Good Worst-Case Algorithms for Inserting and Deleting
Records in Dense Sequential Files

Dan E Willard *
SUNY Albany

and

Consultant, Bell Communications Research

Abstract

Consider a file which arranges records 1n sequential
order, and stores them with possible empty spaces in M
consecutive pages of memory We develop an insertion-
deletion algorithm which runs i a worst-case time
approximately proportional to log?M divided by the
page-size when the set of manipulated records has cardi-

nahty O(M)

1. Introduction

Let KEY(R) denote the key of the record R,
ADD(R) the address of the page contaimng this record,
and S a time-varying set of records stored in M consecu-
tive pages of auxihary memory Given d < D, a (d,D)-
dense representation of S will be defined as a file
satisfying the following three conditions

1) There may be no more than N=dM records 1n this
sequential file (the symbol N 15 an often-used abbre-
viation for the product dM mn this paper)

u)

m)

No page may contain more than D records

All records 1n this file will be stored mn ascending
order, that 1s, they will satisfy the condition
ADD(R,) < ADD(R,)
KEY(R,) < KEY(R,)

whenever

* Supported partally by NSF Grant #DCR 8412447

Permission to copy without fee all or part of this matenal 1s granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice is given that copying is by

permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0251 $00

75

251

If d = D, the dense file concept reduces to the clas-
sical notion of a sequential file Wiederhold [Wh77] has
noted that such files are very useful when processing
several records with nearby key values because most
auxiliary memory architectures support the fastest access
when retrieving sequences of records with nearby physi-
cal addresses For instance, applications with batch
processes would benefit from sequential orgamzation
The mamn disadvantage of conventional sequential files
15, of course, that they require complete reorganization
after the insertion or deletion of a single record This
difficulty can be partially alleviated by leaving empty
spaces 1n the sequential file and by using overflow
pownters, however, these techniques will not fully solve
the dvnamic maimntenance problem for sequential files
because much of the efficiency advantage of these files 1s
lost when records with neighboring key-values are no
longer stored close by Overflow mechanisms become
especially unmanageable when a large surge of insertions
15 attempted 1 a relatively small portion of the sequen-
tial file, such bursts tend to overwhelm even the best
heuristics because they make mmpossible the storage of
overflow records 1n areas even near therr originally
mtended locations
concluded that
unsuitable for maintaining sequential files 1n many

For these reasons, Wiederhold has

conventional overflow methods are

dynamie environments

In this article, we study an alternative approach
that shifts the records among adjacent pages rather than
using overflow pointers when space 1s needed for insert-
g a record i a sequential file We show how to use
this method to achieve a worst-case record nsertion-
deletion complexity of O[(log®M)/{D-d)] page-accesses n

(d,D)-dense files

2. Literature Survey

Let T,y denote the worst-case number of page
accesses that a particular algorithm needs to perform a
sequence of n msertion and deletion operations on a data
structure which 1s initially empty and which never con-
Then the amortized com-
plexity of this algorithm will be defined to be
MAX{T,n/nin > 1} A few articles have discussed
algorithms for inserting and deleting records in data
The
optimization of worst-case 1nsertion-deletion time on

tams more than N records

structures similar to (d,D)-dense sequential files

dense files has not been discussed 1n the previous htera-
ture, which has instead focused either on expected com-
plexity under a stationary probability distribution or on
amortized complexity [Fr79, IKR80, HKWS86] have
mvestigated the expected time for updating dense
sequential files under a variety of different probability
models Melville and Gries [MG78, MGS80], Ita,
Konhemm and Rodeh [IKR80} and Willard [Wi81] have
independently proposed several different algorithms for
controlling amortized time Our interest 1n the present
paper 1s to develop an algorithm whose amortized time 1s
the same as [IKR80, MG78, MG80, W181]'s implhcation
for (d,D)-dense files, but which
O[(log™™)/(D-d)] worst-case time
has been greatly influenced by technique that Lueker
and Willard [WL85) applied to K-fold and augmented
trees [BCW-85] has calculated the amortized complex-
ity for data structures which permit record sizes to be
variable, but which differ from the other papers on this
subject by not insisting that the record addresses satisfy
condition () of (d,D)-density

also provides

The present paper

3. Controlling Amortized Time

This section ntroduces some notation and briefly
outlines an algorithm for inserting and deleting records
i (d,D)-dense files n amortized time (log®M)/(D-d)
Section 4 defines a stronger algorithm that also guaran-
tees worst-case time The main purpose of the present
section 1s to outhine the motivation behind the more

complex treatment appearing later

In both sections, we make the simplifying assump-
tion that D-d > 3[logM] Our complexity results will
also hold for all other values of D-d, since if D-d 1s small
we can treat a sequence of several consecutive pages as
one page and thereby increase the runtime coefficient by
only a constant factor The latter topic appears at the

end of Section §

252

For convenience, this paper always assumes the
page addresses 1n our sequential file are integers between
1 and M Also, we will maintain a special binary tree,
called the cahbrator, whose every node v 1s associated
with two page-addresses, A; and A;Y, and which stores
nside the node v a term N,, called the rank-counter,
mmdicating the number of records whose page address les
m the range [A;,A;Y] The closed mterval [A;,Af] s
called RANGE(v), and 1t 15 defined as follows
1) The root’s range will be the entire file, that 1s,
[1,M]

