The Classification Problem:

1. Get (input, class label) pairs from unknown function

2. Find the unknown function

3. ... to minimize errors on future inputs

Practical Prediction Theory
John Langford

IBM Research




Learned Function (Classifier)
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Learning = Prediction ability

e We can’'t expect any prediction ability, in general.

e We can expect prediction ability, if examples come indepen-
dently, sometimes.

Here we study prediction ability, assuming indepedence.
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Better Methods for Learning & Verification

Standard technique:

1. Divide samples into train and test set

2. Train on train set

3. Test on test set

We can do better.

Why study prediction theory?

1. Better methods for learning and verifying predictive ability

2. To gain insight into learning.




Outline
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. The Test Set Bound
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. PAC-Bayes Bound

. Sample Compression Bound

To gain insight into learning

. Overfitting: sample complexity quantifies overfitting.

. Learning algorithm design: What is a good pruning criteria?
Why are large margins good? What other algorithms are
likely to yield good results?




Model: Basic Assumption

All samples are drawn independently from some unknown distri-
bution D(x,y).

S = (x,y)™ ~ D™ is a sample set.

Model: Definitions
X = input space
Y = {0,1} = output space

c: X =Y = classifier




Model: Derived quantities

The thing we want to know:
cp = Pr _(c(z) # y) = true error
z,y~D

The thing we have:

5= Pr(c(@) #y)=—Y Ilc(x) # y]
z,y~S m./ 3

= "“train error’, “test error”’, or “observed error’, depending on
context.

(note: we identify the set S with the uniform distribution on S)

Model: Derived quantities

The thing we want to know:

cp = PrD(c(x) #* y) = true error
yN

)




Possible Error distributions

0.2 T | T T
true error

2
% 0.1 -
g .-‘l h
(a .. '. .I. .I.

0 #’%

0 0.2 0.4 0.6 0.8 1

Empirical Error Rate

Model: Basic Observations

Q: What is the distribution of ¢g?

A: A Binomial.
. k _(m)\ & m—k
Pl <CS = CD) = ( k ) cp(1 —cp)

= probability of k heads (errors) in m flips of a coin with bias

CD.




Model: basic quantities

Need confidence intervals = use the pivot of the cumulative
instead

Bin <£,5> = max {p : Bin (E,p> > 6}
m m

= the largest true error such that the probability of observing k&
or fewer “heads” (errors) is at least 4.

Model: basic quantities

We use the cumulative:
Bin <%,CD> = PFSNDm <ES < %‘ CD)
m . _.

= probability of observing k or fewer “heads” (errors) with m
coins.




Test Set Bound: Setting

Standard technique:

1. Cut the data into train set and test set

2. Train on the train set

3. Test on the test set

What does Sample Complexity say about this method?
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Observation and Possible Binomials
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Test Set Bound: Theorem

Theorem: (Test Set Bound) For all classifiers ¢, for all D, for all
6 € (0,1]:

P (ep < Bin (¢5,0)) > 1 -6

World's easiest proof: (by contradiction).
Assume Bin <%,CD) > ¢ (which is true with probability 1 —§).

Then by definition, Bin (¢g,8) > cp




True Error Bound
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What does Test Set Bound mean?
Corollary: For all classifiers ¢, for all D, for all § € (0, 1]:

In i
Pr |enp<eé 0l >1-6
S~Dm D = S+ 2m | —

Proof: Use the Chernoff approximation,

Sel

- I
Bin (¢5,0) < &5 + | ~

2m

Note: NOT tight when ¢g near O (our goal!)

Test Set Bound Notes

Perfectly tight: There exist true error rates achieving the bound

Lower bound of the same form.

Primary use: verification of succesful learning




Test Set Bound vs. 2 Sigma Bound
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Learning Problem

Test Set Bound Comparison: Empirical “confidence” intervals
k = number of test errors, m = number of examples

n=

02 = Loy (u— I e(a) # wil)?

pick bound = %—I—Qa

How do they compare?




Interpretation: Interactive Proof of Learning

Test Set Bound
5
Verifier Learner
Classifier C Choose C
DrawExamples
Evaluate Bound
Y Y

Test Set Bound vs Empirical Confidence Interval

1. empirical confidence intervals are sometimes pessimistic

2. empirical confidence intervals are sometimes optimistic

3. the test set bound always works




Occam’s Razor bounds

e Sometimes the holdout set is critical for learning.

e Sometimes we want bounds to guide learning

=Train set bounds

Occam’s Razor bound is the simplest train set bound.
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Occam’s Razor Bound

Theorem: (Occam’s Razor Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

Pr (3c: cp < BN (es,0P(c))) >1-14

Compare with test set bound: § — §P(c).

