Basic Sample Complexity John Langford

http://www.cs.cmu.edu/~jcl/research/tutorial/tutorial.ps http://www.cs.cmu.edu/~jcl/presentation/tutorial/index.htm (Need MathML. Use mozilla.)

Goals

- 1. How can we measure learning?2. How can we design training algorithms?

GOTO

Goals

- 1. Sample Complexity Model
- 2. Test Set Bound
- 3. Application: Learning Measurement 4. Train Set Bound
- 5. Application: viability and learning algorithm design

Model

- $X \equiv$ Input space to Classifier
- $Y = \{0, 1\} = \text{Output space of Classifier}$ $D = \text{Distribution over } X \times Y$
- $S \equiv A$ set of examples drawn i.i.d. from D.
- $m \equiv |S| \equiv$ the number of examples.
- $c: X \to Y \equiv$ a classifier.

GOTO

Model Notes

Independence is a fundamental assumption.

Model like information theory: $D \sim X \times Y$ rather than $D \sim X$.

<u>вото</u> 5

Example

Goal: Predict Rain or Not Rain given sensor data

X = Barometric Pressure, Cloudy/Not Cloudy

Y = Rain or Not Rain

D = Distribution over weather

S = 100 examples i.i.d from D

 $c: X \to Y$ function predicting rain/not rain

<u>вото</u>

Derived Quantities

True error =
$$e_D(c) \equiv \Pr_D(c(x) \neq y)$$

(= Generalization error)

Empirical error =
$$\widehat{e}_{S}(c) = \Pr_{U(S)}(c(x) \neq y)$$

(= $\frac{1}{m} \sum_{i=1}^{m} I(c(x_i) \neq y_i)$ = observed error)

_{бото}

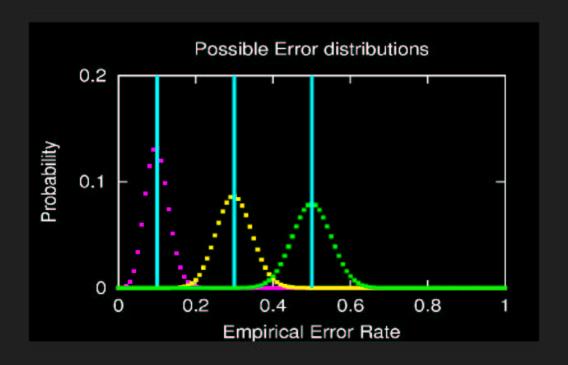
Example (continued)

Suppose: $\forall x \ c(x) = \text{Not Rain}$ Empirical error = $\widehat{e}_S(c) = \frac{38}{100}$ True error unknown, maybe 0.5.

Goals

- 1. Sample Complexity Model
- 2. Test Set Bound
- 3. Application: Learning Measurement 4. Train Set Bound
- 5. Application: viability and learning algorithm design

What is the distribution of $\widehat{e}_{S}(c)$?



Test Set Bound

Bin
$$\left(m, \frac{k}{m}, p\right) = \Pr_{X_1, ..., X_m} \left(\sum_{i=1}^m X_i \le k | p\right)$$
 (= Binomial cumulative distribution)

$$\overline{\operatorname{Bin}}\left(\frac{k}{m}, \delta\right) = \max_{p} \{p : \operatorname{Bin}\left(m, \widehat{e}_{S}(c), p\right) = \delta\}$$

<u>сото</u> 11

Theorem (Test Set Bound):

Help

$$\Pr_{S \sim D^m} \left(e_D(c) \ge \overline{\operatorname{Bin}} \left(\widehat{e}_S(c), \delta \right) \right) \le \delta$$

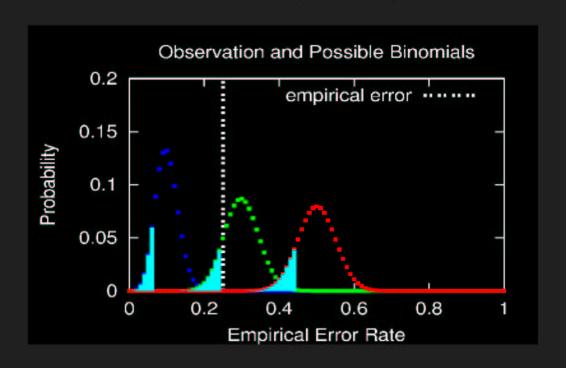
(note randomization)

Test Set Notes

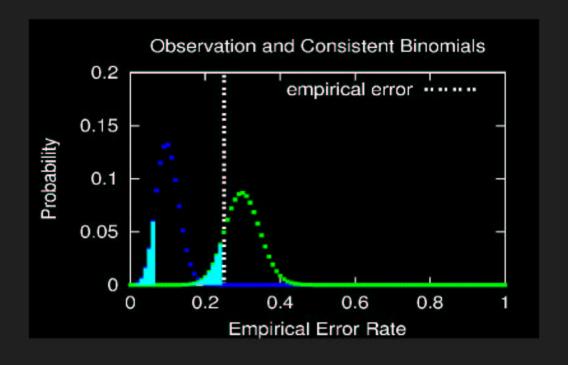
"Perfectly" tight: there exist true error rates which achieve the bound.

