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Abstract 

Consider a file which arranges records m sequential 

order, and stores them with possible empty spaces m M 

consecutive pages of memory We develop an msertlon- 

deletion algorithm which runs m a worst-case time 

approvlmately proportional to 1og’M divided by the 

page-size when the set of mampulated records has cardl- 

nahty O(M) 

1. Introduction 

Let KEY(R) denote the key of the record R, 

ADD(R) the address of the page contammg this record, 

and S a tlmevarymg set of records stored m M consecu- 

tlve pages of auxlhary memory Given d < D, a (d,D)- 

dense representation of S will be defined as a file 

satlsfymg the followmg three condltlons 

1) 

4 
Ill) 

There may be no more than N=dM records m this 

sequential file (the symbol N 1s an often-used abbre- 

viation for the product dM m this paper) 

No page may contam more than D records 

All records m this file ~111 be stored m ascending 

order, that is, they will satisfy the condltlon 

AWR,) i AWR,) whenever 

KEY(R,) < KEY@,) 
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If d = D, the dense file concept reduces to the clas- 

sical notlon of a sequential file Wlederhold [Wh77] has 

noted that such files are very useful when processing 

several records with nearby hey values because most 

auxlhary memory architectures support the fastest access 

when retrlevmg sequences of records with nearby physl- 

cal addresses For instance, apphcatlons with batch 

processes would benefit from sequential orgamzatlon 

The mam disadvantage of conventional sequential files 

15, of course, that they require complete reorgamzatlon 

after the insertion or deletion of a single record This 
dlfflculty can be partially alleviated by leaving empty 

spaces m the sequential file and by using overflow 

pointers, however, these techniques ~111 not fully solve 

the dvnamlc mamtenance problem for sequential files 

because much of the efficiency advantage of these files 1s 

lost when records with neighboring key-values are no 

longer stored close by Overflow mechanisms become 

especially unmanageable when a large surge of msertlons 

1s attempted m a relatively small portion of the sequen- 

tial file, such bursts tend to overwhelm even the best 

heurlstrcs because they mahe lmposslble the storage of 

overflow records m areas even near their orlgmally 

intended locations For these reasons, Wlederhold has 

concluded that conventional overflow methods are 

unsmtable for mamtammg sequential files In many 

dynamic environments 

In this article, we study an alternatIve approach 

that shifts the records among adjacent pages rather than 

using overflow pointers when space 1s needed for msert- 

mg a record m a sequential file We show how to use 

this method to athleve a worst-case record InsertIon- 

deletion complevlty of 0[( log’M)/(D-d)] page-accesses m 

(d,D)-dense files 
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2. Literature Survey 

Let T~,N denote the worst-case number of page 

accesses that a particular algorithm needs to perform a 

sequence of n insertion and deletion operations on a data 

structure which 1s initially empty and which never con- 

tains more than N records Then the amortized com- 

plexlty of tins algorithm ~111 be defined to be 

Mti{T,,N/n 1 n 2 l} A few articles have discussed 

algorithms for inserting and deleting records 1n data 

structures smnlar to (d,D)-dense sequential files The 

optimization of worst-case insertion-deletion time on 

dense files has not been discussed 1n the previous htera- 

ture, which has instead focused either on expected com- 

plexlty under a stationary probability distribution or on 

amortized complexity [Fr79, IKR80, HKW86) have 

investigated the expected time for updating dense 

sequential files under a variety of different probability 

models Melville and Gries jMG78, MG80], Ital, 

Konheim and Rodeh (IKR80] and Willard [W181] have 

independently proposed several different algorithms for 

controlling amortized time Our interest 1n the present 

paper 1s to develop an algorithm whose amortized time 1s 

the same as [IKR80, MG78, MG80, W181]‘s lmphcation 

for (d,D)-dense files, bzlt whrch also prowdes 

01(10g2M)/(D-d)] worst-case ttme The present paper 

has been greatly influenced by technique that Lueker 

and Willard [WLSS] applied to K-fold and augmented 

trees (BCW-851 has calculated the amortized complex- 

1ty for data structures which permit record sizes to be 

variable, but which differ from the other papers on this 

subject by not insisting that the record addresses satisfy 

condition (m) of (d,D)-density 

2. Controlling Amortized Time 

This section introduces some notation and briefly 

outlines an algorithm for inserting and deleting records 

1n (d,D)-dense files 1n amortized time (log2M)/(D-d) 

Section 4 defines a stronger algorithm that also guaran- 

tees worst-case time The main purpose of the present 

section 1s to outline the motivation behind the more 

complex treatment appearing later 

In both sections, we make the simpllfylng assump- 

tion that D-d > 3pog Mj Our complexity results will 

also hold for all other values of D-d, Since 1f D-d 1s small 

we can treat a sequence of several consecutive pages as 

one page and thereby increase the runtime coefficient by 

only a constant factor The latter topic appears at the 

end of Section 5 

For convenience, this paper always assumes the 

page addresses 1n our sequential file are integers between 

1 and M Also, we will mamtaln a special binary tree, 

called the cahbrator, whose every node v 1s associated 

with two page-addresses, & and &‘, and which stores 

inside the node v a term N,, called the rank-counter, 

indicating the number of records whose page address lies 

1n the range [&,A”+] The closed Interval [&,&‘I 1s 

called RANGE(v), and 1t 1s defined as follows 

The root’s range will be the entire file, that 1s, 

PM 
The left son of an internal node v will have range 

[A;, L(& + A,!)/ZJ], and the right son 

IN-%- + k+)PJ + b%+1 
Each leaf v 1n the calibrator ~111 have & = 4. 

