The Tyranny of the Average

John Langford

Sources

Tom Dietterich's machine learning summary (first 10 pages):

http://citeseer.nj.nec.com/dietterich97machine.html

Robert Schapire's boosting summary:

http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/msri.ps

Averaging

$$h(x) = \operatorname{sign}\left(\sum_{k=1}^{K} \alpha_k h_k(x)\right)$$

Examples of Averaging Classifiers

- 1. Adaboost (Freund and Schapire 1996)
- 2. Bagging (Breiman, 1996)
- 3. Cross-validated Committees (Permanto, Munro, and Doyle, 1996)
- 4. Bayes Optimal
- 5. Maximum Entropy (Jaakola, Meila, Jebara 1999)

Outline

- 1. General Theoretical Motivations
 - (a) Independent Errors
 - (b) Sample Complexity Theory
 - (c) What would Bayes do?
- 2. A Zoology of Averages

Independent Errors

Suppose each h_i errs independently:

$$\Pr(h_1(x) \neq y \land h_2(x) \neq y...|y)$$

$$= \prod_k \Pr\left(h_k(x) \neq y|y\right)$$

What is the probability that the average misclassifies?

Independent Errors II

Suppose $\Pr(h_k(x) \neq y|y) = \mu$.

Then,

$$\Pr\left(\sum_{k}I(h_{k}(x)\neq y)\geq rac{K}{2}|y
ight)=1-\operatorname{Bin}\left(rac{K}{2},\mu
ight)$$

Sample Complexity

Occam's Razor bound does *not* motivate averages.

... but remember side note: there are many other train set bounds, many of which motivate averages.

- 1. Margin Bound (Schapire, Freund, Bartlett, Lee, 1998)
- 2. PAC-Bayes Bound (McAllester, 1999)
- 3. Stochastic Margin Bound (Langford and Shawe-Taylor, 2002)
- 4. (many others...)

What would Bayes do?

$$P(h_k) = \text{prior over } h_k$$

$$Q(h_k|S) = \frac{P(S|h_k)P(h_k)}{P(S)}$$

Bayes optimal Prediction:

$$h(x) = \mathrm{sign}\left(\sum_k Q(h_k|S)h_k(x)\right)$$

Outline

- 1. Theoretical Motivations
 - (a) Independent Errors (all methods)
 - (b) Sample Complexity Theory (all methods)
 - (c) What would Bayes do? (some methods)
- 2. A Zoology of Averages

Outline

- 1. Theoretical Motivations
- 2. A Zoology of Averages
 - (a) Bagging
 - (b) Boosting

Given: m training examples

- 1. Repeat k = 1...K times
 - (a) $S' = \emptyset$
 - (b) Repeat m times:
 - i. (x,y) = an example from the uniform distribution on m training examples
 - ii. $S' \leftarrow S' \cup \{(x,y)\}$
 - (c) h_k =learning algorithm on S'
- 2. Return $h(x) = \operatorname{sign}\left(\sum_{k} \frac{1}{K} h_k(x)\right)$

Bagging: Analysis

Question: How many unique examples are in S'?

Answer: $1 - \frac{1}{e}$

Bagging: Analysis

Question: What is the effect of duplicates?

Answer: They can weaken complexity control

A Learning Algorithm

A Learning Algorithm missing $\frac{1}{e}$ of all examples

A Learning Algorithm missing $\frac{1}{e}$ examples and with duplicates

Bagging: Learning algorithm loses $\frac{1}{e}$ examples, gains duplicates, and is averaged

Boosting

Given:

- 1. m labeled examples, $(x_1, y_1), ..., (x_m, y_m)$
- 2. A "weak" Classifier learning algorithm which takes a distribution D(i) over the inputs

What is a "weak" Classifier learning algorithm?

- 1. An algorithm which we hope predicts better than random.
- 2. An algorithm which can learn with respect to different emphasis on the data.

What is a good classifier?

What is a good classifier?

A distribution is a soft version of cloning examples.

The learning algorithm should find:

$$\min_{h} \sum_{i=1}^{m} D(i)I(h(x) \neq y)$$

Weak Learning algorithms

- 1. Many algorithms easily modified to take distributions
 - (a) Decision trees (or Decision "stumps")
 - (b) Neural network classifier
 - (c) Naive Bayes classifier
- 2. All classification algorithms can be made to work by rejection sampling according to D(i).

Next: the Adaboost algorithm

1.
$$D_1(i) = \frac{1}{m}$$

2. For
$$k = 1, ..., K$$

(a)
$$h_t = LEARN(D_t, S)$$

(b)
$$\epsilon_k = E_{x,y \sim D_k} I(h_k(x) \neq y)$$

(c)
$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

(d)
$$D_{k+1}(i) = D_k(i) \frac{e^{-\alpha_k y_i h_k(x_i)}}{Z_k}$$

3. Output
$$h(x) = \operatorname{sign}\left(\sum_{k=1}^{K} \alpha_t h_k(x)\right)$$

Adaboost Analysis

Theorem: (Train set boosting) If the weak learning algorithm errs at most a $\frac{1}{2}-\epsilon$ portion of the time, then the train error rate of the average is at most $e^{-2K\left(\frac{1}{2}-\epsilon\right)^2}$.

Theorem: (boosting) If the train error is near to the true error then Adaboost is a boosting algorithm.

Boosting side notes

Variants for real-valued outputs

Variants for multiclass classification

Variants with different update functions

Much analysis

Outline

- 1. Theoretical Motivations
- 2. A Zoology of Averages
 - (a) Bagging (A testament to the effectiveness of averaging)
 - (b) Boosting (+ the boosting guarantee)

Conclusion

Averaging techniques *dominate* in supervised classification learning.

Some (Boosting for example) have more motivation than others.

All trade computation for accuracy.