
University of Massachusetts,
Amherst

TFS: A Transparent File System for
Contributory Storage

James Cipar, Mark Corner, Emery Berger

http://prisms.cs.umass.edu/tcsm

Contributory Applications

Users contribute resources from local machine for other’s use

Contributory Storage

In desktop systems, many user’s disks are half empty

Typically 50% free disk space [Douceur 99, Huang 05]

In modern computer systems, often more than 50 GB

Proposals for contributory storage describe diverse applications

Backup and archival storage: OceanStore, PAST, Pastiche

Serverless network file systems: CFS, Farsite, Pasta

Anonymous publication: Freenet

Contributory systems could store massive amounts of data

If every Folding@home user contributed 10 GB: 1.7 Petabytes

Current State of Contributory Storage

Freenet – only widely deployed contributory storage system

BitTorrent uses storage, but only for files user wants

Other systems use small amounts of storage for working data

Biggest barriers: loss of disk space & performance impact

3 questions on Freenet FAQ ask about contributing less

Contributed storage causes fragmentation in user’s files

File system aging can cause up to 77% degradation [Smith ’97]

Result: contributory applications limited to very little disk space

Ensures negligible impact on user, but…

By default, Freenet uses 1 GB (out of ~ 50GB free = 2%)

Impact of Contributing Storage

As disk utilization increases, so does file fragmentation

The more you contribute, the worse performance gets

0

10

20

30

40

50

60

0 10 20 30 40 50

Contribution (%)

Ti
m

e
(s

)

Ext2 Copy

Our Solution: TFS

File system modification, provides 2 classes of files

Transparent files do not interfere with ordinary files

Files for normal applications behave the same

On-disk file system to be used by distributed system

Contributory applications can use all free disk space

Transparent files take no noticeable space

Negligible performance impact

TFS and Contribution

0

10

20

30

40

50

60

0 10 20 30 40 50

Contribution (%)

Ti
m

e
(s

)

Ext2 Copy

TFS Copy

TFS performance changes very little as space is contributed

Overview

Design principles

Disk allocation policies – preventing fragmentation

Performance concessions

Evaluation

 Local file system performance

 Effect on contributory storage applications

Design Principles

Contributory storage virtually unnoticeable to user

No effect on allocation policy → no effect on performance

Transparent files cause no fragmentation

Contributory data may be overwritten to avoid interference

Avoiding interference more important than data persistence

Contributory applications should use replicas to prevent data loss

Minimal or no modifications to contributory applications

Simple interface to mark directories containing transparent data

Ordinary file semantics for transparent files

Avoiding File Fragmentation

Blocks in TFS in one of five allocation states

TFS prevents contributed storage from causing fragmentation

Transparent file is now lost

Free

Allocated

Contributed/
Transparent

Allocated and
Overwritten

Overwritten

TFSNon-TFS

Avoiding Free Space Fragmentation

Free

Allocated

Contributed/
Transparent

Allocated and
Overwritten

Overwritten

Non-TFS TFS

Freeing contributed storage does not leave gaps in free space

Contributing storage never adds to free space fragmentation

Why do we Need 5 States?

Ordinary file data overwrites contributed space, then is deleted

Overwritten state shows that data is no longer valid

Free

Allocated

Contributed/
Transparent

Allocated and
Overwritten

Overwritten

TFS Without
Overwritten Bit

TFS With
Overwritten Bit

Performance Concessions

Open files cannot be overwritten

Preserves normal file semantics for transparent files

Assumes small amount of data being actively used at once

Transparent meta-data cannot be overwritten

Directory entries, inodes, and indirect blocks are protected

 Relatively small amount of storage

Prevents large amounts of transparent storage being lost at once

Allocation Locality

Block allocations exhibit high locality

Transparent data in “hot” areas likely to be overwritten often

0.00001

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100
Location on Disk (Sorted, %)

Bl
oc

k
Al

lo
ca

tio
n

Ra
te

 (
kB

/s
)