(Thus, 1ts range will contain precisely one page ) 

Throughout this paper, M, denotes the number of pages 

1n v’s range, that IS, M, = A,+ - & + 1 

An important notation convention 1s that 0 

rather than 1 denotes the depth of a tree root (some art+ 

cles follow the other notation convention) Also, let 
g(v,r) and p(v) denote the quantities 

.&A = d f 
Depth(v)-tr-1 (D-d) 

peg h/rl (3 1) 

p(v) = N, / M, (3 2) 

Define a calibrator tree to be BALANCE(d,D) 1f 1ts 

every node sat&es the requirement p(v) < g(v,l) It 1s 

easy to see that 1f the calibrator tree satisfies 

BALANCE(d,D) then the sequential file must have 

(d,D)-density (See Figures la and lb for an example) 

The significance of the conchtion BALANCE(d,D) 1s that 

it 1s a useful vehicle for mamtammg (d,D)-density All 

the algorithms &cussed m this paper will rely on this 

technique 

Our algorithm for optirmzmg the worst-case time of 

individual commands 1s a modified version of a some 

what simpler algorithm which optnmzes only amortized 

complexity We therefore begin our discussion with a 

brief review of the latter algorithm, whose closest analog 

1n the previous literature was proposed by Ital, Konheim, 

and Rodeh [IKR80] (More distantly related algorithms 

have appeared 1n [MG78, MG80) ) The algorithm 1n this 

section 1s called CONTROL 1, and until the end of sec- 

tion 5 we make the simphfymg assumption that 

D-d > 3[log M( CONTROL 1 consists of the following 
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steps 

A) First, use the calibrator as a bmary search tree to 

find the page-address of the record R that 1s to be 

inserted or deleted Perform the msertlon or dele 

tlon operation commanded, and increment or decre- 

rf*cnt the rank-counters N, that should be changed 

aiic r this operation 

B) If step A has caused the cahbrator to violate the 

condition BA.LANCE(d,D) temporarily then do the 

followmg Let v denote the highest node vlolatmg 

this balance condltlon and f, the father of v Rear- 

range the records m the pages descending from f, so 

that they are spread with sufficiently equal density 

m this range to guarantee that every node w des- 

cending from f, satisfies p(w) 5 p(f,)+l 

The first step of CONTROL 1 requires CPU time 

O(log(M)) and typlcally only two or three page-accesses 

These costs are quite small and need concern us no 

further The second step of CONTROL 1, which 

requires O(MrV) page accesses, can be costly when M, 1s 

large However, [IKR80] observes that MrV 1s usually a 

small number when CONTROL 1 invokes step B and 

that the amortized time of step B 1s O((log2M)/(D-d)) m 

our cost notation 

Our goal m this paper 1s to design a more elaborate 

algorithm, called CONTROL 2, which converts step B’s 

amortized cost O((log2M)/(D-d)) into a strict worst-case 

time The mtultlon behmd this modlficatlon IS quite 

simple Since shlftmg the entlre set of records descend- 

mg from node f IS expensive when MI 1s a large number, 

our stronger algorithm will reduce worst-case costs by 

employmg an evolutionary process that gradually shifts 

records m f’s range over an extended sequence of 

msertlon-deletion commands when this type of rebalanc- 

mg IS necessary Such an evolution redistributes the 

workload It takes the small number of commands other- 

wise having excessive runtime and dlvldes their worhload 

over a long enough sequence of commands to assure no 

mdlvldual command violates the time-bound 

O((log2M)/(D-d)) The mam challenge will be to design 

CONTROL 2 to operate correctly when several nodes 

have activated concurrent e\olutlonary shift processes 

that are operatmg m opposite dlrectlons That IS, CON- 
TROL 2 must tahe several precautions to avoid \arlous 