The left son of an internal node v will have range
A7, LA + A)/2l), the
(LAY + AF)/2) + 1AL

Each leaf v in the cahbrator will have A; = A}
(Thus, 1ts range will contan precisely one page)

1)

and rnight son

m)

Throughout this paper, M, denotes the number of pages
n v's range, that 1s, M, = A} ~A; + 1

An important notation convention 1s that 0
rather than 1 denotes the depth of a tree root (some arti-

cles follow the other notation convention) Also, let
g(v,r) and p(v) denote the quantities
Depth(v)+r-1

glvr)=d + Depth(v)+r-1 D-d 31

g (0-0) @1

p(v) =N, /M, 32)

Define a cahbrator tree to be BALANCE(d,D) 1f 1ts
every node satisfies the requirement p(v) < g(v,1) It1s
easy to see that 1if the calibrator tree satisfies
BALANCE(d,D) then the sequential file must have
(d,D)-density (See Figures 1a and 1b for an example)
The sigmficance of the condition BALANCE(d,D) 1s that
1t 15 a useful vehicle for maintamning (d,D)-density All
the algorithms discussed mn this paper will rely on this
technique

Our algorithm for optimizing the worst-case time of
mdividual commands 1s a modified version of a some-
what simpler algorithm which optimizes only amortized
complexity We therefore begin our discussion with a
brief review of the latter algorthm, whose closest analog
in the previous hiterature was proposed by Itai, Konheim,
and Rodeh [IKR80] (More distantly related algorithms
have appeared m [MG78, MG80]) The algorithm 1n this
section 1s called CONTROL 1, and until the end of sec-
tion 5 we make the simphfying assumption that
D-d > 3[log M] CONTROL 1 consists of the following

steps

A) First, use the calibrator as a binary search tree to
find the page-address of the record R that 1s to be
mserted or deleted Perform the nsertion or dele-
tion operation commanded, and increment or decre-
wrnt the rank-counters N, that should be changed

afte¢ this operation

B) If step A has caused the calibrator to violate the
condition BALANCE(d,D) temporanly then do the
following Let v denote the highest node violating
this balance condition and f, the father of v Rear-
range the records in the pages descending from f, so
that they are spread with sufficiently equal density
m this range to guarantee that every node w des-
cending from f, satisfies p(w) < p(f,)+1

The first step of CONTROL 1 requires CPU time
Oflog(M)) and typically only two or three page-accesses
These costs are quite small and need concern us no
further The second step of CONTROL 1, which
requires O(M;) page accesses, can be costly when M;, 1s
large However, [IKR80] observes that M; 1s usually a
small number when CONTROL 1 invokes step B and
that the amortized time of step B 1s O((log?M)/(D-d))

our cost notation

Our goal 1n this paper is to design a more elaborate
algorithm, called CONTROL 2, which converts step B’s
amortized cost O((log?M)/(D-d)) nto a strict worst-case
time The mtuition behind this modification 1s quite
simple Since shifting the entire set of records descend-
ing from node f 15 expensive when M;1s a large number,
our stronger algorithm will reduce worst-case costs by
employing an evolutionary process that gradually shifts
records 1 s range over an extended sequence of
insertion-deletion commands when this type of rebalanc-
g 15 necessary Such an evolution redistributes the
workload 1t takes the small number of commands other-
wise having excessive runtime and divides their workload
over a long enough sequence of commands to assure no
individual command violates the time-bound
O((log?™)/(D-d)) The main challenge will be to design
CONTROL 2 to operate correctly when several nodes
have activated concurrent evolutionary shift processes
that are operating 1 opposite directions That 1s, CON-
TROL 2 must take several precautions to avoid various
types of thrashing conditions which could otherwise
arse It must all guarantee that the file continually

satisfy the constraint BALANCE(d,D) at the end of each

msertion/deletion command We designed one satisfac-
tory algorithm for performmg the densifymg task as
early as [Wi82], but the presentation m the present
paper 1s much easier to understand

4. The Algorithm CONTROL.2

This chapter defines the new algorithm CON-
TROL 2, and the next chapter provides an example and
an mtwtive proof shetch Throughout our discussion,
A7, AS, g(v), N, M,, p(v) and RANGE(v) have the
same definitions as m section 3, and f, agam denotes v's
father Four new defimtions used 1 this section are
hsted below

1) WARNING(v) This 1s a flag that normally equals 1
when p(v) > g(v,2/3), 1t equals O when
p(v) < g(v,1/3), and 1t 1s allowed to contain either
value when g(v,1/3) < p(v) < g(v,2/3) The pur-
pose of WARNING(v) 1s to signal when a node v’s
density comes close to violating the upper lmt
g(v,1) We shall say that a node v 1s in a warning
state when WARNING(v)=1, and 1t 1s m a non-
warning state when WARNING(v)=0