Machine 1
Machine 2

Reducing Data Loss

0.00001

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100

Percent of Disk Available to TFS

Ra
te

 o
f D

at
a

Lo
ss

 (
kB

/s
)

Machine 1
Machine 2

TFS avoids placing data in hot parts of the disk

Reduces rate of data loss

Traces allocation events to determine where to avoid

Overview

Design principles

Disk allocation policies – preventing fragmentation
Performance concessions

Evaluation

 Local file system performance

 Effect on contributory storage applications

Evaluation

Compare three methods of contribution

Small fixed-size contribution

Represents current state of contributory storage

Small enough to be unnoticeable to user

Dynamically managed watermarking

Used by Elastic Quotas [Leonard ‘02], and FS² [Huang ‘05]

Contributes more storage than fixed contribution, not all space

Contributed storage automatically deleted when space is low

Contributed storage managed by TFS

Can contribute all available storage

Experimental Setup
Prototype of TFS based on Ext2

Linux kernel 2.6.13

Tested on Dell Optiplex SX280
512 MB Ram
3 GHz Pentium 4
Disk type: Seagate ST-3160023AS
Disk Specs: 160 GB, 7200 rpm, Avg Seek 8.5ms,

 16383 cylinders, 16 heads, 63 sectors
Experiments performed on 10 GB file system

Procedure:
1.  Disk half filled with simulated user data, taken from /usr
2.  Simulated contributory storage activity, file create and delete
3.  Copied benchmark data to file system
4.  Rebooted then ran Andrew Benchmark

TFS Evaluation: Allocation Policy

Layout of benchmark data on disk while contributing storage

TFS prevents fragmentation while contributing all available space

Ext2-0%

Ext2-5%

Ext2-35%

TFS-50%

Free Space

User’s Files

Contributed
Space

Benchmark
Files

TFS Evaluation: Performance

-6.0%

17.1%

-0.7%0%

0

20

40

60

80

100

120

140

160

180

200

Ext2 - 0% Ext2 - 5% Ext2 - 35% TFS - 50%

Ti
m

e(
s)

Delete
Compile
Read
Stat
Copy
Mkdir

TFS preserves performance while contributing all available space

Storage Capacity and Bandwidth

Analyzed utility of TFS using model storage system [Blake ‘03]

Provide persistent, available storage service

Use replication to prevent data loss and ensure availability

Assume infinite burst bandwidth, but limited average bandwidth

When host leaves network, its data must be replicated

Replication bandwidth is function of storage per host and churn

More churn → more bandwidth needed

Less bandwidth → less usable storage

TFS and Bandwidth

Trace-driven analysis of usable storage

Used traces to find realistic churn levels [Bolosky ’00, Guha ’06]

Used block allocation traces to determine rate of data loss in TFS

Given rate of data loss and amount of churn

Computed number of replicas needed for “five nines” of reliability

Varied available bandwidth between 0 kB/s and 1200 kB/s

Determined the maximum contribution per host

BW mitigated through TCP-Nice, Diff-Serv, etc.

High Churn Network (Internet)

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Bandwidth (kB/s)

Co
nt

rib
ut

io
n

(G
B)

TFS
Watermarking
Fixed Contribution

In a network with more churn, bandwidth limits storage

Low Churn Network (Corporate)

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Bandwidth (kB/s)

Co
nt

rib
ut

io
n

(G
B)

TFS
Watermarking
Fixed Contribution

In a network with low churn, bandwidth does not limit storage

Conclusions

Contributory systems must not interfere with local performance

Users will restrict or disable application

Buffer cache can be managed by TMM [Cipar 06]

TFS allows contributory storage to use entire disk

Very little interference

No loss of storage for user

TFS + sufficient bandwidth → contributory systems can store

 much more data

http://prisms.cs.umass.edu/tcsm

University of Massachusetts,
Amherst

TFS: A Transparent File System for
Contributory Storage

James Cipar, Mark Corner, Emery Berger

http://prisms.cs.umass.edu/tcsm

