
Evaluation of a Resource Selection Mechanism
for Complex Network Services

Julio C. López David R. O’Hallaron

Carnegie Mellon University
Pittsburgh, PA 15213, USA�
jclopez,droh � @cs.cmu.edu

Abstract

Providing complex (resource-intensive) network services
is challenging because the resources they need and the re-
sources that are available can vary significantly from re-
quest to request. To address this issue, we have proposed
a flexible mechanism, called active frames, that provides a
basis for selecting a set of available distributed computing
resources, and then mapping tasks onto those resources. As
a proof of concept, we have used active frames to build a
remote visualization service, called Dv, that allows users to
visualize the contents of scientific datasets stored at remote
locations. In this paper, we evaluate the performance of ac-
tive frames, in the context of Dv. In particular, we address
the following two questions: (1) What performance penalty
do we pay for the flexibility of the active frames mecha-
nism? (2) Can the throughput of a service based on active
frames be predicted with reasonable accuracy from micro-
benchmarks? The results of the evaluation suggest that the
overhead imposed by active frames is reasonable (roughly
5%), and that simple models based on micro-benchmarks
can conservatively predict measured throughput with rea-
sonable accuracy (at most 20%).

1 Introduction

In a typical client-server transaction, the server performs
a fast and simple operation, such as fetching a file, querying
a database, or running a small script, in response to a client’s
request. Service providers are generally unwilling to sup-
port complex (i.e. resource-intensive) services because of
the potential for unacceptably high loads on their systems.
Thus the following general question: How might we pro-
vide complex network services without overly stressing the
resources of the service providers?

To be more concrete, suppose we would like to imple-
ment a complex network service that allows our colleagues

to interactively visualize a large scientific dataset stored at
our site. To access this service, a user requests some chunk
of time and space (the region of interest) to be viewed as
some number of isosurfaces at a particular resolution and
from a particular distance and angle. The response is a
complex sequence of tasks: reading the appropriate floating
point numbers from the dataset, downsampling to the de-
sired spatial and temporal resolution, converting the num-
bers to polygonal isosurfaces, rendering the polygons to
pixels, and then painting the pixels on the user’s screen.

So how might we implement this kind of complex ser-
vice? One extreme is to perform all the computation on the
server host. While this approach is good for clients, it might
place unacceptably high load on the server. The other ex-
treme is to perform all of the work on the client host. While
this approach reduces load on the server, in some cases it
requires higher bandwidth to transfer the data to the client
and the client host might not have sufficient resources for
the job. For example, the user may be accessing the service
from a laptop or PDA with limited memory and graphics
capabilities. As a compromise between these two extremes,
we may need to partition the work between the client and
the server hosts. And in some cases, when the combined
resources of the client and origin server are insufficient, we
may need to employ additional compute hosts, partitioning
the work among the origin server, the compute hosts, and
the client host.

The point is that different requests require different re-
sources and different mappings of tasks to these resources.
To have any hope of providing complex resource-intensive
network services, two issues must be addressed:

1. Flexible and efficient mechanisms for selecting and ag-
gregating hosts (and the networks that connect them),
and for assigning and running tasks on these hosts.

2. Resource-aware application-level scheduling
algorithms[4] to guide the mechanism in (1).

To address (1), we have developed a flexible mechanism

Network

Local site

Dataset

Local site

Remote site

Local
compute
host

Compute hosts

Figure 1. Scenario for a service based on active frames.

based on Java [12], called active frames, that allows ser-
vices to easily move computations and data among different
hosts. We have used the active frames mechanism to build a
remote visualization service, called Dv, also based on Java,
that allows us to partition a sequential visualization program
on arbitrary configurations of distributed hosts [14, 15].
Figure 1 summarizes the basic idea, where a remote vi-
sualization service uses remote hosts storing the dataset,
other compute hosts at the remote site, hosts at intermediate
points in the network, as well as hosts at the various local
sites. Active frames and Dv are described in Sections 2 and
3.

This paper addresses the following two questions about
active frames, in the context of a remote visualization ser-
vice:

� What performance penalty on the hosts do we pay for
the flexibility of the active frames mechanism? This
is an important question because the decision to base
active frames on Java raises the specter of unaccept-
ably high host overheads. The results of the micro-
benchmarks in Section 4.1 indicate that the active
frame host overheads are reasonable, on the order of
5% of total running time (the remainder is spent ex-
ecuting visualization routines written in native C++
code).