1) DIR(v) 1s a constant that equals 1 when v 1s the
right son of 1ts father, and 1t equals 0 when 1t 1s a
left son

w) DEST(v) and SOURCE(v) are two pomnters, called
the ‘“‘destination” and “source” pomters, that he 1n
the range of v’s father, (henceforth denoted as
RANGE(f,)) CONTROL 2 uses these pointers to
move records from the page SOURCE(v) to
DEST(v) when v 15 mm a warning state (1e
WARNING(v)=1) The algorithm guarantees that
no records shall ever be stored between these two
pages at the time of this source-to-destination
record movement (CONTROL 2 1s obligated to
guarantee this condition because its record move-
ment would otherwise violate part (m) of Chapter
I's definttion of a sequentially ordered density) This
record movement 1s to the left when DIR(v)=1, and
it 15 to the nght when DIR(v)=0 That 1s,
DEST(v) < SOURCE(v) 1 the first case and
DEST(v) > SOURCE(v) m the second (CON-
TROL 2 only employs the pointers DEST(v} and
SOURCE(v) when v 1s 1n a warning state, and the
two pointers are otherwise undefined)

The three subroutines employed by the algorithm
CONTROL 2 are called SHIFT(v), SELECT(L) and

ACTIVATE(v) These three subroutines are crucial for
understanding the mainhne procedure of CONTROL 2,

and we will therefore discuss them first

CONTROL 2 calls SHIFT(v) only when v 1s 1n a
prevent p(v) from eventually possibly exceeding g(v,1)
DEST(v)'s imtial value 1s determined before CON-
TROL 2 makes this subroutine call, the three steps of
this subroutine assign SOURCE(v) a new value, move
records from the page SOURCE(v) to DEST(v), and then
modify the value of DEST{(v) The purpose of the
‘“source-to-destination’ record movement is to perform
an operation that will eventually lower p(v)'s value The
formal algorithmic definition of SHIFT(v) appears below,
and an example illustrating how CONTROL 2 employs

this subroutine appears in Section 5

1) In the respective cases where DIR(v)}=1 and O,
define SOURCE(v) to be the least (respectively
greatest) address to the nght (left) of DEST(v) that

contains one or more records

2) Define UP(v) to be the set of nodes x where
DEST(v) € RANGE(x) but
SOURCE(v) ¢ RANGE(x) Move as many records
from the location SOURCE(v) to DEST(v) as 1s pos-
sible until either SOURCE(v) 15 vacated or some
x € UP(v) has p(x) > g(x,0) (Naturally, this record
movement should be performed in a manner con-
sistent with the sequential storage order in the
(d,D)-dense file Thus, if there 1s nsufficient space
in DEST(v) to store all the records from the loca-
tion SOURCE(v), then priority should be given to
moving records from SOURCE(v) to DEST(v) with
lower key values when DIR{v)=l, and to moving
records with higher key values when DIR(v)=0)

3) Let x* denote the node of least depth in UP(v) satis-
fying p(x*) > g(x*,0) at the end of step 2 1If such a
node exsts then set DEST(v)=
a) Al + 1 (when DIR(v)=1)

b) An -1 (whgn DIR(v)=0)

The mainline of CONTROL 2 will make a subrou-
tine call to SHIFT(v) only when v is 1n a warning state,
1e the flag WARNING(v)=1 Often there shall be
several different nodes v that have warning flags raised
over them, and the mainline of CONTROL 2 will have
to decide which of these several eligible nodes should
next be the object of the shift operation described in the
previous paragraph Such decisions are made by a

subroutine, called SELECT(L), whose argument L 1s that
leaf which was the most recent recipient of the user’s
record msertion or deletion command SELECT(L) uses
the procedure defined below to decide which node v
should be the next recipient of a shift operation The
example in Chapter 5 will explain how CONTROL 2
uses this subroutine
1) Find the lowest ancestor a of the leaf L such that
some proper descendant B of a 1s 1n a warning state,
1e WARNING(f)=1

2) Let v denote one of the nodes of greatest depth
among the descendants of a that are in a warning
state SELECT(L) will return this node name when
CONTROL 2 calis 1t

The last subroutine employed by CONTROL 2 1s
ACTIVATE(w) CONTROL 2 calls ACTIVATE(w)
when a non-warnmng state node w satisfies
p(w) > g(w,2/3) This subroutine, accordingly, raises w
into a warning state, and it performs the corresponding
mitialization tasks of assigning DEST(w) its starting
value and making a “roll-back” change on the DEST(y)
pointer of any warning state node y satisfymng the double
relation DEST(y) € RANGE(f,) C RANGE(f,) (Ths
“roll-back” mtuitively represents our algorithm’s method
for preventing fatal thrashes between two warning state
nodes whose destination pointers are traversing overlap-
ping ranges) The formal defimition of ACTIVATE(w)'s
procedure appears below, and the example in Chapter 5
explains how CONTROL 2 uses this subroutine

