TFS: A Transparent File System for
Contributory Storage

James Cipar, Mark Corner, Emery Berger

http://prisms.cs.umass.edu/tcsm

University of Massachusetts,
Amherst




Contributory Applications

Users contribute resources from local machine for other’ s use

BitTorrent

F0|ding@h0me distributed computing

2J03SUTI00




Contributory Storage

In desktop systems, many user’ s disks are half empty

Typically 50% free disk space [Douceur 99, Huang 05]
In modern computer systems, often more than 50 GB

Proposals for contributory storage describe diverse applications
Backup and archival storage: OceanStore, PAST, Pastiche

Serverless network file systems: CFS, Farsite, Pasta
Anonymous publication: Freenet

Contributory systems could store massive amounts of data
If every Folding@home user contributed 10 GB: 1.7 Petabytes




Current State of Contributory Storage

Freenet — only widely deployed contributory storage system
BitTorrent uses storage, but only for files user wants
Other systems use small amounts of storage for working data

Biggest barriers: loss of disk space & performance impact
3 questions on Freenet FAQ ask about contributing less
Contributed storage causes fragmentation in user’s files
File system aging can cause up to 77% degradation [Smith '97]

Result: contributory applications limited to very little disk space

Ensures negligible impact on user, but...
By default, Freenet uses 1 GB (out of ~ 50GB free = 2%)




Impact of Contributing Storage

-2 Ext2 Copy

0 10 20 30 40 50

Contribution (%)
As disk utilization increases, so does file fragmentation

The more you contribute, the worse performance gets



Our Solution: TFS

File system modification, provides 2 classes of files
Transparent files do not interfere with ordinary files
Files for normal applications behave the same
On-disk file system to be used by distributed system

Contributory applications can use all free disk space

Transparent files take no noticeable space
Negligible performance impact




TFS and Contribution

Jri'

. — —— ¢

-

r—o——

-2 Ext2 Copy

- TFS Copy

10 20 30 40 50
Contribution (%)

TFS performance changes very little as space is contributed




Design principles
Disk allocation policies — preventing fragmentation
Performance concessions

Evaluation
Local file system performance

Effect on contributory storage applications




Design Principles

Contributory storage virtually unnoticeable to user

No effect on allocation policy — no effect on performance
Transparent files cause no fragmentation

Contributory data may be overwritten to avoid interference
Avoiding interference more important than data persistence
Contributory applications should use replicas to prevent data loss

Minimal or no modifications to contributory applications

Simple interface to mark directories containing transparent data
Ordinary file semantics for transparent files




Avoiding File Fragmentation

Non-TFS

TFS
. Free
Allocated IIII IIII

Contributed/
Transparent

Allocated and
Overwritten I III
Overwritten

Blocks in TFS in one of five allocation states

TFS prevents contributed storage from causing fragmentation
Transparent file is now lost




Avoiding Free Space Fragmentation

Non-TFS

. Free
Allocated I III
Contributed/
Transparent

Allocated and
Overwritten II I III
Overwritten

Freeing contributed storage does not leave gaps in free space

Contributing storage never adds to free space fragmentation




Why do we Need 5 States?

TFS Without TFS With
Overwritten Bit Overwritten Bit

. Free
Allocated III III

Contributed/
Transparent

Allocated and
Overwritten IIII IIII
Overwritten

Ordinary file data overwrites contributed space, then is deleted

Overwritten state shows that data is no longer valid




Performance Concessions

Open files cannot be overwritten
Preserves normal file semantics for transparent files
Assumes small amount of data being actively used at once

Transparent meta-data cannot be overwritten

Directory entries, inodes, and indirect blocks are protected
Relatively small amount of storage
Prevents large amounts of transparent storage being lost at once




Allocation Locality

=
—

— Machine 1
i — Machine 2

0.01

oo —EE
o0, T A
0.00001

0 20 40 60 80
Location on Disk (Sorted, %)

~~
(V)]
S~
o0
¥4
N’
(D)
fd
©
Y
-
O
)
O
QO
O
<C
=
O
O
o

Block allocations exhibit high locality
Transparent data in “hot” areas likely to be overwritten often