� Can the frame rates of a service based on active
frames be predicted with reasonable accuracy from
micro-benchmarks? This is an important question be-
cause it is a sufficient condition for designing effective
application-level scheduling algorithms. If we can es-
timate the frame rates of different resource configura-
tions, then we have a basis for choosing one configura-
tion over another. It is also a non-obvious question be-
cause of the uncertainties introduced by the Java thread
scheduling and garbage collection mechanisms. The
results in Sections 4.2–4.4 give us some confidence
that throughput is indeed predictable. Since the tests
were run on a LAN with little cross-traffic, this claim

is valid only for those cases where throughput is domi-
nated by host performance rather than network perfor-
mance. Given the complexity of tasks such as isosur-
face extraction, this claim is likely to hold for WANs
as well, but a convincing answer must come from real
tests.

2 Active frames

An active frame is an application-level transfer unit that
contains both application data and a program. Figure 2 il-
lustrates the basic architecture. Frame servers are user-level

Frame Server

Frame
interpreter

Application
specific
libraries

frame
program

frame
data

Input active frame Output active frame

frame
program

frame
data

Figure 2. Active frame server.

Java processes that execute and forward active frames. The
frame server consists of a frame interpreter and libraries
with application-specific routines that can be called by ac-
tive frames. The active frame interface declares a single
execute method.

interface ActiveFrame {
HostAddress execute(ServerState state);

}

The frame program specifies the computation to perform
on the data. Application-specific frames provide the appro-
priate implementation of the execute method. The exe-
cute method is called when the frame arrives at the server.
When the frame execution finishes, the frame server for-
wards the frame to the server with address returned by the
execute method.

This simple mechanism allows applications to specify
what operations to execute on the data and where to ex-
ecute them. Resource intensive services can move com-
putation and data to take advantage of the extra resources
other compute servers offer. In essence, a service can use
application- specific information and request parameters to
select resources to satisfy a request.

Frame servers do not provide many services besides ex-
ecuting and forwarding frames. Instead, frame servers can
be extended using Java’s dynamic class loading or through
application-specific libraries. The dynamic code loading
mechanism is well suited for small programs, like “glue
code”, carried by the active frames. The application li-
braries are well suited for complex or compute intensive
code or when size of the code makes it impractical to load
it on demand over a slow network. The application li-
braries are co-located with the servers. The frame servers
load these libraries at initialization time. Later, application-
specific active frames can call into these libraries through
JNI [11, 7], which is Java’s mechanism to execute platform
dependent code. This mechanism also has the advantage
that it permits the use of existing code and libraries with
active frames.

3 The Dv remote visualization service

Dv is a remote visualization service built on top of ac-
tive frames. The service is provided using a series of frame
servers specialized with vtk [22] libraries and C/C++ rou-
tines for transferring datasets over TCP connections. Dv
enables users to visualize datasets stored at remote hosts.

The Dv service can be thought of as a series of queries to
a remote dataset. The data is transformed by a series of fil-
ters to produce a visual representation of the data. Figure 3
shows the basic idea. The Dv client sends an active frame
with a request to the server with the dataset. The server
sends back to the client a series of active frames with the re-
sponse(s). These response frames are executed by the frame
servers in the path back to the client, transforming the data.
Transformations are expressed in the form of a visualization
flowgraph, where each node

�
denotes a filter and each edge� �������

denotes that the output of filter
�

is the input of filter
�
.

The nodes of the flowgraph are partitioned dynamically by
the active frames. For example, the first frame server might
execute node 1, the second frame server nodes 2 and 3, and
so on. This flexible partitioning scheme allows us to run
the service under different resource configurations without
having to modify the application code.

The Dv client is a frame server extended with an inter-
face for reading user input and displaying the output. Dv
defines various active frames used in the visualization ser-
vice. To initiate a Dv session, the Dv client sends a special
kind of active frame, called a request handler, to a server,

called the source server, that is co-located with the remote
dataset. During a session, the Dv client sends a series of re-
quest frames to that Dv server. Each request frame contains
visualization parameters, the flowgraph, and a scheduler
that assigns flowgraph nodes to servers. The request han-
dler produces a sequence of one or more response frames,
which eventually end up back at the Dv client, where they
are displayed.