1) Raise w 1nto a warning state, 1e set
WARNING(w)=1

2) Set DEST(w) =
a) Af 1if DIR(w)=1,
b) Agt of DIR(w)=0

3) Apply the rollback rule 0 below to change
DEST(y)’s value when DIR(y)=0,
RANGE(fy) D RANGE(f,) and
A, < DEST(y) < Aft -1, and use the rollback
rule 1 for the murror 1mage of this case where
DIR(y)=1, RANGE(f,) > RANGE(f,) and
A +1 < DEST(y) < At
a) Roll-back Rule 0: Set DEST(y) = A+
b) Roll-back Rule 1: Set DEST(y) = A

The intuition behind the roll-back rules 1s that some pos-
sible future invocations of the subroutine SHIFT(w) may
undo the previous record movements of the subroutine

SHIFT(y), and step 3 of ACTIVATE(w) corrects for this
anticipated problem by rolling back DEST(y) into the
furthermost position that could have been affected by
this conflict (This puts DEST(y) in a position to correct
any damage dome m the future by SHIFT(w)) These
points will become clearer as we describe the mainline of
CONTROL 2 in the next several paragraphs

Figure 2 1llustrates the procedure employed by the
mamhine of CONTROL 2 The argument Z of this sub-
routine consists of an insertion or deletion command,
and J represents an integer that should be assigned a
value greater than 0((log?M)/(D-d)), for CONTROL 2 to
properly manipulate a BALANCE(d,D} file occupymmg M
pages Until the end of section 5, we also require
D-d > 3[logM] The significance of these two lower
bounds will be explained later

Figure 2 formally defines the four steps of the algo-
rithm CONTROL 2 Its first step 1s simlar to the ana-
log for CONTROL 1 It simply inserts or deletes the
record indicated by the user’'s command Z and then
accordingly changes the N, counters in the calibration
tree The second and third steps of CONTROL 2 check
to see whether any of the changes in N, have caused
p(w) either to fall beneath g(w,1/3) or mse above
g(w,2/3), CONTROL 2's response to the first change 1s
to lower w into a non-warning state 1f it was not previ-
ously there, similarly if w was previously mn a non-
warning state, CONTROL 2’s response to the second
change consists of calling ACTIVATE(w) to raise w into
a warning state The fourth step of CONTROL 2 1s the
aspect of this procedure which guarantees the
BALANCE(d,D) condition (that 1s, the requirement that
all nodes v satisfy p(v) < g(v,1)) This step consists of J
repetitions of a cycle that first calls SELECT(L} to
choose a node v that should have its density decreased,
then calls SHIFT(v} to perform an operation whose
repetition will ultimately cause a decrease m p(v)'s value,
and finally checks to see whether any node should have
its warning flag lowered because the previous step
decreased 1ts density sufficiently (See Figure 2 for more
details)

It 1s easy to venfy that all records in the time vary-
g set S are stored in sequential order under the algo-
rithm CONTROL 2 The non-trivial aspect 1s to show
that if D-d > 3 [logM] and if J > Qf log?M/(D-d)}
then CONTROL 2 will also guarantee that every calibra-
the

Our nterest 1n this theorem arises for

tion tree node v wil satisfy condition

BALANCE(d,D)

255

two reasons The first 1s that the time cost of the algo-
nthm CONTROL 2(Z,J) can be approximated as being
proportional to J m a quite reahstic cost model that
counts only auxiliary page accesses Our theorem shall
thus imply that worst-case time O((log?M)/(D-d})) 1s
sufficient for CONTROL 2 to guarantee the conditions
BALARNCE(4,D) (d,D)-density
(D-c¢} » 3 [log M] The second nteresting point 1s that
our ajger thm and complexity model generalize to files
not satisfying the
(D~d) > 3 [log M], using one further idea outlined at
the end of section 5

The mtuition behind CONTROL 2’s good perfor-
mance 15 that if J > Qf(log)/(D-d)} then the
repeated applications of J SHIFT operations n step 4

and when

neessarily constraint

prevents p(v) from ever exceeding g(v,1) because the
aggregate effect of several shifts lowers p(v) to a safe
value satisfying p(v) < g(v,1/3) before such a violation
can occur In order to appreciate the significance of
CONTROL 2, 1t must be remembered that the retrieval
of a “stream” of records with consecutive key values
will be faster in a sequential file than in a B-tree
(because the latter entails much disk arm movement
when consecutive records are not stored n adjacent loca-
tions) Update costs are probably somewhat higher
under CONTROL 2 than under B-tree algorithms, but
the advantage of storing records i sequential order will
make CONTROL 2 desirable in those applications where
frequent stream retrieval requests make the reduced
disk-arm movement a sigmficant savings Note that
CONTROL 2, unhke B-trees, 1s programmed to access
consecutive pages 1 one fell swoop during update opera-

tions Typically J should = 18

Some readers may wonder how a procedure as com-
plicated as CONTROL 2 was conceived The answer 1s
that CONTROL 2 1s a more elaborate version of the
simpler algonthm CONTROL 1, which attained
O((log®M)/(D-d)) amortized time A general rule of
thumb 1s that many amortized time controlling pro-
cedures can be transformed imnto worst-case controlhng
procedures with the same complexity, (for instance, see
[WL85})
interest the data base designer both because of therr