types of thrashing condltlons which could otherwise 

arise It must all guarantee that the file continually 

satisfy the constramt BALANCE(d,D) at the end of each 

msertlon/deletlon command We deslgned one satafac- 

tory algorithm for performmg the denslfymg task as 

early as [W182], but the presentation m the present 

paper IS much easier to understand 

4. The Algorithm CONTROL.2 

This chapter defines the new algorithm CON- 

TROL 2, and the next chapter provides an example and 

an mtultlve proof &etch Throughout our dlscusslon, 

A;, A,+, g(v), N,, %, p(v) and RANGE(v) have the 

same definitions as m section 3, and f, agam denotes v’s 

father Four new definitions used m this section are 

listed below 

1) WARNING(v) This 1s a flag that normally equals 1 

when p(v) 2 g(v,2/3), It equals 0 when 

p(v) 5 g(v,1/3), and it IS allowed to contain either 

value when g(v,1/3) < p(v) < g(v,2/3) The pur- 

pose of WARNING(v) IS to slgnal when a node v’s 

density comes close to vlolatmg the upper limit 

g(v,l) We shall say that a node v IS m a warning 

state when WARNING(v)=l, and it 1s m a non- 

warning state when WARNING(v)=0 

n) DIR(v) 1s a constant that equals 1 when v IS the 

right son of its father, and it equals 0 when It IS a 

left son 

m) DEST(v) and SOURCE(v) are two pointers, called 

the “destmatlon” and “source” pomters, that he tn 

the range of v’s father, (henceforth denoted as 

RANGE(f,)) CONTROL 2 uses these pointers to 

move records from the page SOURCE(v) to 

DEST(v) when v 1s m a warnmg state (I e 

WARNING(v)=l) The algorithm guarantees that 

no records shall ever be stored between these two 

pages at the time of this source-to-destmatlon 

record movement (CONTROL 2 IS obligated to 

guarantee this condition because Its record move- 

ment would otherwise violate part (111) of Chapter 

l’s definition of a sequentially ordered density ) This 

record movement 1s to the left when DIR(v)=l, and 

it 1s to the right when DIR(v)=0 That IS, 
DEST(v) < SOURCE(v) m the first case and 

DEST(v) > SOURCE(v) m the second (CON- 
TROL 2 only employs the pointers DEST(v) and 

SOURCE(v) when v 1s m a warning state, and the 

two pointers are otherwise undefined ) 

The three subroutmes employed by the algorithm 

CONTROL 2 are called SHIFT(v), SELECT(L) and 
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ACTIVATE(v) These three subroutines are crucial for 

understanding the mainline procedure of CONTROL 2, 

and we ~111 therefore discuss them first 

CONTROL 2 calls SHIFT(v) only when v 1s m a 

warnmg state, mdlcatmg some actlon must be taken to 

prevent p(v) from eventually possibly exceedmg g(v,l) 

DEST(v)‘s mltlal value IS determmed before CON- 

TROL 2 makes this subroutine call, the three steps of 

this subroutme assign SOURCE(v) a new value, move 

records from the page SOURCE(v) to DEST(v), and then 

modify the value of DEST(v) The purpose of the 

“source-to-destmatlon” record movement IS to perform 

an operation that will eoentvally lower p(v)‘s value The 

formal algorlthmlc definition of SHIFT(v) appears below, 

and an example dlustratmg how CONTROL 2 employs 

this subroutine appears m Section 5 

1) In the respective cases where DIR(v)=1 and 0, 

define SOURCE(v) to be the least (respectnely 

greatest) address to the right (left) of DEST(v) that 

contams one or more records 

2) Define UP(v) to be the set of nodes x where 

DEST(v) E RANGE(x) but 

SOURCE(v) 6 RANGE(x) Move as many records 

from the location SOURCE(v) to DEST(v) as IS pos- 

sible untd either SOURCE(v) 1s vacated or some 

x E UP(v) has p(x) 2 g(x,O) (Naturally, this record 

movement should be performed m a manner con- 

sistent with the sequential storage order m the 

(d,D)-dense file Thus, If there 1s msufflclent space 

m DEST(v) to store all the records from the loca- 

tlon SOURCE(v), then prlorlty should be given to 

moving records from SOURCE(v) to DEST(v) with 

lower key values when DIR(v)=l, and to moving 

records with higher hey values when DIR(v)=0 ) 

3) Let X* denote the node of least depth m UP(v) satis- 

fying p(x’) 2 g(u*,O) at the end of step 2 If such a 

node exists then set DEST(v)= 

a) A$ + 1 (when DIR(v)=l) 

b) A,. - 1 (whw DIR(v)=O) 

The mamlme of CONTROL 2 will make a subrou- 

tme call to SHIFT(v) only when v IS m a warning state, 

1 e the flag WARNING(v)=1 Often there shall be 

several different nodes v that have warning flags raised 

over them, and the mamlme of CONTROL 2 will have 

to decide which of these several ehglble nodes should 

next be the object of the shift operation described m the 

previous paragraph Such declslons are made by a 

subroutine, called SELECT(L), whose argument L 1s that 

leaf which was the most recent recipient of the user’s 

record msertlon or deletion command SELECT(L) uses 

the procedure defined below to decide which node v 

should be the next reclplent of a shift operation The 
example m Chapter 5 will explain how CONTROL 2 

uses this subroutine 

1) Fmd the lowest ancestor (Y of the leaf L such that 

some proper descendant /3 of Q 1s m a warning state, 

I e WARNING(P)=1 

2) Let v denote one of the nodes of greatest depth 

among the descendants of (Y that are m a warning 

state SELECT(L) will return this node name when 

CONTROL 2 calls It 

The last subroutine employed by CONTROL 2 IS 

ACTIVATE(w) CONTROL 2 calls ACTIVATE(w) 