Resource selection: Since nodes in the flowgraph can be
executed independently we can use active frames to execute
flowgraph nodes at different hosts. The application provides
an implementation of the scheduler interface. The sched-
uler is called to obtain the mapping of flowgraph nodes to
compute hosts. The scheduler can use application-specific
information to decide where to execute a particular node
of the flowgraph. The scheduler is called in every server the
frame travels through to obtain the host where the next node
in the flowgraph should be executed. This allows the imple-
mentation of dynamic resource selection policies at frame
delivery time.

4 Evaluation

The evaluation answers the following two questions:
� What is the overhead introduced by the active frame

mechanism? To answer this question, we use micro-
benchmarks to characterize the elapsed times of indi-
vidual visualization operations.

� Can the frame rate observed in different resource con-
figurations be estimated from measurements of elapsed
times of individual operations? To answer this ques-
tion, we run the service using three different resource
configurations (base, pipe, and fan) and we use the
results from the micro-benchmarks along with simple
models to estimate the frame rate of each resource con-
figuration. Then we compare the estimated frame rate
with the measured frame rate.

The input dataset was produced by the 183.equake
program from the SPEC CPU2000 benchmark suite [8,
20]. The dataset characterizes the simulated motion of the
ground in a 50km x 50km x 10km chunk of the San Fer-
nando Basin during an earthquake [3]. The volume of earth
is discretized into an unstructured three-dimensional mesh
with 30K nodes and 151K tetrahedral elements. The dataset
contains 101 frames, one frame per output time-step. Each
frame is 120KB, and consists of scalar values that corre-
spond to the horizontal displacements of the mesh nodes.
The visualization application generates an animation of all
the input frames over the entire volume of the basin, com-
puting various isosurfaces that track the advancing front of
the seismic wave. For this evaluation we chose to compute
1, 5, 10, 15 and 20 isosurfaces.

Request

Response

Remote
server

Compute
server

Dv client

dataset

Response Response

Compute
server

Figure 3. Dv execution model.

Scene
synthesis

Rendering
Local

display
Isosurface
extraction

Reading dataset

Client host Compute host Source host

Figure 4. Micro-benchmark and pipe setup.

4.1 Micro-benchmarks

To determine the overhead introduced by the active
frame mechanism, we measured the individual times of
each step in the visualization, comparing the running times
of the steps related to active frames to the total running
time. This experiment involves the three hosts shown in
Figure 4: a source host, a compute host, and a client host.
The client host is a Pentium-III/450MHz machine with 512
MB of memory running NT 4.0 with a Real3D Starfighter
AGP/8MB video accelerator. The compute and source hosts
are 550 MHz Pentium III machines with 256 MB of mem-
ory and Ultra SCSI hard disks running version 2.2.16 of the
Linux kernel. The compute and source hosts are connected
with a 100 Mbps switched Ethernet. The client communi-
cates with the servers through a 10Mbps Ethernet. The Dv
servers run with JDK version 1.2.006 [17] using the clas-
sic Java VM [12] and no just-in-time compiler. The visual-
ization library used to process the datasets is vtk version
2.4 compiled with gcc. The initial heap size for the frame
servers was 128 MB and the maximum was 220 MB.

Executing the flowgraph using active frames requires the
following steps (steps related to active frame processing are
denoted with a “*”):

� Read: The read operation is performed by the source
host. The dataset structure (the mesh) is loaded once at
the beginning of a client session. This operation reads
the time-step data (displacement values) to satisfy a
particular request.

� Mesh data transfer: In this step the mesh data is trans-
fered from the source host to the compute host.

� *Active frame transfer 1: In this operation the state
used in the active frame is transfered from the source

host to the intermediate compute host. This in-
cludes marshalling, transferring, and unmarshalling
the frame. This operation is directly related to the ac-
tive frames mechanism.

� Isosurface extraction: This operation computes an iso-
surface using the values in the dataset. This is a CPU
intensive operation.

� Poly data transfer: This step transfers the polygonal
data generated by the isosurface extraction from the
compute host to the client.