The results outlined in this paper should

potential practical apphcations and because the general
techniques may be relevant to other types of problems

5. Main Analysis And An Example

This chapter provides an example and some lemmas
which explain the mtuition behind the procedure CON-
TROL 2

Henceforth, the term measurable time instance
refers to a moment when CONTROL 2 has just com-
pleted executing one of the steps of 1,2,3,4a,4b, or 4c
and 1t 1s about to commence executing the next of these
six steps We will call a measurable moment type-iiff 1t
immediately follows the execution of step 1 The terms
flag-stable refers to a measurable moment of type 3,4a
or 4¢, and the term flag-unstable refers to the remain-
ing measurable moments of types 1,2 or 4b The term
p(x,t) refers to the value of p(x) at the time t Flag-
stable measurable moments are so named because they

satisfy the following proposition

Fact 5.1. If t 1s a flag-stable moment and x 15 a

cahbration tree-node then

a) p(xt) < g(x,1/3) imphes that WARNING(x)=0 at
the time t, 1 e that x 15 1n a non-warning state, and
b) f p(x,t) > g(x,2/3) for a non-root node x then

WARNING(x)=1 at this time, 1e that x 15 In a

warnmng state

The proof of Fact 51 1s an immediate consequence
of the algorithmic defimition of CONTROL 2, and 1t 1s
omitted It should be emphasized that Facts 5 1A and
51B do not hold for flag-unstable moments For
instance, suppose an Insertion in step 1 causes p(x) to
ncrease from an imitial value less than g(x,1/3) to a final
value greater than g(x,2/3) Then WARNING(x) will
not be set equal to 1 until the CONTROL 2's step 3,
implymng that the type-1 and type-2 moments following
this event will violate the condition (b} by having
p(x) > g(x,2/3) and WARNING(x)=0

Throughout this paper, the symbols DEST(v,t) and
SOURCE(v,t) denote the positions of v's destination and
source pomters at the time t Also, N,(t) denotes the
value of N, at this time, and SET(A-,A*,t) denotes the
set of records whose address lies n the closed mterval
[A,A*] at the time t The symbol SET(v,t) 1s an abbre-
viation for SET(A,,A,t) The last three defimtions
umply that the cardmnahty of SET(v,t) equals N,(t) Sets
of the form SET(A™,A",t) are called timesets.

Example 5 2. We will now illustrate an example
where CONTROL 2 1nserts and deletes records mn a
sequential file consisting of 8 pages whose density param-
eters are D=18 and d=9 The cahbration tree for this

256

file appears 1n Figure 3 The symbols L, L, Lg denotes
its leaves, and v,,v, vy denotes 1ts internal nodes
Throughout our example, 1t 1s assumed that j 1s the page
n the sequential file that corresponds to the leaf L), that

1s the leaf L satisfies the equality Aj, = AL’J* =]

In our example, t, denotes a flag-stable measurable
moment, and Ny (t,) indicates the number of records that
CONTROL 2 stores n the leaf-page L, at the time ¢,
We will make frequent references to the table in Figure
4, whose (1,))-th entry indicates the value of Ny (t,) Our
example assumes that CONTROL 2's parameter J=3
and that Z, and Z, are two msertion commands given to

this algorithm

Let ty denote the measurable moment just before
the command Z; 1s given The first row 1n Figure 4 indi-
cates the distribution of records at this time The row
that all

p(x,tp) < g(x,2/3), and 1t 1s therefore legitimate (1 e con-

indicates calibration tree nodes satisfy
sistent with Fact 5 1) to assume that all cahibration tree
nodes are In a non-warning state at the time ty when our

example begins

Suppose Z; 1s a command to insert a record into the
page 8 Then step 1 of CONTROL 2 will increment the
values of each of N N,, N, and N, As this change
causes p(Lg) > g(Lg,2/3) and p(vg) > g(v,2/3), step 3 of
CONTROL 2 will raise Lg and vy 1into warning states
and assign DEST(Lg) and DEST(vy) the mitial values of
7 and 1, respectively Our example has t; denote the
flag-stable moment at the end of step 3 when these
actions are completed

Since J=3 1n our example, CONTROL 2 next exe-
cutes three iterations of step 4 The first execution of
step 4a notices that Lg has depth greater than vy, and
therefore SELECT returns the vertex Lg The procedure
SHIFT(Lg) 1n step 4b will then

1) set SOURCE(Lg) = 8

2) move precisely 6 records from page 8 to 7,
Since the second action lowers p(Lg) to a value under
g(Lg,1/3), step 4c of the procedure CONTROL 2 will
change Lg into a non-warning state In our example, ty
denotes the moment after these actions are completed
The second execution of step 4 will occur between
the times t, and t; At the time t,, only v; 1s 1n a warn-
ing state Therefore SELECT will return vy, and step 4b
will consequently execute SHIFT(vg) The first part of

this procedure sets SOURCE(v;) = 2, 1ts second part

actually performs no record movements (because p(L;)
already exceeded g(L;,0) at the time when SHIFT was
called), the third part of SHIFT(vs;) then