when a non-warning state node w satisfies 

p(w) 2 g(w,2/3) This subroutine, accordmgly, raises w 

mto a warning state, and it performs the corresponding 

mltlahzatlon tasks of assigning DEST(w) its starting 

value and making a “roll-back” change on the DEST(y) 

pointer of any warning state node y satlsfymg the double 

relation DEST(y) E RANGE(f,) c RANGE(f,,) (This 

“roll-back” mtmtlvely represents our algonthm’s method 

for preventing fatal thrashes between two warning state 

nodes whose destination pomters are traversing overlap- 

pmg ranges) The formal definition of ACTIVATE(w)% 

procedure appears below, and the example m Chapter 5 

explains how CONTROL 2 uses this subroutine 

1) Raise w mto a warning state, i e set 
WARNING(w)=1 

2) Set DEST(w) = 

a) At if DIR(w)=l, 

b) AC If DIR(w)=0 

3) Apply the rollback rule 0 below to change 

DEST(y)‘s value when DIR(y)=O, 
RANGE(f,) > RANGE(f,) and 

AC <_ DEST(y) 5 Al: - 1, and use the rollback 

rule 1 for the mirror image of this case where 

DIR(y)=l, RANGE(f,) > RANGE(f,) and 

AC + 1 5 DEST(y) 5 Af; 

a) Roll-back Rule 0: Set DEST(y) = ArT 

b) Roll-back Rule 1: Set DEST(y) = AC 

The mtultlon behind the roll-back rules IS that some pos- 

sible future mvocatlons of the subroutme SHIFT(w) may 

undo the previous record movements of the subroutine 
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SHIFT(y), and step 3 of ACTIVATE(w) corrects for this 

anticipated problem by rolling back DEST(y) mto the 

furthermost posltlon that could have been affected by 

this conflict (This puts DEST(y) m a position to correct 

any damage done m the future by SHIFT(w) ) These 

points will become clearer as we describe the mainline of 

CONTROL 2 m the next several paragraphs 

Figure 2 illustrates the procedure employed by the 

mamlme of CONTROL 2 The argument Z of this sub- 

routme consists of an msertlon or deletion command, 

and J represents an integer that should be assigned a 

value greater than n((log2M)/(D-d)), for CONTROL 2 to 

properly manipulate a BALANCE(d,D) file occupymg M 

pages Until the end of section 5, we also require 

D-d > 3 [ log Ml The slgmEcance of these two lower 

bounds will be explained later 

Figure 2 formally defines the four steps of the algo- 

rithm CONTROL 2 Its first step 1s similar to the ana- 

log for CONTROL 1 It simply inserts or deletes the 

record indicated by the user’s command Z and then 

accordmgly changes the N, counters m the calibration 

tree The second and third steps of CONTROL 2 check 

to see whether any of the changes m N, have caused 

p(w) either to fall beneath g(w,1/3) or rise above 

g(w,2/3), CONTROL 2’s response to the first change 1s 

to lower w into a non-warning state if it was not previ- 

ously there, slmllarly if w was previously m a non- 

warning state, CONTROL 2’s response to the second 

change consists of calling ACTIVATE(w) to raise w mto 

a warnmg state The fourth step of CONTROL 2 IS the 

aspect of this procedure which guarantees the 

BALANCE(d,D) condltlon (that IS, the requirement that 

all nodes v satisfy p(v) 5 g(v,l)) This step consists of J 

repetitions of a cycle that Erst calls SELECT(L) to 

choose a node v that should have Its density decreased, 

then calls SHIFT(v) to perform an operation whose 

repetition will nlt~&ely cause a decrease m p(v)‘s value, 

and finally checks to see whether any node should have 

Its warning flag lowered because the previous step 

decreased its density sufficiently (See Figure 2 for more 

details ) 

It 1s easy to verify that all records m the time vary- 

mg set S are stored m sequential order under the algo- 

rlthm CONTROL 2 The non-trivial aspect 1s to show 

that if D-d > 3 Fog Ml and If J > n{ log2M/(D-d)} 

then CONTROL 2 will also guarantee that every cahbra- 

tion tree node v Will satisfy the condition 
BALANCE(d,D) Our interest m this theorem arises for 

two reasons The Erst IS that the time cost of the algo- 

rithm CONTROL 2(Z,J) can be approximated as being 

proportional to J m a quite realistic cost model that 

counts only auxihary page accesses Our theorem shall 
thus imply that worst-case time O((log2M)/(D-d)) IS 

sufflclent for CONTROL 2 to guarantee the rondltlons 

BALxi\C E( d,D) and (d,D)-density when 
(D-a\ > 3 Dog w The second mterestmg point 1s that 