� *Active frame transfer 2: In this operation the state
used in the active frame is transfered from the compute
host to the client. This operation is directly related to
the active frames mechanism.

� Render: This operation synthesizes the scene, and ren-
ders and displays the output of the visualization pro-
cess at the client.

For this experiment, the client requests only one visu-
alization frame at a time. At any given point during the
experiment there is only one frame in execution in the sys-
tem. Each operation is executed sequentially so there is no
interference from other operations or frames.

Figure 5 shows the mean time in milliseconds to com-
plete each operation when only one isosurface is extracted.
The time shown in the table is the average time over 50 runs
of the visualization service. Each run processes 101 data
frames (simulation time steps). The third column in Fig-
ure 5 shows the percentage of the total time taken by each
operation.

Figure 6 shows the mean time in milliseconds per opera-
tion for various values of the number of isosurfaces parame-
ter. As the number of isosurfaces increases, the computation

Operation time (ms) %
Read 269 16
Mesh transfer 555 32
AF transfer 1 38 2
Iso extraction 744 43
Poly transfer 29 2
AF transfer 2 55 3
Render 30 2
Total 1719

Figure 5. Mean elapsed time per operation for
1 isosurface (micro-benchmarks).

needed to process a frame increases. The main contributor
to the increase in the processing time per frame is the iso-
surface extraction operation itself. The poly data transfer
and render times also increase due to the increase in the
size of the isosurface extraction’s output (more polygons to
transfer and render). However, some of the operations in
the process, including the ones related to active frames, are
not affected by this parameter and their execution time does
not change. The error bars in Figure 6 correspond to 90%

0

100

200

300

400

500

600

700

800

900

1000

Read Mesh transfer AF transfer 1 Iso extraction Poly transfer AF transfer 2 Render

operation

m
ili

se
co

nd
s

1

5

10

15

20

Figure 6. Mean elapsed time per operation
(micro-benchmarks).

confidence intervals. The high variability of some of the
operations can be explained. Figure 7 shows the elapsed
time to perform the isosurface extraction step. The oper-
ation is very predictable until around the 35th time step is
requested from the dataset. At this point, even though the
average time to complete the operation is similar, a higher
variability is observed. This behavior is an artifact of the
implementation. When the frame server in the intermedi-
ate compute host consumes all the memory available in its
heap, the garbage collector executes, halting the processing
of frames. This affects all operations running on the com-
pute server. The operations in Figure 6 with relatively high
variation have a behavior similar to the one shown in Fig-
ure 7.

To summarize, the steps related to active frames account

0

200

400

600

800

1000

0 20 40 60 80 100

m
ili

se
co

nd
s

timestep

Figure 7. Isosurface extraction time (micro-
benchmark).

for less than 5% of the total running time, which seems rea-
sonable. In general, the processing of active frames remains
fairly constant independent of application parameters, thus
we expect that for application parameters that require more
computation (e.g., more operations in the flowgraph) and
larger datasets, the relative cost of processing active frames
will be even lower. Also, we expect the size of active frames
to be relatively small for most applications, since active
frames act as glue code that call into libraries loaded in the
servers. Thus we expect the cost of processing and transfer-
ring active frames to be low for other applications as well.

4.2 Base setup

Our second question asks whether the results from the
micro-benchmarks are useful for estimating the frame rate
of a visualization session. To answer this question, we ex-
ecuted the service with three different resource configura-
tions: base, pipe, and fan and various values for the number
of isosurfaces parameter (1, 5, 10, 15, 20). Then we com-
pared the measured frame rate with the frame rate derived
from the micro-benchmarks. Despite initial concerns that
the variability introduced by the frame server implementa-
tion might make it more difficult to estimate frame rates, we
find that we are able to conservatively estimate them using
simple “back-of-the-envelope” models.

In the micro-benchmark experiments, frames are pro-
cessed sequentially and thus there is no overlapping in the
processing of different frames. In the following setups
(base, pipe and fan) multiple frames belonging to a client
session are processed simultaneously, and thus there is over-
lapping between the various operations of the flowgraph.

In order to obtain an estimate of the frame rate we use
the following formula:

���
fr ��� ���	��
��
 servers

��� ��� ��� � � � � ����� (1)

Isosurface
extraction

Scene
synthesis

Rendering
Local

display
Reading dataset

Source hostClient host

Figure 8. Base setup.