DEST(v3) =2 CONTROL 2 therefore performs
record movements between the times t, and tj, but 1t

sets

no

assigns DEST(v) a new value during this period

The third execution of CONTROL 2 1s the same as
the second, except that 1t attempts to move records
between the pages 4 and 2, rather than 2 and 1 The
latter movement 1s successful, and Figure 4 indicates the
resulting state of the sequential file at the time t,

Since J=3 1n our example, CONTROL 2 will have
completed J executions of step 4 at the end of the time
t4 The instance t, thus denotes the time when CON-
TROL 2 has completed execution of the command Z,

Let Z, denote the next command given to CON-
TROL 2, and suppose this command s an order to msert
a record 1to the page 1 The Ilatter
p(L,) 2 &(L,,2/3), and step 3 of CONTROL 2 will there-
fore call the subroutine ACTIVATE(L;) This subrou-
tine rawses L; nto state
DEST{L,) = 2 and DEST(v3) =1 The third action 1s
due to ACTIVATE’s roll-back rule 1, and 1t 1s the first
occasion in our example where a roll-back rule 1s

causes

a warning and sets

employed In our example, t; denotes the measurable
moment following the execution of ACTIVATE(L,)

The remainder of the command Z, 1s similar to the
command Z; It consists of three executions of step 4,
whose effect on the sequential file 1s indicated by the
three rows of Figure 4 for the times tg,t; and tg The
first 1teration of step 4b calls the subroutine SHIFT(L,})
to move thirteen records from the page 1 to 2
(SHIFT(L,) stops the record movement after the thir-
teenth record transfer because p(L.) > g(Ly,0) at this
time) Step 4¢ of CONTROL 2 will then notice that
p(Lytg) < g(Ly,1/3), and 1t will accordingly lower L,
into a non-warning state The main action 1n the second
execution of step 4 comsists of a subroutine call to
SHIFT(v;) that moves eleven records from page 2 to 1
(SHIFT(v3) halts the record transfer after the eleventh
record movement because p(L;) > g(L;,0) at that time)
A second action of SHIFT{vs) consists of setting
DEST(vs) = 2 at the end of this procedure The third
execution of step 4 makes another subroutine call to
SHIFT{(v;), whose effect 1s to move five records from
page 5 to 2 (record movements stop after the fifth record
transfer because p(vy) > g(v,,0) at this time) At the

257

end of this iteration, step 4c lowers v; nto a non-
warning of the fact that
p(v3) < g(vs,1/3) At the end of this example, all nodes

in the calibration tree have returned to a non-warning

state on account

state, and the eighth row in Figure 4 indicates the record
distribution

The algorithm CONTROL 2 1s intended for applica-
tions where the File F always has cardinality less than
dM and where J, d and D satisfy the inequalities (5 1)
and (5 2) below

(D-d) > 3 [log M]
I>Q{ [(log’™)] / (D-d)}

Theorem 5 5 shall state that CONTROL 2 guarantees
that the sequential file will satisfy (d,D)-density at the
end of each insertion and deletion command when the
file was properly mitialized and when the first sentence
At the end of this chapter, we
will explain how the constramt (51) may be dropped

of this paragraph holds

with a shghtly more elaborate algorithm The second
constramt (52) specifies the number of page accesses
that CONTROL 2 must invoke It tells us, simply, that
the time O(log®M/(D-d)) 1s sufficient to mamtan (d,D)-
density because such magnitudes satisfy (5 2)'s mequal-
ity

It 1s mmportant that J, d and D be assigned the
values recommended 1n the previous paragraph because
otherwise CONTROL 2 could cause some pages to even-
See the bottom
paragraph on page 11 for a summary of the types of

tually contain more than D records

apphcations where CONTROL 2 outperforms a B-tree
and a summary of 1ts mtuition

The proofs in our full-length paper [W185] are rather
long, and we will give only an intuitive over-view 1n this
conference paper We begin with two prehmnary lem-

mas

Lemma 5.3. Suppose that d and D satisfy equa-
tion (51) and that some msertion command of CON-
TROL 2 causes p{v) > g(v,1} Let t denote the last
flag-stable moment immediately before this command,
and let t* denote the last flag-stable moment before t
when p(v,t*) < g(v,2/3) Then CONTROL 2 must have
executed at least | M,(D-d) /(3 [logM1])] msertion
commands whose first step inserted a record nto
RANGE(v) between the times t* and t

Proof. An imspection of the procedure CON-
TROL 2 reveals that the only aspect of this procedure

that can increase p(v) when 1t 1s exceeding g(v,2/3) 1s
step 1 Furthermore, an mmdividual invocation of step 1
can mcrement p(v) by no more than amount of precisely
1/M, and the first
measurable moment after t, the quantity p(v) must have
increased by an amount of at least
g{v,1) - g(v,2/3) = (D-d) / (3 [log M7), it follows that
at least | My(D-d) / (3 [log M7)] mnvocations of step
1 must have occurred between the times t* and t
QED

