTROL 2 guarantees

that the sequential file will satisfy (d,D)-density at the

end of each insertion and deletion command when the

file was properly mitiallzed and when the first sentence

of this paragraph holds At the end of this chapter, we

will explain how the constramt (5 1) may be dropped

with a slightly more elaborate algorithm The second

constraint (5 2) specifies the number of page accesses

that CONTROL 2 must invoke It tells us, simply, that

the time O(log2M/(D-d)) 1s sufficient to mamtam (d,D)-

density because such magnitudes satisfy (5 2)‘s mequal-

1tY

It IS important that J, d and D be assigned the

values recommended m the previous paragraph because

otherwise CONTROL 2 could cause some pages to even-

tually contam more than D records See the bottom

paragraph on page 11 for a summary of the types of

applications where CONTROL 2 outperforms a B-tree

and a summary of its mtmtlon

The proofs m our full-length paper IWi85] are rather

long, and we will give only an mtuitlve over-view m this

conference paper We begin with two prehmmary lem-

mas

Lemma 5.3. Suppose that d and D satisfy equa-

tion (5 1) and that some msertlon command of CON-

TROL 2 causes p(v) > g(v,l) Let t denote the last

flag-stable moment immediately before this command,

and let t’ denote the last flag-stable moment before t

when p(v,t’) < g(v,2/3) Then CONTROL 2 must have

executed at least 1 M,(D-d) / (3 r log Ml) J msertlon

commands whose first step mserted a record mto

RANGE(v) between the times t’ and t

Proof. An mspection of the procedure CON-

TROL 2 reveals that the only aspect of this procedure

257

that can increase p(v) when it IS exceedmg g(v,2/3) IS

step 1 Furthermore, an mdlvldual mvocatlon of step 1

can increment p(v) by no more than amount of precisely

l/W Since between the moment t’ and the first

measurable moment after t, the quantity p(v) must have

increased by an amount of at least

g(v,l) - g(v,2/3) = (D-d) / (3 [log Ml), it follows that

at least L M,(D-d) / (3 r log Ml) J mvocatlons of step

1 must have occurred between the times t* and t

QED
Corollary 5.4 Say a call to the subroutine SHIFT

is related to v lff this call occurs when v 1s m a warning

state and at the same time step 1 of CONTROL 2 has

inserted a record mto RANGE(v) Then the preceding

Lemma implies CONTROL 2 must have executed at

least J L M,(D-d) / (3 [log M 1) J mvocatlons of

SHIFT that are related to v between the times t* and t

QED
Proof. Lemma 5 3 mdlcates that there are at least

L M&D-d) / (3 [log Ml) J occasions between the times

t’ and t when step 1 of CONTROL 2 has Inserted a

record mto RANGE(v) Since each such occasion 1s fol-

lowed by J mvocatlons of SHIFT related to v, there

must be a total of at least J L M,(D-d) / (3 [log M 1) J

related SHIFT operations occurrmg between the times t’

andt QED

Theorem 5 5. Let F denote a (d,D)-dense file

whose records are mltlally distributed with a uniform

density over the address space Suppose d,D and J

satisfy equations (5 1) and (5 2), and the algorithm CON-

TROL 2 1s employed to perform msertlons and deletions

on a file F whose cardmahty never exceeds N=dM

Then this file will satisfy the bound BALANCE(d,D) at

the end of each msertlon and deletion command per-

formed by CONTROL 2

The formal proof of Theorem 5 5 appears m [W185],

and it 1s too 1engThy to present wlthm the space limits

mdlcated m SIGMOD’s call for papers However, we can

explain the mtmtlon behind Theorem 5 5 by sketchmg

how a vlolatlon of the BALANCE(d,D) condltlon would

imply a contradlctlon

The combmatlon of Corollary 5 4 and equation (5 2)