Variable
� � is the demand on server

�
and is given by:

� � � ���
 ops �
� ���

op� � �

���
op � � is the expected time to complete operation

�
of the

flowgraph and obtained from the micro-benchmarks.
� � is

the sum of the elapsed times of the operations that server
�

must execute in order to process a single frame. In essence,
this is the time a server spends processing a single frame.��� � � � is the expected number of visits for a frame to server�

(i.e., the fraction of the total number of frames that go
through server

�
).

The base setup uses only the two hosts shown in Fig-
ure 8. The source host (right) stores the dataset. The source
server executes the read, isosurface extraction, poly data
transfer, and active frame transfer 2 operations. Note that
the active frame transfer 1 and mesh data transfer opera-
tions are not necessary since read and isosurface extraction
are executed in the same server. The client (left) executes
the poly data transfer, active frame transfer 2, and render
operations.

Host
� � ��� � � � � � � fr�

(ms) (fps)
Source 1096 1 0.91
Client 113 1 8.85

Figure 9. Demand on host per frame for 1 iso-
surface (Base)

Figure 9 shows the demand, expected number of visits
and frame rate for each host when only one isosurface is
visualized. According to the model the source server is the
bottleneck and the frame rate is limited to 0.91 fps (frames
per second). The observed frame rate for this setup is
1.04 fps when one isosurface is visualized (See Figure 10).
In this case the estimate is within 12% of the observed
throughput.

Figures 10 and 11 show the observed frame rate for the
other values of the number of isosurfaces parameter. Each
data point is the average across 50 runs. The observed frame

isos Observed Estimated Error
frame rate frame rate %

1 1.04 0.91 12
5 0.96 0.92 4
10 0.91 0.86 4
15 0.86 0.84 2
20 0.81 0.79 2

Figure 10. Estimated and observed frame
rates (Base).

rate is consistent despite the high variability observed in
some operations in the micro-benchmark (See Figure 7).

0
0.2
0.4
0.6
0.8

1
1.2

1 5 10 15 20

F
ra

m
e

ra
te

 (
fp

s)

Number of isosurfaces

observed
estimated

Figure 11. Frame rate (Base).

The estimate is lower because it assumes that while
transferring a frame or application data, no other op-
eration can be executed. This is clearly not the case
since these operations are I/O bound, and can be in-
terleaved with CPU bound operations such as isosur-
face extraction or rendering. Notice that as the ratio of
compute operations � IO operations increases, the estimated
frame rate approximates the observed frame rate.

4.3 Pipeline setup

This resource configuration is the same as the one used
for the micro-benchmarks (See Figure 4). It involves three
servers: the source server (right) executes the read, mesh
data transfer, and active frame transfer 1 operations; the
compute server (middle) executes the following operations:

mesh data transfer, active frame transfer 1, isosurface ex-
traction, poly data transfer, and active frame transfer 2.
In contrast with the micro-benchmark experiment, multiple
frames for a session are processed in the pipeline simulta-
neously to achieve a higher frame rate.

Host
� � ��� � � � � � � fr �

(ms) (fps)
Source 862 1 1.16
Compute 1420 1 0.70
Client 113 1 8.85

Figure 12. Demand on host per frame for 1
isosurface (Pipe)

According to the model, this configuration has a lower
frame rate than the base setup. The intermediate compute
server becomes the bottleneck with a frame rate of 0.7 fps
when extracting one isosurface (See Figure 12). The cost of
transferring the data from the source server to the compute
server offsets the benefit obtained by offloading the isosur-
face extraction from the source server to the compute server.

isos Observed Estimated Error
frame rate frame rate %

1 0.83 0.70 15
5 0.83 0.74 11
10 0.79 0.70 11
15 0.76 0.68 11
20 0.72 0.65 10

Figure 13. Estimated and observed frame
rates (Pipe).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 5 10 15 20

F
ra

m
e

ra
te

 (
fp

s)

Number of isosurfaces

observed
estimated

Figure 14. Frame rate (Pipe).