Reducing Data Loss

1°

1 — Machine 2
0.1
0.01
0.001
0.0001

0.00001

7N\
(V)]
S~
o0
¥4
N’
(0)]
(0p]
@)
—
O
fd
O
()
U
o
)
fd
O
(a4

20 40 60 80
Percent of Disk Available to TFS

TFS avoids placing data in hot parts of the disk
Reduces rate of data loss
Traces allocation events to determine where to avoid




Evaluation
Local file system performance

Effect on contributory storage applications




Compare three methods of contribution

Small fixed-size contribution
Represents current state of contributory storage
Small enough to be unnoticeable to user

Dynamically managed watermarking
Used by Elastic Quotas [Leonard ‘02], and FS2 [Huang ‘05]
Contributes more storage than fixed contribution, not all space
Contributed storage automatically deleted when space is low

Contributed storage managed by TFS

Can contribute all available storage




Experimental Setup

Prototype of TFS based on Ext2
Linux kernel 2.6.13

Tested on Dell Optiplex SX280
512 MB Ram

3 GHz Pentium 4
Disk type: Seagate ST-3160023AS

Disk Specs: 160 GB, 7200 rpm, Avg Seek 8.5ms,
16383 cylinders, 16 heads, 63 sectors
Experiments performed on 10 GB file system

Procedure:

1. Disk half filled with simulated user data, taken from /usr

2. Simulated contributory storage activity, file create and delete
3. Copied benchmark data to file system

4. Rebooted then ran Andrew Benchmark




TFS Evaluation: Allocation Policy
-
Ext2-0% M!m mf Free Space .
Ext2-5% 'IW r Ml User’s Files

Contributed

Ext2-35 /0 M B Space

TFS-50% WWWMW Be”,fi',‘e”s‘a”‘

Layout of benchmark data on disk while contributing storage
TFS prevents fragmentation while contributing all available space




TFS Evaluation: Performance

M Delete
@ Compile

W Mkdir

Ext2 - 0% Ext2-5% Ext2-35% TFS-50%
TFS preserves performance while contributing all available space




Storage Capacity and Bandwidth

Analyzed utility of TFS using model storage system [Blake ‘03]

Provide persistent, available storage service
Use replication to prevent data loss and ensure availability
Assume infinite burst bandwidth, but limited average bandwidth

When host leaves network, its data must be replicated
Replication bandwidth is function of storage per host and churn

More churn — more bandwidth needed
Less bandwidth — less usable storage




TFS and Bandwidth

Trace-driven analysis of usable storage

Used traces to find realistic churn levels [Bolosky '00, Guha '06]
Used block allocation traces to determine rate of data loss in TFS

Given rate of data loss and amount of churn

Computed number of replicas needed for “five nines” of reliability
Varied available bandwidth between 0 kB/s and 1200 kB/s
Determined the maximum contribution per host

BW mitigated through TCP-Nice, Diff-Serv, etc.




High Churn Network (Internet)

— TFS
— Watermarking
— Fixed Contribution

N
Ul

N
o

—
Ul

—
o

—~
(a8
O
N
c
QO
)
>
@)
e
)
c
o
O

200 400 600 800 1000 1200

Bandwidth (kB/s)
In a network with more churn, bandwidth limits storage




Low Churn Network (Corporate)

—TFS
— Watermarking
— Fixed Contribution

~—~~
m
O
~—
c
O
ol
>
@]
e
ol
c
Q
O

200 400 600 800 1000 1200
Bandwidth (kB/s)

In a network with low churn, bandwidth does not limit storage




Contributory systems must not interfere with local performance
Users will restrict or disable application
Buffer cache can be managed by TMM [Cipar 06]

TFS allows contributory storage to use entire disk
Very little interference
No loss of storage for user

TFS + sufficient bandwidth — contributory systems can store

much more data

http://prisms.cs.umass.edu/tcsm




TFS: A Transparent File System for
Contributory Storage

James Cipar, Mark Corner, Emery Berger

http://prisms.cs.umass.edu/tcsm

University of Massachusetts,
Amherst