our a@ thm and complexity model generalize to Eles 

not ne,essarily satisfying the constraint 

P-4 > 3 i-b rvrl, using one further idea outlined at 

the end of section 5 

The mtmtlon behind CONTROL 2’s good perfor- 

mance is that if J > n((log2M)/(D-d)} then the 

repeated apphcatlons of J SHIFT operations m step 4 

prevents p(v) from ever exceedmg g(v,l) because the 

aggregate effect of several shifts lowers p(v) to a safe 

value satlsfvmg p(v) < g(v,1/3) before such a vlolatlon 

can occur In order to appreciate the significance of 

CONTROL 2, It must be remembered that the retrieval 

of a “stream” of records with consecutive hey values 

will be faster m a sequential Ele than m a B-tree 

(because the latter entails much disk arm movement 

when consecutive records are not stored m adjacent loca- 

tlons) Update costs are probably somewhat higher 

under CONTROL 2 than under B-tree algorithms, but 

the advantage of storing records m sequential order ~111 

make CONTROL 2 desirable m those apphcatlons where 

frequent stream retrieval requests make the reduced 

disk-arm movement a significant savings Note that 

CONTROL 2, unlike B-trees, 1s programmed to access 

consecutive pages m one fell swoop during update opera- 

tions Typically J should E 18 

Some readers may wonder how a procedure as com- 

phcated as CONTROL 2 was conceived The answer IS 
that CONTROL 2 1s a more elaborate version of the 

simpler algorithm CONTROL 1, which attamed 

0( (log”M)/(D-d)) amortized time A general rule of 

thumb 1s that manq amortized time controlhng pro- 

cedures can be transformed mto worst-case controlling 

procedures with the same complexity, (for instance, see 

[WL85]) The results outlmed in this paper should 

interest the data base designer both because of their 

potential practical applications and because the general 

techniques may be relevant to other types of problems 
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5. Main Analysis And An Example 

This chapter provides an example and some lemmas 

which explam the mtultlon behind the procedure CON- 

TROL 2 

Henceforth, the term measurable time instance 

refers to a moment when CONTROL 2 has Just com- 

pleted executmg one of the steps of 1,2,3,4a,4b, or 4c 

and It 1s about to commence executmg the next of these 

SIX steps We ~111 call a measurable moment type-i off lt 
lmmedlately follows the execution of step 1 The terms 

flag-stable refers to a measurable moment of type 3,4a 

or 4c, and the term flag-unstable refers to the remam- 

mg measurable moments of types 1,2 or 4b The term 

p(x,t) refers to the value of p(x) at the time t Flag- 

stable measurable moments are so named because they 

satisfy the followmg proposltlon 

Fact 6.1. If t 1s a flag-stable moment and x IS a 

calibration tree-node then 

4 p(G) I .&J/3) implies that WARNING(x)=0 at 

the time t, 1 e that x 1s m a non-warmng state, and 

b) d p(x,t) 2 g(x,2/3) for a non-root node x then 

WARNING(x)=1 at this time, I e that x 1s m a 

warnmg state 

The proof of Fact 5 1 IS an lmmedlate consequence 

of the algorlthrnlc defimtlon of CONTROL 2, and It IS 

omitted It should be emphasized that Facts 5 1A and 

5 1B do not hold for flag-unstable moments For 

instance, suppose an msertlon in step 1 causes p(x) to 

increase from an initial value less than g(x,1/3) to a final 

value greater than g(x,2/3) Then WARNING(y) ~111 

not be set equal to 1 until the CONTROL 2’s step 3, 

lmpljmg that the type-l and type-2 moments follo~mg 

this event will violate the condltlon (b) by havmg 

p(x) > g(x,2/3) and WARNING(x)=0 

Throughout this paper, the symbols DEST(v,t) and 

SOURCE(v,t) denote the positions of v’s destmatlon and 

source pomters at the time t Also, N,(t) denotes the 

value of N, at this time, and SET(A-,A+,t) denotes the 

set of records whose address hes m the closed interval 

[A-,A+] at the time t The symbol SET(v,t) 1s an abbre 

viatlon for SET(A;,At,t) The last three defimtlons 

imply that the cardmahty of SET(v,t) equals N,(t) Sets 

of the form SET(A-,A+,t) are called timesets. 