Figures 13 and 14 show the frame rate for different
values of the number of isosurfaces parameter. Again the
model produces a conservative estimate of the frame rate.
The observed frame rate is 0.83 fps and the error for the
estimation is 15% for 1 isosurface. (See Figure 13). The
higher error in this setup, compared to the base setup, can

be attributed to the additional IO operations needed in this
setup, namely the mesh and active frame transfers.

4.4 Fan setup

The purpose of the fan configuration (Figure 15) is to
increase the frame rate by reducing the load of the interme-
diate compute server. Each server now sees only � ��� of the
total frames processed in a session.

Host
� � ��� � � � � � � fr �

(ms) (fps)
Source 862 1 1.16
Compute 1420 1/3 2.11
Client 113 1 8.85

Figure 16. Demand on hosts per frame for 1
isosurface (Fan)

According to the model, in this configuration the source
server becomes the bottleneck again. Figure 16 shows the
expected demand, visits and frame rate for the visualization
of one isosurface in the fan setup. In this case the source
server limits the frame rate to 1.16 fps. The observed frame
rate of 1.46 fps is consistent with the estimated frame rate.

isos Observed Estimated Error
frame rate frame rate %

1 1.46 1.16 20
5 1.45 1.18 19
10 1.45 1.16 20
15 1.45 1.21 17
20 1.45 1.24 14

Figure 17. Estimated and observed frame
rates (Fan).

Following the same procedure described above, we ob-
tain the estimated frame rates, shown in Figures 17 and 18,
for other values of the number of isosurfaces parameter.

Again the estimate is conservative (See Figure 18), in
this case falling up to 20% short, relative to the observed
frame rate. This is due to the increase in the overlapping
between I/O and CPU operations, which the model does not
take into account.

4.5 Evaluation summary

To summarize the results of the evaluation:
� The results from the micro-benchmark experiment

show that the overhead introduced by the active frames
mechanism is relatively low.

Isosurface
extraction

Compute hosts

Reading dataset

Source host

Scene
synthesis

Rendering
Local

display

Client host

Figure 15. Fan setup.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 5 10 15 20

F
ra

m
e

ra
te

 (
fp

s)

Number of isosurfaces

observed
estimated

Figure 18. Frame rate (Fan).

� The results from the micro-benchmarks are also use-
ful for predicting frame rates under three different re-
source configurations.

5 Related work

The use of application-level information to select re-
sources was proposed by the AppLeS (Application Level
Scheduler) work [4]. An AppLeS contains information
about the structure of the application and its resource
requirements. The AppLeS obtains information about
resource availability from the Network Weather Service
(NWS) and then partitions the application and selects the
appropriate resources on behalf of the application. The
work presented in this paper is inspired by the AppLeS
work. We believe that in order to use the resources better
and meet the application needs it is necessary to use infor-
mation about the structure of the application and its resource
needs.

Bundling programs with data has been explored in var-
ious contexts. Active Messages [24] are used in the
communication messages of parallel programs. In Ac-
tive Networks [23], capsules are used to perform limited
“lightweight” computation in the network routers. This ap-
proach is used to deploy new protocols and support network
administration tasks. The Active Network’s transfer units,

capsules, contain information about the “protocol handler”
that should process the capsule. Active Services [1] pro-
poses to push the “active” functionality towards the end-
points instead of placing this functionality in the network
core. A similar approach is exploited in [6] to deploy multi-
media services for resource limited clients. ABACUS [2] is
used in System Area Networks with data intensive applica-
tions to support automatic function migration between the
storage hosts and the clients. Our active frames approach
provides a flexible mechanism to move data and code in re-
source intensive application.

Process level migration and application mobility is sup-
ported in systems like Condor [13], Sprite [5]. These sys-
tems try to support transparent process migration usually to
take advantage of underutilized resources and balance the
load in a cluster of workstations. Similarly systems like
PUNCH [10] and NeOS [18] allow the remote execution of
complex optimization solvers or resource intensive appli-
cation through a web interface. In general, the application
has little control of when and where it will execute. Emer-
ald [9] supports fine-grained application controlled mobil-
ity. Active frames support coarser grained mobility, mean-
ing that the executing code cannot be migrated at any ar-
bitrary point, but only at the boundary of coarse level op-
erations. This approach also gives more control to the ap-
plication to decide where and when to execute a particular
operation. Our framework relies on the mechanisms pro-
vided by Java [12] to move the computation among hosts.

