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Goals

1. How can we measure learning?
2. How can we design training algorithms?




Goals

1. Sample Complexity Model
2. Test Set Bound

3. Application: Learning Measurement
4. Train Set Bound

5. Application: viability and learning algorithm design




Model

e X = Input space to Classifier

oY = {0, 1} = Output space of Classifier

e D = Distribution over XxXY

¢S = A set of examples drawn 1.1.d. from D.
em = |§| = the number of examples.

oec: X = Y = aclassifier.



Model Notes

Independence is a fundamental assumption.

Model like information theory: D ~ XxY rather than D ~ X.




Example

Goal: Predict Rain or Not Rain given sensor data

X = Barometric Pressure, Cloudy/Not Cloudy
Y = Rain or Not Rain

D = Distribution over weather

S = 100 examples 1.1.d from D

¢ : X — Y function predicting rain/not rain




Derived Quantities

True error = epy(c) = Prp (c(x) # y)
(= Generalization error)

Empirical error =€ g(c) = Pryj(g) (c(x) # )

(= % .;n: { I(c(x;) # y;) = observed error)




Example (continued)

Suppose: ¥ x ¢(x) = Not Rain
38

Empirical error = € ¢(c) = 700

True error unknown, maybe 0.5.
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1. Sample Complexity Model
2. Test Set Bound

3. Application: Learning Measurement
4. Train Set Bound

5. Application: viability and learning algorithm design




What is the distribution of eg(c)?

Possible Error distributions
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Test Set Bound

. k _ m
Bin (m._ = p) = Per.....Xm ( =1 X; 5 k|p)
(= Binomial cumulative distribution)

o 5) =maxp {p: Bin (m._ ?S(c), p) =

Theorem (Test Set Bound):

Prg._ pm (eD(c) 2 Bin (

(note randomization)




Test Set Notes

"Perfectly” tight: there exist true error rates which achieve the bound.

Test Set lower bound of the same form.




Proof (in pictures)

Observation and Possible Binomials
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Proof (in pictures)

Observation and Consistent Binomials
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Proof (in pictures)

Observation and Consistent Binomials
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Test Set Bound Approximations

Corollary: (Realizable Test Set Bound)

In
Pl‘SmDm (?S(C) =0 eD(c) 2 %) <5

Proof: specialization

Corollary: (Agnostic Test Set Bound)

" /Ini
Pl‘SmDm ((ZD(L‘) 2 €S(C> + 2—};) <5

Proof: Hoeffding approximation to Binomial tail bound.
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Test Set Use

Primary use: verification of succesful learning




The Sigma Approach
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h) = % ';n: 1 [(h(x)) # y))
T Uh(x) % y) - )

St.extrm test
1

- m-1
3. Pretend data is drawn from N(&4, &) gaussian, calculate confidence
intervals.




Test Set vs. Sigma

Holdout vs. 2 Sigma Bound
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Learning Problem
left = test set bound, right = two sigma "bound”

Learning = seeking "bad"” bias.




Test Set vs. Sigma Notes

Sigma approach (and related) = relic of noncomputerized days.

1. Test set approach never overoptimistic.
2. Test Set approch works well for all true error rates.

Bound program available at:

ntep VWW.CS.CImu




Example (continued)

Suppose we have:
m = 100 test examples

5=0.1.

Hoeffding approximation:

eplc) € [0.26, 0.50]

Exact calculation:
ep(c) € [0.30, 0.47]




Test Set Protocol

Test Set Bound

classifier ¢ Choose ¢

Draw Examples

Evaluatc Bound




The state of the art (test sets)

e Test set bound very well understood.

e Cross validation techniques somewhat understood.
o Understood for Nearest Neighbor.
o Weak results for arbitrary algorithms.

e Many others not understood.
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Why Train set bounds?

1. Sometimes an extra few examples are critical.
2. Train set bounds can be used in the learning algorithm.
3. Train set bounds teach us about ways to learn.




Train Set Protocol

Training Set Bound

"Prior”, P(¢)

Draw Training
Examples

Choose ¢

Evaluate Bound




Train Set Bound

Theorem: (Occam's Razor Bound) V p(c¢)
Prg_ pym (EI i eD(c) > Bin (?S(c) 5p(c))) <5

Corollary: V p(c)

ik ns
Prg_ pm 3 € el - | s o M
~5) : 2m




Proof (in pictures)

Occam’s Razor Tail Cuts
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Proof (in pictures)

Occam Bound Calculation
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Proof (in pictures)

Consistent Error Rates
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Proof (in pictures)

True Error Rate Bound
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Train Set setup

e Discrete classification problems.

e Decision tree algorithm.

e d = description length = description of data-dependent choices made to
construct tree.

e "prior” = Z_d




Train Set Bound Uses

¢ Verification of learning
e Decision tree pruning criteria
e Method for learning




Train Set Verification

holdout bound vs. micro bound
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e Left = Test set bound in 80/20 train/test split
¢ Right = Train set bound in 100/0 train/test split




Example

Suppose p(c) = 0.1 with m = 100 train examples and error rate 2 ¢(c) =

Hoeffding approximation:

eplc) € [0.22, 0.54]
Exact calculation:

eplc) € [0.26, 0.51]




Train Set Induction

Bound = learning algorithm (= Optimize bound)

Note learning algorithm is often bad.

1. Many bounds too loose to justify use. Let f(k/m)> 0
Prg_ pm [(JD(C) <1+ f(?S(C))] =1

2. Learning algorithm = minimize worst case.
1. Optimize for best case?
2. Optimized for average case?




The State of the Art (Train Sets)

Much work

¢ VC bounds (reinterpreted...)
¢ PAC bounds (reinterpreted...)
e PAC-Bayes bounds

e Shell bounds

e Combined Train and Test Bounds




Conclusion

1. Test set bound = "right” way to verify learning.
2. Train set bound:

1. more developmental

2. Can be useful now

3. suggest learning algorithms