Occam’s Razor Bound Protocol

0
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Occam’'s Razor Bound: Proof

Test set bound =

ve Pr (cD < Bin (65,6P(c))) > 1 — §p(c)

Negate to get:

Ve Sflr)m (cD > Bin (Cg, 6P(c))> < ép(c)

Occam’'s Razor Bound: Proof

Test set bound =

Ve (Pr (ep <BiN(2s,6P(c))) > 1~ ép(c)




Occam’'s Razor Bound: Proof

Test set bound =
Ve SNPDrm <cD < Bin (ES,(SP(C))) >1—0p(c)
Negate to get:
ve Pr (cD > Bin (65,5P(c))) < ép(e)
Apply union bound: Pr(A or B) < Pr(A) 4+ Pr(B) repeatedly.
SPDrm (Elc . cp > W(ESJP(C))) <Y 6P(c) =146
~ c
Negate again to get proof.

Next: Graphical proof

Occam’'s Razor Bound: Proof

Test set bound =

ve Pr (cD < Bin (ES,5P(c))) > 1 — ép(c)

Negate to get:
ve Pr (cp > Bin (¢5,0P(c))) < dp(c)
Apply union bound: Pr(A or B) < Pr(A) 4+ Pr(B) repeatedly.

(Bp (505 o> B 4P < Toro =




Occam Bound Calculation
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The chosen classifier has an unknown true error rate.

Occam'’s Razor Tail Cuts
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Each classifier is a Binomial with a different size tail cut.

With high probability no error falls in any tail.




Occam’s Razor Bound Results Decision Trees
e ID3 decision tree 4+ pruning
e probability of failure = § = 0.1

e Discrete problems from UCI database of Machine Learning
problems.

e 100% of data used for training set bounds
e 80%/20% Train/Test split for test set bounds

e Minimal selection bias
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Bound = the largest true error rate for which the observation is
not in the tail.
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Test Set Bound vs. Occam’s Razor Bound
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Left bar = holdout bound, right bar = Occam’s Razor Bound




PAC-Bayes Bound: Basic quantities
Qp = E..gcp = average true error

Qg = E..gcs = average train error

PAC-Bayes Bound
5
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Lemma 1: For all P(c), for all D, for all § € (0, 1]:

1 1
Pr (E..p _cmtYSg
SmDm Propm (¢5) 5

PAC-Bayes Bound: Theorem

Theorem: (PAC-Bayes Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

m—+1
KL(Q||P) + In L ) S1s

m

Pr (vcy(c) : KL (QsllQp) <

S~D™m

where: KL(Q||P) = E..gIn 28

KL(gllp) = gIn%+ (1 —g)In{=2 for g <p

The proof uses two quick lemmas




Lemma 1: For all P(¢), for all D, for all § € (0, 1]:

1 1
Pr (E..p _ocmthYy S
S~Dm PrSNDm (Cs) )
Proof
1 k 1
Ve Eg..pm = P (55 = —) = m-+1
Prg.pm (CS') %Sme m PI’SNDm (ES = %)
= F E ! +1
S~Dm e~ p Y = m
U Prg.pm (€s)
Lemma 1: For all P(c¢), for all D, for all § € (0, 1]:
1 1
Pr (E..p My
S~Dm PrSNDm (Cs) 1)
Proof:
1 k 1
Ve ESNDm — = Pr <ES = —) = m-+1
PrSNDm (CS) ZSNDm m PrSNDm <ES = %)




Ber@ " b7 () .
Lemma 2: For all Q(c): SxDIRESS > KL(Qsl|Qp)

Lemma 1: For all P(c), for all D, for all § € (0, 1]:

1 1
Pr (E..p _cmtYSgs
SmDm Propm (¢5) 5

Proof:
1

k 1
Ve ESNDm — = Pr <6S = —) = m—|—1
Prsaon ) b\ T ) e (e = )

1
= Eg.pmE..p —=m-+1
T Prgpm (€s)

Use the Markov inequality (X >0, EX = pu, = Pr(X > £) <4):
1 m —+ 1)

VP Pr E.. <
SNDm( ¢ PPFSNDm (ES) -

<

=lemma




Eer@M pr s ;
Lemma 2: For all Q(c): AR > KL(Qsll@p)