Example 5 2. We will now illustrate an example 

where CONTROL 2 mserts and deletes records m a 

sequential file conslstmg of 8 pages whose density param- 

eters are D=l8 and d=9 The cahbrdtlon tree for this 

file appears m Figure 3 The symbols L,,L, Ls denotes 

its leaves, and vl,vz v7 denotes Its internal nodes 

Throughout our example, it is assumed that J 1s the page 

m the sequential file that corresponds to the leaf L,, that 

IS the leaf L, satisfies the equality AL, = AL: = J 

In our example, t, denotes a flag-stable measurable 

moment, and NL,(tr) indicates the number of records that 

CONTROL 2 stores m the leaf-page L, at the time t, 

We will mahe frequent references to the table m Figure 

4, whose (i,J)-th entry mclicates the value of NL,(tr) Our 

example assumes that CONTROL 2’s parameter J=3 

and that Z, and Z, are two msertion commands given to 

this algorithm 

Let t, denote the measurable moment Just before 

the command Z, 1s given The first row m Figure 4 In&- 

cates the dlstrlbution of records at this time The row 

indicates that all calibration tree nodes satisfy 

p(x,to) < g(x,2/3), and It IS therefore legitimate (I e con- 

sistent with Fact 5 1) to assume that all cahbration tree 

nodes are m a non-warning state at the time t, when our 

example begins 

Suppose .Z, IS a command to insert a record mto the 

page 8 Then step 1 of CONTROL 2 will increment the 

values of each of NLg N,,, NV3 and NV1 As this change 

causes p(Ls) 2 g(Ls,2/3) and p(v3) 2 g(v,2/3), step 3 of 

CONTROL 2 will raise Ls and vs mto urarnrng states 

and assign DEST(Ls) and DEST(v,) the lmtlal values of 

7 and 1, respectively Our example has t, denote the 

flag-stable moment at the end of step 3 when these 

actions are completed 

Smce J=3 m our example, CONTROL 2 next exe 

cutes three iterations of step 4 The first execution of 

step 4a notices that Ls has depth greater than vJ, and 

therefore SELECT returns the vertex Ls The procedure 

SHIFT(Ls) m step 4b will then 

1) set SOURCE(Ls) = 8 

2) move precisely 6 records from page 8 to 7, 

Smce the second action lowers p(Ls) to a value under 

g(Ls,1/3), step 4c of the procedure CONTROL 2 will 

change L, into a non-warning state In our example, t, 

denotes the moment after these actions are completed 

The second execution of step 4 will occur between 

the times t, and t, At the time t,, only vs IS m a warn- 

mg state Therefore SELECT ~111 return v3, and step 4b 

will consequently execute SHIFT(v3) The first part of 

this procedure sets SOURCE(v3) = 2, Its second part 
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actually performs no record movements (because p(L1) 

already exceeded g&,0) at the time when SHIFT was 

called), the third part of SHIFT(v3) then sets 

DEST(v& = 2 CONTROL 2 therefore performs no 

record movements between the times t, and t,, but It 

assigns DEST(v) a new value during this period 

The third execution of CONTROL 2 IS the same as 

the second, except that it attempts to move records 

between the pages 4 and 2, rather than 2 and 1 The 

latter movement 1s successful, and Figure 4 indicates the 

resulting state of the sequential file at the time t, 

Since J=3 m our example, CONTROL 2 will have 

completed J executions of step 4 at the end of the time 

t, The instance t, thus denotes the time when CON- 

TROL 2 has completed execution of the command Z, 

Let Z, denote the next command given to CON- 

TROL 2, and suppose this command IS an order to insert 

a record mto the page 1 The latter causes 

p(L,) 2 g(L,,2/3), and step 3 of CONTROL 2 will there 

fore call the subroutine ACTIVATE(L,) This subrou- 

tme raises L, into a warning state and sets 

DEST(L,) = 2 and DEST(v3) = 1 The third action IS 

due to ACTIVATE’s roll-bath rule 1, and it 1s the first 

occasion m our example where a roll-bath rule 1s 

employed In our example, t, denotes the measurable 

moment following the execution of ACTIVATE(LI) 

The remainder of the command Z, IS similar to the 

command Z, It consists of three executions of step 4, 

whose effect on the sequential file 1s indicated by the 

three rows of Figure 4 for the times ts,t, and ts The 

first iteration of step 4b calls the subroutine SHIFT(L,) 

to move thirteen records from the page 1 to 2 

(SHIFT(L,) stops the record movement after the thlr- 

teenth record transfer because p(L,) 2 g(L,,O) at this 

time) Step 4c of CONTROL 2 ~111 then notice that 

p(L,,ts) 5 g(L,,1/3), and it will accordmgly lower L, 

mto a non-warning state The mam action m the second 

execution of step 4 consists of a subroutine call to 

SHIFT(vs) that moves eleven records from page 2 to 1 

(SHIFT(v3) halts the record transfer after the eleventh 

record movement because p(L1) 2 g(L,,O) at that time) 

A second action of SHIFT(vs) consists of setting 

DEST(vz) = 2 at the end of this procedure The third 

execution of step 4 makes another subroutine call to 

SHIFT(v,), whose effect 1s to move five records from 

page 5 to 2 (record movements stop after the fifth record 

transfer because p(vq) 2 g(vq,O) at this time) At the 

end of this lteratlon, step 4c lowers vQ mto a non- 

warning state on account of the fact that 

p(vz) 2 g(v3,1/3) At the end of this example, all nodes 

m the calibration tree have returned to a non-warning 

state, and the eighth row m Figure 4 indicates the record 

dlstrlbution 

The algorithm CONTROL 2 1~ intended for apphca- 

tions where the File F always has cardmahty less than 

dM and where J, d and D satisfy the mequalities (5 1) 

and (5 2) below 

(D-d) > 3 rlogM1 (5 1) 

J > Q{ r @x”Wl / (D-4) (5 2) 