Corollary 5.4 Say a call to the subroutine SHIFT
is related to v iff this call occurs when v 1s 1n a warning
state and at the same time step 1 of CONTROL 2 has
mserted a record mto RANGE(v) Then the preceding
Lemma mmplies CONTROL 2 must have executed at
least J [M,(D-d)/(3[logM])] of
SHIFT that are related to v between the tumes t* and t
QED

Proof. Lemma 5 3 indicates that there are at least
LM D-d) / (3 [log MT)] occasions between the times
t* and t when step 1 of CONTROL 2 has inserted 3
record mmto RANGE(v)
lowed by J 1nvocations of SHIFT related to v, there
must be a total of at least J | M (D-d) / (3 [logM7])]
related SHIFT operations occurring between the times t*

andt QED

Theorem 5 5¢ Let F denote a (d,D)-dense file
whose records are imtially distnbuted with a umiform

Since between the moment t*

Invocations

Since each such occaston 1s fol-

density over the address space Suppose d,D and J
satisfy equations (5 1) and (5 2), and the algorithm CON-
TROL 2 1s employed to perform insertions and deletions
on a file F whose cardinahty never exceeds N=dM
Then this file will satisfy the bound BALANCE(d,D} at
the end of each insertion and deletion command per-

formed by CONTROL 2

The formal proof of Theorem 5 5 appears in [W185],
and 1t 1s too leng{hy to present within the space hmits
indicated in SIGMOD’s call for papers
explain the intuition behind Theorem 55 by sketching
how a violation of the BALANCE(d,D) condition would

iumply a contradiction

However, we can

The combination of Corollary 54 and equation (5 2)
mmply that v the
BALANCE(d,D) without the execution of at
6 M, log M SHIFT operations that are related to v
Our formal proof

can not violate condition

least

occurring between the times t* and t
m [Wi85] examines the mmplications of such a large

258

number of SHIFT operations, 1t concludes this sequence
must necessarily lower p(v)’s value, at some moment
between t* and t, to a quantity strictly less than
g(v,2/3) The key aspect of the last sentence is that 1t
contradicts Lemma 5 3’s definition of t*, that 1s, Lemma
53 defined t* to be the last flag-stable moment when
p(v,t*) < g(v,2/3) before v violates the constraint
BALANCE(d,D), but the previous sentence has noted
that p(v) must fall beneath g(v,2/3) at some later
moment, between the times t* and t This contradiction
arose because the first sentence of this paragraph
assumed v violated the condition BALANCE(d,D), this
contradiction shows such a violation can not actually
(See
the unabridged version of our paper [W185] for the added
details of a formal proof) QED

If we take J2> Q[(log’™)/(D-d)] then
CONTROL 2's worst-case time hmt satisfies
O((log®™M) / (D,d)) Since every BALANCE(d,D) file also
satisfies the constraint (d,D)-dense, Theorem 55 thus

implies

occur, and 1t thereby verifies Theorem 5 5’s claim

Corollary 5.6. Let F denote a (d,D)-dense sequen-
tial file whose records are imtially distributed with a uni-
form density throughout this file Suppose
D-d > 3[logM] Then the algorithm CONTROL 2
can maintain the condition (d,D)-density by executing no
more than Of(log?M) / (D-d)) page-shift operations per
msertion and deletion command

Finally, we observe that an algonithm analogous to
CONTROL 2 can also efficiently mantain (d,D)-density
m the same time O((log?) / (D-d)) when the nequality
(D-d) > 3 [log M] does not hold The related algo-
rithm 1s eastest to describe, if we let K denote the least

integer such that

K(D-d) > 3 [log M] (53)

Define the 1-th maecro-block 1n the sequential file to be
those page addresses P that satisfy the equahty

[P/K] =1 (54)

Our algonithm for the alternate case where
D-d < 3[log M] will be the same as CONTROL 2
except that 1t will shift records between macro-blocks
relative to a (d#,D#)-dense constrant where D* = KD
and d# = Kd, rather than shift records between normal
sized pages Since macro-blocks are K times as large as
the normal sized pages, one must of course consider

macro-block shift operations to be K times as costly as

shifting records between standard sized pages By Corol-
lary 56, the revised algorithm’s cost 1s therefore
O((log?M) / (K(D-d))), in macro-block operations, a
quantity which translates mto time O((log?M) / (D-d))
when measured in terms of normal size page operations
(The mtuitive reason for the final cost of our procedure
to be the same for the two cases where (D-d) 15 and 1s
not greater than 3 [log M] 1s that the cost from
translating macro-pages to unit-sized pages 1s less than
the domnant cost given in Theorem 5 5) We have thus
informally proven the following theorem

Theorem 5.7. For each d<D, 1t 1s possible to per-
form 1nsertions and deletions 1 worst-case time
O(log?M / (D-d)) n (d,D)-dense sequential files

Our full-length paper [Wi85] proves that
J = 90[log?M] / (D-d) 15 one adequate value for the J
parameter 1n Figure 2 and m Equation (52) The proof
of this fact in [W185] 1s approximately 40 pages long, and
a more elaborate proof can i fact reduce Theorem 5 5's
J-parameter by at least one order of magnitude (and

probably by 1 1/2 magnitudes)