lwly that v can not violate the condltlon

BALANCE(d,D) without the execution of at least

6 M, log M SHIFT operations that are related to v

occurrmg between the times t’ and t Our formal proof

m [W185] examines the lmphcatlons of such a large

number of SHIFT operations, it concludes this sequence

must necessarily lower p(v)% value, at some moment

between t’ and t, to a quantity strictly less than

g(v,2/3) The key aspect of the last sentence 1s that lt

contradicts Lemma 5 3’s defimtlon of t’, that IS, Lemma

5 3 defined t* to be the last flag-stable moment when

p(v,t*) < g(v,2/3) before v violates the constramt

BALANCE(d,D), but the previous sentence has noted

that p(v) must fall beneath g(v,2/3) at some later

moment, between the times t’ and t This contradlctlon

arose because the first sentence of this paragraph

assumed v vlolated the condltlon BALANCE(d,D), this

contradlctlon shows such a violation can not actually

occur, and it thereby verifies Theorem 5 5’s claim (See

the unabridged version of our paper [W185] for the added

details of a formal proof) Q E D

If we take J 2 Wo&M) / (D-41 then

CONTROL 2’s worst-case time limit satisfies

O((log’M) / (D,d)) Smce every BALANCE(d,D) file also

satisfies the constraint (d,D)-dense, Theorem 5 5 thus

lmphes

Corollary 5.6. Let F denote a (d,D)-dense sequen-

tial file whose records are mltlally distributed with a um-

form density throughout this file Suppose

D-d > 3 [logMl Then the algorithm CONTROL 2

can mamtam the condltlon (d,D)-density by executmg no

more than O((log2M) / (D-d)) page-shift operations per

msertlon and deletion command

Fmally, we observe that an algorithm analogous to

CONTROL 2 can also eficlently mamtam (d,D)-density

m the same time O((log”M) / (D-d)) when the mequahty

(D-d) > 3 [log Ml does not hold The related algo-

rithm IS easiest to describe, if we let K denote the least

integer such that

K(D-d) > 3 [log M 1 (5 3)

Define the I-th macro-block in the sequential file to be

those page addresses P that satisfy the equality

[P/K1 =1 (5 4)

Our algorithm for the alternate case where

D-d < 3 [log Ml ~111 be the same as CONTROL 2

except that It ~111 shift records between macro-blocks

relative to a (d#,D#)-dense constraint where D# = KD

and d# = Kd, rather than shift records between normal

sized pages Smce macro-blocks are K times as large as

the normal sized pages, one must of course consider

macro-block shift operations to be K times as costly as

2.58

shifting records between standard sized pages By Corol-

lary 5 6, the revised algonthm’s cost IS therefore

Wx2M) / (W-W, m macro-block operations, a

quantity which translates mto time O((log2M) / (D-d))

when measured m terms of normal size page operations

(The mtmtlve reason for the final cost of our procedure

to be the same for the two cases where (D-d) IS and IS

not greater than 3 r log Ml 1s that the cost from

translating macro-pages to umt-sized pages 1s less than

the dommant cost given m Theorem 5 5) We have thus

mformally proven the followmg theorem

Theorem 6.7. For each d<D, it 1s possible to per-

form msertlons and deletions m worst-case time

O(log2M / (D-d)) m (d,D)-dense sequential files

Our full-length paper [W185] proves that

J s 9Or log2M1 / (D-d) IS one adequate value for the J

parameter m Figure 2 and m Equation (5 2) The proof

of this fact m [W185] IS approximately 40 pages long, and

a more elaborate proof can m fact reduce Theorem 5 5’s

J-parameter by at least one order of magnitude (and

probably by 1 l/2 magnitudes)

The update algorithms m Theorem 5 5 thru 5 7 are

intended for apphcatlons where streams of records with

consecutive key values are frequently accessed

Although B-trees may have a smaller update cost than

CONTROL 2, they are less desirable m an environment

where many stream retrieval requests occur because of

the Increased latency delay arising when the disk draws

consecutive keys from non-adjacent memory locations

Incidentally, the asymptote O(log’M/(D-d)) definitely

over-estimates CONTROL 2’s real cost because CON-

TROL 2, unhke a B-tree procedure, can be programmed

to access adjacent pages during its update task [W182]

describes a somewhat more sophlstlcated version of

CONTROL 2 that has a better coefficient, and Hofrl-

Konhelm-Willard (HKW86] show that an expected time

O(1) 1s possible under similar procedures

Figure 1A

131211121
Figure 1B

The number of records m 4 pages of a dense file
(Figure la) and its accompanymg cahbrator (Figure
lb) In this example, d=2 and D=3, and the
number mslde the node v 1s Its density p(v)