Test Set lower bound of the same form.

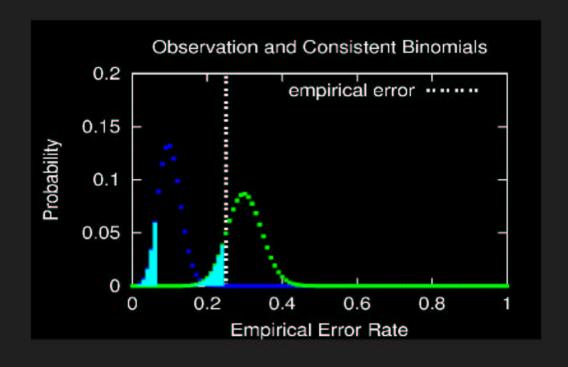
ото 12



ото 13



ото 14



Test Set Bound Approximations

Corollary: (Realizable Test Set Bound)

$$\Pr_{S \sim D^m} \left(\widehat{e}_S \left(c \right) = 0 \middle| e_D \left(c \right) \ge \frac{\ln \frac{1}{\delta}}{m} \right) \le \delta$$

Proof: specialization

Corollary: (Agnostic Test Set Bound)

$$\Pr_{S \sim D^m} \left(e_D \left(c \right) \geq \widehat{e}_S \left(c \right) + \sqrt{\frac{\ln \frac{1}{\delta}}{2 \, m}} \right) \leq \delta$$

Proof: Hoeffding approximation to Binomial tail bound.

ото 16

Goals

- 1. Sample Complexity Model
- 2. Test Set Bound
- 3. Application: Learning Measurement4. Train Set Bound
- 5. Application: viability and learning algorithm design

GOTO

Test Set Use

Primary use: verification of succesful learning

сото 18

The Sigma Approach

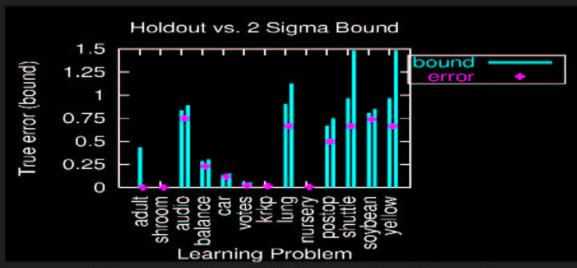
$$1. \widehat{\boldsymbol{\mu}} \leftarrow \widehat{e}_{S_{\text{textrm test}}}(h) = \frac{1}{m} \sum_{i=1}^{m} I(h(x_i) \neq y_i)$$

2.
$$\widehat{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (I(h(x_i) \neq y_i) - \widehat{\mu})^2$$

3. Pretend data is drawn from $N(\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\sigma}})$ gaussian, calculate confidence intervals.

сото 19

Test Set vs. Sigma



left = test set bound, right = two sigma "bound"

Learning = seeking "bad" bias.

ото 20

Test Set vs. Sigma Notes

Sigma approach (and related) = relic of noncomputerized days.

- 1. Test set approach never overoptimistic.
- 2. Test Set approch works well for all true error rates.

Bound program available at: http://www.cs.cmu.edu/~jcl/programs/bound/bound.html

сото 21

Example (continued)

Suppose we have:

$$m = 100$$
 test examples
 $\widehat{e}_S(c) = \frac{38}{100}$

$$\delta = 0.1$$
.

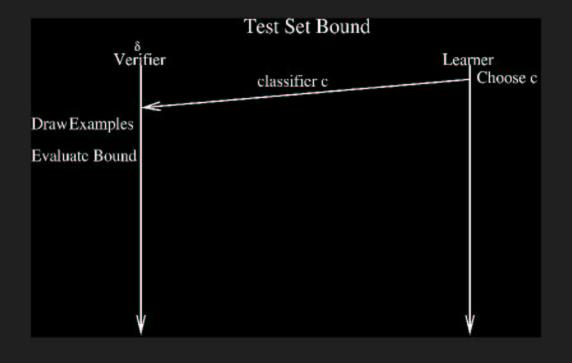
Hoeffding approximation:

 $e_D(c) \in [0.26, 0.50]$

Exact calculation:

 $e_D(c) \in [0.30, 0.47]$

Test Set Protocol



сото 23

The state of the art (test sets)

- Test set bound very well understood.Cross validation techniques somewhat understood.
 - o Understood for Nearest Neighbor.
 - Weak results for arbitrary algorithms.
- Many others not understood.

GOTO

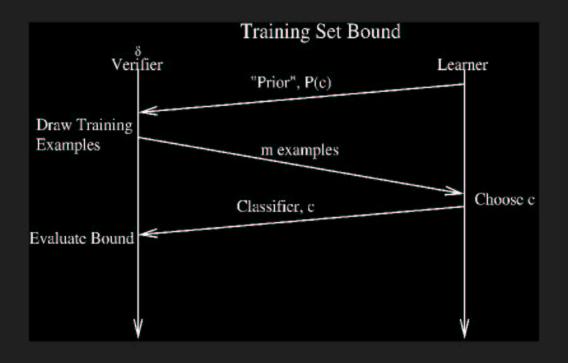
Goals

- 1. Sample Complexity Model
- 2. Test Set Bound
- 3. Application: Learning Measurement4. Train Set Bound
- 5. Application: viability and learning algorithm design

Why Train set bounds?