The update algorithms in Theorem 55 thru 57 are
intended for applications where streams of records with
consecutive key values are frequently accessed
Although B-trees may have a smaller update cost than
CONTROL 2, they are less desirable 1n an environment
where many stream retrieval requests occur because of
the increased latency delay arising when the disk draws
consecutive keys from non-adjacent memory locations
Incidentally, the asymptote O(log?M/(D-d)) definitely
over-estimates CONTROL 2’s real cost because CON-
TROL 2, unlike a B-tree procedure, can be programmed
[W182]
describes a somewhat more sophisticated version of
CONTROL 2 that has a better coefficient, and Hofr-
Konheim-Willard [HKW86] show that an expected time

O(1) 1s possible under similar procedures

to access adjacent pages during 1ts update task

259

Figure 1A

3121112

Figure 1B

The number of records 1n 4 pages of a dense file
(Figure 1a) and 1ts accompanying calibrator (Figure

1b} In this example, d=2 and D=3, and the
number 1nside the node v 1s 1ts density p(v)
2
e
\5 5\ \13
2

v ’
©) @

Figure 2 The procedure of CONTROL 2(Z,J)

>\ S
2/ 2

Algonthm CONTROL 2(Z,J)

1)

4)

Use the calibrator as a binary search tree to calcu-
late the address of the record specified by the com-
mand Z If Z 1s a deletion command then remove
the relevant record from the sequential file and ac-
cordingly decrement the rank counters N, mn the
calibration tree that require change If Z 1s an
insertion command then add this record to the
sequential file and increment the rank counters N,
in the calibration tree that require change

If step 1 caused any node in a warning state to
satisfy p(x) < g(x,l/{l) then lower x into a non-
warning state, 1e set WARNING(x)=0

If step 1 caused p(w) > g(w,2/3) for a nonroot node
w In a non-warning state then call ACTIVATE(w)
(to essentially raise w into a warning state)

Let L denote the leaf-address of the record R that
was mserted or deleted by step 1 Perform J 1tera-
tions of the following cycle of 3 commands,

a) Set v~ SELECT(L)

b) Do SHIFT(v)

¢) If step b caused any node 1n a warning state to

satisfy p(x) < g(x,1/3) then lower x imnto a
non-warning state, 1 e set WARNING(x)=0

End of algorithm

Figure 3

The calibration tree for the 8-page file discussed 1n
Example 5 2

/((/1 »
o w
/ \ / N\

(Vs (sr
/

\

(L1) }2) KS /L4\ (L (Ly «L7 X’\

Figure 4

The changes 1n the record distribution over time
for Example 5 2

to 6 1 0 1 9 g 9
ty 6 1 0 1 9 ¢ g
ty 6 1 0 1 9 9 15
ty 8 1 0 1 9 15
t 6 2 0 0o 9 ¢ 15
ty 17 2 0 0o 9 9 15
tg 4 15 0 o0 9 9 15
ty 15 4 0 0 9 9 15
tg 15 ¢ 0 0o 4 9 15

16
17
11
11
11
11
11
11
11

References

260

BCW-85] BS Baker, EG Coffman, Jr, and DE
llard, “A Dynamic Storage Allocation Algorithm

Designed for Badly Fragmented Memory,” J ACM

32 2 (1985) pp 327-343

[Fr-79] WR Frankhn, “Padded Lists Set Opera-

tions 1 Expected 9(Iog log N) Time,” Inf Proc

Letters, 9 4 {1979), pp 161-166

[HKW-86] M Hofri, A Konhemm and D Willard,

“Padded Lists Revisited”’, forthcoming report
TKR-80] A Itai, AG Konhemm, and M Rodeh, “A
pare Table Implementation of Priority Queues,”

Proceedings of ICALP-1981, LNCS 115, pp 417-

431

MG-78] R Melville and D Gries, “Sorting and
earching Using Controlled Density Arrays,” Techn-

1cal Report 78-362, Computer Science Department,

Cornell University, 1978, see also [MG-80]

[MG-80] R Melville and D Gnes, “Controlled Den-

sity Sorting,” Inf Proc Letters 10 4 (1980}, pp
169-172

L\[Nh -77] G Wiederhold, Database Design, McGraw-
ill, New York, 1977

Wi-81] DE Willard,
ecords 1 Blocked Sequentlal Files,”
Tech Report TM81-45193-5, 1981
[Wi-82] DE Willard, ‘“Maintaining Dense Sequen-
tial Files in a Dynamic Environment,” Bell Labs
Tech Mem 45413-821230 2, 1982

}Wl-85] D E Willard, “A Density Control Algorithm

or doing nsertions and deletions in a sequentially
SUNY

“Inserting and Deleting
Bell Labs

ordered file 1n good and worst case time ”
Albany Technical Report 85-14, 1985
[WL-85] DE Willard and G Lueker, “A Transfor-
mation for Adding Range Restriction Capabihty to
Data Structures,” J ACM 32 3 (1985) pp 597-618