Systems like REMOS [16] and NWS [25] provide infor-
mation about resource availability on a computational grid.
The information provided by these systems could be used
to drive the resource selection for our visualization service
and other services built on top of active frames.

Odyssey [19, 21] provides support for application adap-
tation in the context of mobile and ubiquitous computing.
Odyssey introduces the concept of fidelity to define the qual-
ity of the output or service the user gets. A mobile device
running Odyssey (i.e., a laptop) monitors the usage of re-

sources like CPU, battery, network and cache state in the
system. Odyssey provides feedback to the running appli-
cations to adjust their fidelity levels and thus the resource
usage to meet a certain goal (i.e,: battery duration). We
think Odyssey’s approach and ours are complementary. For
example, if a user accesses our remote visualization service
from an Odyssey enabled device, the visualization service
could obtain feedback from Odyssey and allocate resources
accordingly to meet the user’s goals.

6 Future work

So far, we have been able to run our remote visualiza-
tion service in a LAN environment with relatively small
datasets. The active frame mechanism has enabled us to
manually choose from various resource configurations to
run our visualization service without modifying the appli-
cation.

Our long term goals include (1) automating the resource
selection process and (2) enabling the visualization of larger
datasets over wide area networks.

The basic steps of an automatic resource selection mech-
anism include resource requirements characterization, re-
source availability prediction/reservation and the resource
selection itself. Our current system provides some basic ca-
pabilities to characterize the resource requirements (CPU
and network) to execute a particular operation of the ap-
plication, given some input parameters. In order to auto-
mate the resource selection process we need a robust mech-
anism to characterize these resource requirements. For ex-
ample, how does the system provide resource requirement
data when the application executes with a set of parame-
ters that the system has not seen before. Our current sys-
tem works under the assumption that resources are dedi-
cated to a particular application. In order to enable complex
network services like our remote visualization service over
WANs, it is necessary to account for other users’ requests
and applications competing for resources. Dynamic infor-
mation about resource availability from systems like RE-
MOS and NWS is needed to make the appropriate resource
selection. Finally, the resource selection mechanism has to
be robust to avoid oscillations and at the same time it has to
be lightweight, so as avoid a high overhead in the system.
In essence an on-time suboptimal decision is more valuable
that a late optimal decision.

7 Conclusions

The deployment of resource-intensive network services
is challenging because of the dynamics of application re-
source consumption and resource availability. Often, the
available resources are insufficient to satisfy a user request.

In order to overcome these challenges, applications should
be able to select and aggregate multiple resources using
application-level information. We have presented a flexi-
ble mechanism, called active frames, that allows applica-
tions to easily move computation and data among compute
hosts. We have shown that the overhead introduced by the
active frames mechanism is reasonable. The active frame
mechanism allows the use of application-level information
to effectively take advantage of the resources at the compute
hosts. We have used the interface provided by the active
frames to allow the user to statically select the resources
used to satisfy a request of our visualization service. We
used simple models to characterize the expected frame rate
of a particular resource configuration. The results suggest
that it is possible to automate the process of resource selec-
tion using a process similar to the one we did manually to
estimate the observed frame rate.

Acknowledgments

We gratefully acknowledge the contributions of Martin
Aeschlimann, Peter Dinda, and Bruce Lowekamp in the de-
velopment of the active frames and Dv systems. Loukas
Kallivokas gave us helpful direction on the visualization
process. The work was sponsored in part by the Ad-
vanced Research Projects Agency and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement
number F30602-96-1-0287, in part by the National Science
Foundation under Grant CMS-9980063, and in part by a
grant from the Intel Corporation.

References

[1] E. Amir, S. McCanne, and R. Katz. An active service frame-
work and its application in real-time multimedia transcod-
ing. In SIGCOMM’98, pages 178–189. ACM, Sep 1998.

[2] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic
function placement in active storage clusters. Technical Re-
port CMU-CS-99-140, Carnegie Mellon University, 1999.

[3] H. Bao, J. Bielak, O. Ghattas, L. Kallivokas, D. O’Hallaron,
J. Shewchuk, and J. Xu. Large-scale simulation of elastic
wave propagation in heterogeneous media on parallel com-
puters. Computer Methods in Applied Mechanics and Engi-
neering, 152:85–102, Jan. 1998.