1

i )Cgas(l—cp)m(l_as)
mcg

Proof:%ECNQ In (

(2

m

E._.oln
1 1 e~
:ECNQ léslng—l—(l—és)lnl_CD] —

Jensen’s inequality (f concave = Ef(X) > f(EX)):

1 _ 1 R 1 R 1
Equg [csln5+(1—c5)ln l—cD] EQSInQ—D—k(l—QS)In T an

Eerg M b pnes) ;
Lemma 2: For all Q(c): AADIERSS2 > KL(Qs11@Qp)

1

e >C$55<1—cD>m<1—ES>
S

Proof:%ECNQ In (

m
ECNQ In ( mES )

1 1
:ECNQ [55|n—+(1—65)|n ]—
CD 1—CD




PAC-Bayes bound: Proof

Let
1
PG(C) — —~ P(C)
Prg~pm (¢s) ECNPm
Eer@ " 7o pm(zg) 5
Lemma 2: For all Q(c): DRSS > KL(Qs11@Qp)

1

m meg m(1—¢ég)
— 1- s
e )cD (1—cp)

.1
Proof.mEcNQ In (

(2

m

E._.oln
1 1 e~
:ECNQ [65In5+(1—55)ln1_CD] —

Jensen’s inequality (f concave = Ef(X) > f(EX)):

1 ~ 1 ~ 1
FE..olceln—~4+ (1 —co)lIn > Qgln—-4(1—-Qg)In
cQ[S o (1—-¢cs) e s'"o, ( s) -0,
E In ( m )
c~Q ~ E | mH(cg) E H (¢ R
and mCS S CNQ nNe — CNQm (CS) S H <QS>
m m m




PAC-Bayes bound: Proof

Let
Pa(e) : P(c)
G C = — C
Prs~pm (¢s) ECNPm
Q(c) 1
= 0 < KL(Q||Pg) = EcngIn r o (€8) Eenp =
PN 5y 55 ““TPrg.pm (Es)
KL(Q||P) = E..oIn ! +InE !
— - ~ — NP —~
~Q Prg.pm (25) U Prg.pm (€s)
= E,.olIn 1 < KL(Q||P)+ InE 1
~ ~P =
Q@ Prg.pm(2s) = T Prgopm (€s)
Lemma 1&2 =proof
PAC-Bayes bound: Proof
Let
1
PG(C) - - P(C)
Prs~pm (5) BenPPrg_pm(es)
Q(c) 1
0 <KL Pr)=FE._nln =
= 0 <KL(QI|Pg) = Ecnqln P(0) sobm (68) E ~P e o @s)
1

1
= KL(Q||P) — E.~0In —+InE..p —
9 Prg.pm (2s) T Prg.pm (€s)




PAC-Bayes Margin bound

F(x) = [;° \/%e_mQ/Q = cumulative distribution of a Gaussian

Q(wW, 1n) = N(u,1) x N(0,1)"1 where first direction parallel to @

(&, y) = ”l%m'%” = normalized margin

Q(w, ) g = Ef,yNSF (uy(2,y)) = stochastic error rate

Corollary: (PAC-Bayes Margin Bound) For all distributions D,
for all 6 € (0,1]:

. i inmetl
Pro |V, u>0: KL(Q@,p)sl|Q(w, 1)p) < >1-§

S~Dm m

PAC-Bayes Bound: Application
Is the PAC-Bayes bound tight enough to be useful?
Application: true error bounds for Support Vector Machines.

Classifier form:

c(z) = sign (w - &)

Also note: Work by Mattias Seeger applying to Gaussian Pro-
cesses.




s : X = .)?H + ;L
X 1
I~>
VX
X, ! W
[N(p,1) ~Q
[N(0,1)

= . —»/ —

QW, p)s = Ef,yNg,w’NQ(w,”)I <y # sign (w : 55‘))
=Ez, oE E I (y(w, ’ <0
= FaysBu N (w1 ~N o) (yCwjzyy +wypz)) <O)

Use properties of Gaussians to finish proof

PAC-Bayes Margin Bound: Proof

Start with PAC-Bayes bound:

m+1
vP(e) Pr (VQ@: KL (QsllQp) < “H@IPI +In Ty ) >1-6

m

Set P = N(0,1)"
Q(wW, ) = N(u,1) x N(0,1)"1 with first direction parallal to @

Gaussian = coordinate system reorientable

= KL(Q||P) = KL(N(0,1)" N (0,1)" ) +KL(N(p,1)||N(0,1))