Theorem 5 5 shall state that CONTROL 2 guarantees 

that the sequential file will satisfy (d,D)-density at the 

end of each insertion and deletion command when the 

file was properly mitiallzed and when the first sentence 

of this paragraph holds At the end of this chapter, we 

will explain how the constramt (5 1) may be dropped 

with a slightly more elaborate algorithm The second 

constraint (5 2) specifies the number of page accesses 

that CONTROL 2 must invoke It tells us, simply, that 

the time O(log2M/(D-d)) 1s sufficient to mamtam (d,D)- 

density because such magnitudes satisfy (5 2)‘s mequal- 

1tY 

It IS important that J, d and D be assigned the 

values recommended m the previous paragraph because 

otherwise CONTROL 2 could cause some pages to even- 

tually contam more than D records See the bottom 

paragraph on page 11 for a summary of the types of 

applications where CONTROL 2 outperforms a B-tree 

and a summary of its mtmtlon 

The proofs m our full-length paper IWi85] are rather 

long, and we will give only an mtuitlve over-view m this 

conference paper We begin with two prehmmary lem- 

mas 

Lemma 5.3. Suppose that d and D satisfy equa- 

tion (5 1) and that some msertlon command of CON- 

TROL 2 causes p(v) > g(v,l) Let t denote the last 

flag-stable moment immediately before this command, 

and let t’ denote the last flag-stable moment before t 

when p(v,t’) < g(v,2/3) Then CONTROL 2 must have 

executed at least 1 M,(D-d) / (3 r log Ml ) J msertlon 

commands whose first step mserted a record mto 

RANGE(v) between the times t’ and t 

Proof. An mspection of the procedure CON- 

TROL 2 reveals that the only aspect of this procedure 
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that can increase p(v) when it IS exceedmg g(v,2/3) IS 

step 1 Furthermore, an mdlvldual mvocatlon of step 1 

can increment p(v) by no more than amount of precisely 

l/W Since between the moment t’ and the first 

measurable moment after t, the quantity p(v) must have 

increased by an amount of at least 

g(v,l) - g(v,2/3) = (D-d) / (3 [ log Ml ), it follows that 

at least L M,(D-d) / (3 r log Ml ) J mvocatlons of step 

1 must have occurred between the times t* and t 

QED 
Corollary 5.4 Say a call to the subroutine SHIFT 

is related to v lff this call occurs when v 1s m a warning 

state and at the same time step 1 of CONTROL 2 has 

inserted a record mto RANGE(v) Then the preceding 

Lemma implies CONTROL 2 must have executed at 

least J L M,(D-d) / (3 [ log M 1 ) J mvocatlons of 

SHIFT that are related to v between the times t* and t 

QED 
Proof. Lemma 5 3 mdlcates that there are at least 

L M&D-d) / (3 [ log Ml ) J occasions between the times 

t’ and t when step 1 of CONTROL 2 has Inserted a 

record mto RANGE(v) Since each such occasion 1s fol- 

lowed by J mvocatlons of SHIFT related to v, there 

must be a total of at least J L M,(D-d) / (3 [ log M 1 ) J 

related SHIFT operations occurrmg between the times t’ 

andt QED 

Theorem 5 5. Let F denote a (d,D)-dense file 

whose records are mltlally distributed with a uniform 

density over the address space Suppose d,D and J 

satisfy equations (5 1) and (5 2), and the algorithm CON- 

TROL 2 1s employed to perform msertlons and deletions 

on a file F whose cardmahty never exceeds N=dM 

Then this file will satisfy the bound BALANCE(d,D) at 

the end of each msertlon and deletion command per- 

formed by CONTROL 2 

The formal proof of Theorem 5 5 appears m [W185], 

and it 1s too 1engThy to present wlthm the space limits 

mdlcated m SIGMOD’s call for papers However, we can 

explain the mtmtlon behind Theorem 5 5 by sketchmg 

how a vlolatlon of the BALANCE(d,D) condltlon would 

imply a contradlctlon 

The combmatlon of Corollary 5 4 and equation (5 2) 