[4] F. Berman and R. Wolski. Scheduling from the perspec-
tive of the application. In Proceedings of the Fifth IEEE
Symposium on High Performance Distributed Computing
HPDC96, pages 100–111, August 1996.

[5] F. Douglis and J. Ousterhout. Transparent process migra-
tion: Design alternatives and the Sprite implementation.
Software – Practice & Experience, 21(8):757–785, Aug
1991.

[6] A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapting to
network and client variability via on-demand dynamic dis-
tillation. In Sixth International Conference on Architectural

Support for Programming Languages and Operating Sys-
tems (ASPLOS VI), Cambridge, MA, Oct. 1996. ACM.

[7] R. Gordon. Essential JNI: Java Native Interface. Prentice
Hall, 1998.

[8] J. Henning. Spec2000: Measuring CPU performance in the
new millenium. IEEE Computer, pages 28–35, July 2000.

[9] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Com-
puter Systems, 6(1):109–133, Jan 1988.

[10] N. Kapadia and J. Fortes. On the design of a demand-based
network-computing system: The purdue university hubs.
In Seventh IEEE International Symposium on High Perfor-
mance Distributed Computing, Chicago, IL, July 1998.

[11] S. Liang. The Java Native Interface: Programmer’s Guide
and Specification. Java series. Addison-Wesley, 1999.

[12] T. Lidholm and F. Yellin. The Java Virtual Machine Specifi-
cation, 2nd Edition. Addison-Wesley, Menlo Park, Califor-
nia, 1999.

[13] M. Litzkow, M. Livny, and M. Mutka. Condor — A hunter
of idle workstations. In Proceedings of the Eighth Confer-
ence on Distributed Computing Systems, San Jose, Califor-
nia, June 1988.

[14] J. Lopez and D. O’Hallaron. Runtime support for adap-
tive heavyweight services. In Proc. of 5th Workshop on
Languages, Compilers, and Run-time Systems for Scal-
able Computers (LCR2000), volume 1915 of Lecture Notes
in Computer Science, pages 221–234. Springer-Verlag,
Rochester, NY, 2000.

[15] J. López and D. O’Hallaron. Support for interactive
heavyweight services. Technical Report CMU-CS-01-104,
Carnegie Mellon University, Pittsburgh, PA, February 2001.
http://www.cs.cmu.edu/ dv.

[16] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface
for network-aware applications. In Proc. 7th IEEE Symp.
High-Performance Distr. Comp., jul 1998.

[17] S. Microsystems. Java SDK. http://java.sun.com/j2se.
[18] J. More, J. Czyzyk, and M. P. Mesnier. The NEOS server.

IEEE Journal on Computational Science and Engineering,
(5):68–75, 1998.

[19] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile application-aware adaptation
for mobility. In Proceedings of the 16th ACM Symposium
on Operating System Principles, St. Malo, France, October
1997.

[20] D. R. O’Hallaron and L. F. Kallivokas. The SPEC CPU2000
183.equake benchmark, 2000.
www.spec.org/osg/cpu2000/CFP2000/.

[21] M. Satyanarayanan and D. Narayanan. Multi-fidelity algo-
rithms for interactive mobile applications. In Proceedings
of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications,
Seattle, WA, August 1999.

[22] W. Schroeder, K. Martin, and B. Lorensen. The Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D Graphics.
Prentice Hall PTR, Upper Saddle River, NJ, second edition,
1998.

[23] D. Tennenhouse and D. Wetherall. Towards an active
network architecture. Computer Communication Review,
26(2):5–18, August 1995.

[24] T. Von Eicken, D. Culler, S. Goldstein, and K. Schauser. Ac-
tive messages: A mechanism for integrated communication
and computation. In 19th Int. Conf. on Computer Architec-
ture, pages 256–266, May 1992.

[25] R. Wolski. Forecasting network performance to support dy-
namic scheduling using the Network Weather Service. In
Proceedings of the 6th High-Performance Distributed Com-
puting Conference (HPDC97), pages 316–325, Aug. 1997.
extended version available as UCSD Technical Report TR-
CS96-494.