PAC-Bayes: Application to SVM

SVM classifier:

c(x) = sign (i aik(a:i,x)>
=1

kis a kernel = 3d :  k(z;,z) = P(x;) - P(z) so:

W7 =Y aik(z;, ) W =Y ook(z, )

E?Ln— Ot'k(il?i,il?)
\/k(:c x) ZZJ 1,1 % iajk(x;, )

= v(z,y) =

= Margin bound applies to support vector machines.s

PAC-Bayes Margin proof. the end

— I x]
The sum of two Gaussians is a Gaussian =

T

-

8

M

I(yp < —yv)
v~N<0,1+ )
I

= Ezy~sF I(yp < —yv)
Y N 1 =
Y N<O’”/(5ﬂly)2)

= Bz y~sF (17(Z,9))

= Corollary
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Sample Compression Bound

Verifier Learner

Draw Training

Examples m examples
Subset S Choose Subset
N/ S, c=A(S)
Evaluate Bound
For c=A(S)

Sample Compression Bound: Basic Quantities
A = learning algorithm
S C S = subset of training set.

The idea: if we knew S’ in advance that S — S’ would act as a
test set. We don’t know S’ in advance so the bound is looser.




Sample Compression Bound: Proof

(Note that S’ is unambiguous before S is drawn)

\V/S/ g S Wlth C = A(SI) : SPr CD S % ’C\S—SI’# > 1— 6

~b m(is"s) ) ) m(sTs)

Sample Compression Bound: Theorem

Theorem: (Sample Compression Bound) For all algorithms A,
for all distributions D, for all § € (0, 1]:

S )
Plgm VS’ C S with c=A(S): ¢p <Bin|és_g,—7—~ || >1-6
o~ m( &)




Sample Compression Bound: Proof

(Note that S’ is unambiguous before S is drawn)

- ) 4]
vS'C S withe=A(S"): Pr |ep<Bin|és_g,——— || >1-
= ~m — m - m
P m(1s7s) m(1s7s)
Negate to get:
vSs'C S with e=A(S"): Pr |e¢p>Bin|é 0 < g
C = - LD S—SH "7 m m
o~ m(1sZs) m(s )
Use union bound (Pr(A or B) < Pr(A) + Pr(B)) over each &’
S— 4]
= Pr |39 CS with c= A(S): >Bin|ég_ o, ——— || <6
S~Dm - © ( ) D 55 m(lsr_n‘gq)
Sample Compression Bound: Proof
(Note that S’ is unambiguous before S is drawn)
vs'C S with e=A(S"): Pr |ep<Bin|é 0 >1 0
= - “gopm | P = S=8h T m || =T m
P m(1s”s1) m(157s1)
Negate to get:
/C H — A AN = | ~ ) 1)
VS C S with e= A(S') : Sflgm cp > Bin| g g, ———— < —
R\EE R\EE




Sample Compression Bound Application: Support Vector
Machines

If S’= set of support vectors than A(S") = A(S).

How well does the sample compression bound work with a sup-
port vector machine?

Note work by Mario Marchand and John Shawe-Taylor using
Sample Compression bound variant for “Set Covering Machine”.

Sample Compression Bound: Proof

(Note that S’ is unambiguous before S is drawn)

- ) )
vS'C S with e=A(S): Pr |ep<Bin|lég_g,———~||>1-——F1——
= ~m — m — m

S~D m(1"s1) m (")
Negate to get:
) )

vS'C S withe=A(S"): Pr |ep>Bin|és_g,———~ || <—F—
- ~Dm m m

Use union bound (Pr(A or B) < Pr(A) + Pr(B)) over each S’

4]

= Pr |35 CS withc=A(S"): ¢p>Bin|és_g,———
m(|s—s'|)

<4é
S~Dm

Negate again = theorem




Sample Compression Bound Results
Answer: Sample Compression bound not very tight on SVM.
Why not?

The SVM learning algorithm achieves 'incidental’ sparsity rather
than optimizing for it explicitly (in contrast to the margin).
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Conclusion

1. Use real confidence intervals to compare classifiers.

2. Test set bound very simple.

3. Train set bounds on the threshold of quantitatively useful.

Code for bound calculation at:

http://www-2.cs.cmu.edu/~jcl/programs/bound/bound.html