- 1. Sometimes an extra few examples are critical.
- 2. Train set bounds can be used in the learning algorithm.
- 3. Train set bounds teach us about ways to learn.

Train Set Protocol



сото 27

Train Set Bound

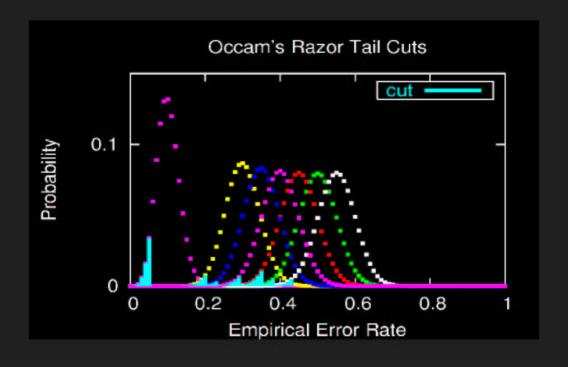
Theorem: (Occam's Razor Bound) $\forall p(c)$

$$\Pr_{S \sim D^m} \left(\exists \ c : \ e_D(c) \ge \overline{\operatorname{Bin}} \left(\widehat{e}_S(c), \delta p(c) \right) \right) \le \delta$$

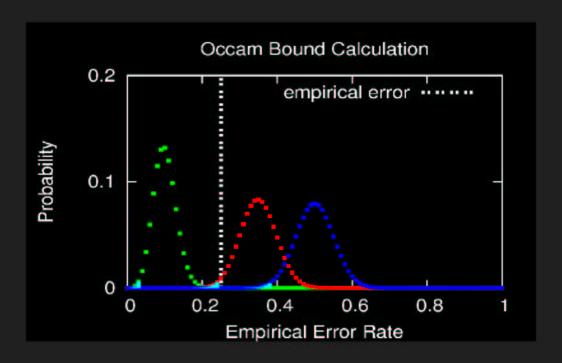
Corollary: $\forall p(c)$

$$\Pr_{S \sim D^m} \left(\exists \ c: \ e_D \left(c \right) \ge \widehat{e}_S \left(c \right) + \sqrt{\frac{\ln \frac{1}{p(c)} + \ln \frac{1}{\delta}}{2 \, m}} \right) \le \delta$$

<u>сото</u> 28



GOTO



сото 30

ото 31



ото 32

Goals

- 1. Sample Complexity Model
- 2. Test Set Bound
- 3. Application: Learning Measurement4. Train Set Bound
- 5. Application: viability and learning algorithm design

GOTO

Train Set setup

- Discrete classification problems.
- Decision tree algorithm.
- d = description length = description of data-dependent choices made to construct tree.
- "prior" = 2^{-d}

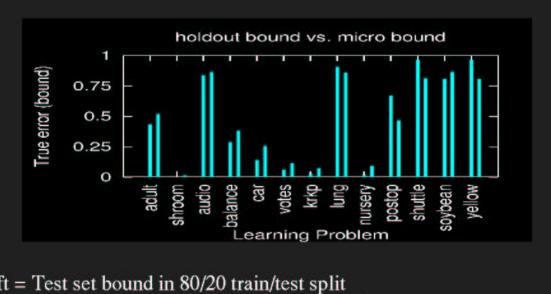
сото 34

Train Set Bound Uses

- Verification of learningDecision tree pruning criteriaMethod for learning

GOTO

Train Set Verification



- Left = Test set bound in 80/20 train/test split
 Right = Train set bound in 100/0 train/test split

Example

Suppose p(c) = 0.1 with m = 100 train examples and error rate $\hat{e}_S(c) = \frac{38}{100}$.

Hoeffding approximation:

 $e_D(c) \in [0.22, 0.54]$

Exact calculation:

 $e_D(c) \in [0.26, 0.51]$

сото 37

Train Set Induction

Bound ⇒ learning algorithm (= Optimize bound)

Note learning algorithm is often bad.

1. Many bounds too loose to justify use. Let f(k/m) > 0

$$\Pr_{S \sim D^m} \left[e_D(c) \le 1 + f(\widehat{e}_S(c)) \right] = 1$$

- 2. Learning algorithm = minimize worst case.
 - 1. Optimize for best case?
 - 2. Optimized for average case?

38

The State of the Art (Train Sets)

Much work

- VC bounds (reinterpreted...)
- PAC bounds (reinterpreted...)
- PAC-Bayes bounds
- Shell bounds
- Combined Train and Test Bounds

сото 39

Conclusion

- 1. Test set bound = "right" way to verify learning.
- 2. Train set bound:
 - 1. more developmental 2. Can be useful now

 - 3. suggest learning algorithms

http://www.cs.cmu.edu/~jcl/research/tutorial/tutorial.ps