Figure 2 The procedure of CONTROL 2(Z,J)

Alrrorlthm CONTROL 2(Z, J)

1)

2)

3)

4)

Use the calibrator as a bmary search tree to calcu-
late the address of the record specified by the com-
mand Z If Z IS a deletion command then remove
the relevant record from the sequential file and ac-
cordingly decrement the rank counters N, m the
cahbratlon tree that require change If Z 1s an
insertion command then add this record to the
sequential file and Increment the rank counters N,
m the cahbratlon tree that require change

If step 1 caused an
satisfy p(x) 5 g(x,l 3) 7

node m a warnmg state to
then lower x mto a non-

warning state, 1 e set WARNING(x)=0

If step 1 caused p(w) > g(w,2/3) for a nonroot node
w m a non-warnmg state then call ACTIVATE(w)
(to essentially raise w mto a warnmg state)

Let L denote the leaf-address of the record R that
was inserted or deleted bv sten 1 Perform J ltera-
tlons of the followmg cyclk of i commands,
a) Set v + SELECT(L)
b) Do SHIFT(v)
c) If step b caused any node m a warnmg state to

satisfy p(x) 5 g(x,1/3) then lower x mto a
non-warnmg state, I e set WARNING(x)=0

End of algorithm

259

Figure 3

The callbratlon tree for the 8-page file discussed 1n
Example 5 2

Figure 4

The changes 1n the record distribution over time
for Example 5 2

Leaf
Time

t0

t1

t2

t3

t4

t5

63

t7

t&l

Ll

16

16

16

16

16

17

4

15

15

L2

1

1

1

1

2

2

15

4

9

L3

0

0

0

0

0

0

0

0

0

L4

1

1

1

1

0

0

0

0

0

L5

9

9

9

9

9

9

9

9

4

L6 L7

9

9

15

15

15

15

15

15

15

L8

16

17

11

11

11

11

11

11

11

References

Lv
BCW-851 B S Baker, E G Coffman, Jr, and D E

lllard, “A Dynamic Storage Allocation Algorithm
Designed for Badly Fragmented Memory,” JACA4
32 2 (1985) pp 327-343
[Fr-791 W R Franklin, “Padded Lists Set Opera-
tions 111 Expected B(log log N) Time,” Inf Proc
Letters, 9 4 (1979), pp 161-166
[HKW-86 M Hofr1, A Konhelm and D Willard,
“Padded 1 1sts Revisited”, forthcoming report

bpare $
IKR-80 A Ita1, A G Konhelm, and M Rodeh, “A

able Implementation of Priority Queues,”
Proceedrngs of SCALP-1981, LNCS 115, pp 417-
431

L
MG-781 R Melville and D Gries, “Sorting and
earch1ng Using Controlled Density Arrays,” Techn-

ical Report 78-362, Computer Science Department,
Cornell Unlverslty, 1978, see also [MG-801
[MG-801 R Melville and D Gnes, “Controlled Den-
sity Sorting,” In/ Proc Letters, 10 4 (1980), pp
166-172 - -

k
Wh-771 G Wiederhold, Database Design, McGraw-
111. New York. 1977

W1181 DE ‘Willard k J “Inserting and Deleting
ecor s 1n Blocked S’equent1al F&s,” Bell Labs

Tech Report TM8l-45193-5, 1981
[WI-821 D E Willard, “Malntalnlng Dense Sequen-
tial Files 1n a Dynamic Environment,” Bell Labs
Tech Mem 45413-821230 2, 1982

1
W1-85) D E Willard, “A Density Control Algorithm
or doing insertions and deletions 1n a sequentially

ordered file 1n good and worst case time * SUNY
Albany Technical Report 85-14, 1985
[WL-851 DE Willard and G Lueker, “A Transfor-
mation for Adding Range Restriction Capab111ty to
Data Structures,” J ACM 32 3 (1985) pp 597-618

260