lwly that v can not violate the condltlon 

BALANCE(d,D) without the execution of at least 

6 M, log M SHIFT operations that are related to v 

occurrmg between the times t’ and t Our formal proof 

m [W185] examines the lmphcatlons of such a large 

number of SHIFT operations, it concludes this sequence 

must necessarily lower p(v)% value, at some moment 

between t’ and t, to a quantity strictly less than 

g(v,2/3) The key aspect of the last sentence 1s that lt 

contradicts Lemma 5 3’s defimtlon of t’, that IS, Lemma 

5 3 defined t* to be the last flag-stable moment when 

p(v,t*) < g(v,2/3) before v violates the constramt 

BALANCE(d,D), but the previous sentence has noted 

that p(v) must fall beneath g(v,2/3) at some later 

moment, between the times t’ and t This contradlctlon 

arose because the first sentence of this paragraph 

assumed v vlolated the condltlon BALANCE(d,D), this 

contradlctlon shows such a violation can not actually 

occur, and it thereby verifies Theorem 5 5’s claim (See 

the unabridged version of our paper [W185] for the added 

details of a formal proof ) Q E D 

If we take J 2 Wo&M) / (D-41 then 

CONTROL 2’s worst-case time limit satisfies 

O((log’M) / (D,d)) Smce every BALANCE(d,D) file also 

satisfies the constraint (d,D)-dense, Theorem 5 5 thus 

lmphes 

Corollary 5.6. Let F denote a (d,D)-dense sequen- 

tial file whose records are mltlally distributed with a um- 

form density throughout this file Suppose 

D-d > 3 [logMl Then the algorithm CONTROL 2 

can mamtam the condltlon (d,D)-density by executmg no 

more than O((log2M) / (D-d)) page-shift operations per 

msertlon and deletion command 

Fmally, we observe that an algorithm analogous to 

CONTROL 2 can also eficlently mamtam (d,D)-density 

m the same time O((log”M) / (D-d)) when the mequahty 

(D-d) > 3 [ log Ml does not hold The related algo- 

rithm IS easiest to describe, if we let K denote the least 

integer such that 

K(D-d) > 3 [ log M 1 (5 3) 

Define the I-th macro-block in the sequential file to be 

those page addresses P that satisfy the equality 

[P/K1 =1 (5 4) 

Our algorithm for the alternate case where 

D-d < 3 [ log Ml ~111 be the same as CONTROL 2 

except that It ~111 shift records between macro-blocks 

relative to a (d#,D#)-dense constraint where D# = KD 

and d# = Kd, rather than shift records between normal 

sized pages Smce macro-blocks are K times as large as 

the normal sized pages, one must of course consider 

macro-block shift operations to be K times as costly as 
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shifting records between standard sized pages By Corol- 

lary 5 6, the revised algonthm’s cost IS therefore 

Wx2M) / (W-W, m macro-block operations, a 

quantity which translates mto time O((log2M) / (D-d)) 

when measured m terms of normal size page operations 

(The mtmtlve reason for the final cost of our procedure 

to be the same for the two cases where (D-d) IS and IS 

not greater than 3 r log Ml 1s that the cost from 

translating macro-pages to umt-sized pages 1s less than 

the dommant cost given m Theorem 5 5 ) We have thus 

mformally proven the followmg theorem 

Theorem 6.7. For each d<D, it 1s possible to per- 

form msertlons and deletions m worst-case time 

O(log2M / (D-d)) m (d,D)-dense sequential files 

Our full-length paper [W185] proves that 

J s 9Or log2M1 / (D-d) IS one adequate value for the J 

parameter m Figure 2 and m Equation (5 2) The proof 

of this fact m [W185] IS approximately 40 pages long, and 

a more elaborate proof can m fact reduce Theorem 5 5’s 

J-parameter by at least one order of magnitude (and 

probably by 1 l/2 magnitudes) 

The update algorithms m Theorem 5 5 thru 5 7 are 

intended for apphcatlons where streams of records with 

consecutive key values are frequently accessed 

Although B-trees may have a smaller update cost than 

CONTROL 2, they are less desirable m an environment 

where many stream retrieval requests occur because of 

the Increased latency delay arising when the disk draws 

consecutive keys from non-adjacent memory locations 

Incidentally, the asymptote O(log’M/(D-d)) definitely 

over-estimates CONTROL 2’s real cost because CON- 

TROL 2, unhke a B-tree procedure, can be programmed 

to access adjacent pages during its update task [W182] 

describes a somewhat more sophlstlcated version of 

CONTROL 2 that has a better coefficient, and Hofrl- 

Konhelm-Willard (HKW86] show that an expected time 

O(1) 1s possible under similar procedures 

Figure 1A 

131211121 
Figure 1B 

The number of records m 4 pages of a dense file 
(Figure la) and its accompanymg cahbrator (Figure 
lb) In this example, d=2 and D=3, and the 
number mslde the node v 1s Its density p(v) 

Figure 2 The procedure of CONTROL 2(Z,J) 

Alrrorlthm CONTROL 2(Z, J) 

1) 

2) 

3) 

4) 

Use the calibrator as a bmary search tree to calcu- 
late the address of the record specified by the com- 
mand Z If Z IS a deletion command then remove 
the relevant record from the sequential file and ac- 
cordingly decrement the rank counters N, m the 
cahbratlon tree that require change If Z 1s an 
insertion command then add this record to the 
sequential file and Increment the rank counters N, 
m the cahbratlon tree that require change 

If step 1 caused an 
satisfy p(x) 5 g(x,l 3) 7 

node m a warnmg state to 
then lower x mto a non- 

warning state, 1 e set WARNING(x)=0 

If step 1 caused p(w) > g(w,2/3) for a nonroot node 
w m a non-warnmg state then call ACTIVATE(w) 
(to essentially raise w mto a warnmg state) 

Let L denote the leaf-address of the record R that 
was inserted or deleted bv sten 1 Perform J ltera- 
tlons of the followmg cyclk of i commands, 
a) Set v + SELECT(L) 
b) Do SHIFT(v) 
c) If step b caused any node m a warnmg state to 

satisfy p(x) 5 g(x,1/3) then lower x mto a 
non-warnmg state, I e set WARNING(x)=0 

End of algorithm 
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Figure 3 

The callbratlon tree for the 8-page file discussed 1n 
Example 5 2 

Figure 4 

The changes 1n the record distribution over time 
for Example 5 2 
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