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(very) High-level overview

LazyBase is...
 Distributed data base
« High-throughput, rapidly changing data sets
 Efficient queries over consistent snapshots
« Tradeoff between query latency and freshness
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Query freshness

* There Is delay when loading data into database
« Data may not be visible to read() immediately
* In some cases delay could be minutes or hours

* Freshness is an indication of this delay
* “These results contain all data as of 15 seconds ago”
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Query latency

Time between issuing a query,
and receiving results

« Can range from milliseconds to hours
depending on complexity of query and
amount of data involved

« LazyBase allows programmers to choose a
tradeoff between query freshness and latency
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Example application
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Example application

* High bandwidth stream of Tweets

Many thousands per second
e 200 million per day

WHEN AN EARTHRUAKE HITG,
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Example application

* High bandwidth stream of Tweets g ¢ ¢

* Many thousands per second
+ 200 million per day G

wenaveasrane irs (e(Queries accept different freshness levels

PECPLE FLOOD THE INTERNET
WITH POSTS ABOUT - SOVE *Freshest: USGS Twitter Earthquake Detector

WITHIN 20 R 30 SECONDS, . _
Fresh: Hot news in last 10 minutes

R08IMI63 HUGE
EARTHQUAKE HERE! _ _
*Stale: social network graph analysis

o i

% «( «Consistency is important

*Tweets can refer to earlier tweets
@ome apps look for cause-effect relationships
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Class of analytical applications

* Performance

« Continuous high-throughput updates

« “Big” analytical queries (scan large parts of data set)
* Freshness

« Varying freshness requirements for queries

* Freshness varies by query, not data set

« Consistency
* There are many types, more on this later...
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Applications and freshness

Freshness / Seconds Minutes Hours+
Domain
Retail Real-time Just-in-time Product search,
coupons, inventory earnings reports
targeted ads
Enterprise Infected File-based E-discovery
information machine policy validation | requests,
management |identification search
Transportation | Emergency Real-time traffic | Traffic
response maps engineering,

route planning
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Current solutions

* Online transaction processing databases (OLTP)
« Data warehouse systems

« “NoSQL” databases
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Online transaction processing

« Typical databases supporting SQL language
* Focus on consistency and reliability

» Typically used for short transactions
« Highly selective query with index or small inserts

Support continuous ingest and querying

% Performance often not sufficient for data mining
e [Chaudhuri ‘97], [Plattner ‘09]
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Data warehouse systems

« Sometimes called Online Analytical Processing

« Used for analyzing large data sets
 Efficient scans and aggregations

Designed for data mining: fast efficient queries

% Data loaded by batch jobs:

« Extract-transform-load pipeline (ETL)
« At any given time data may be many hours old
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NoSQL databases

* Many diverse architectures
« Cassandra, HBase, Hypertable, MongoDB ...

» Designed for scalability on large clusters

v Scalable ingest and query
% Sacrifice consistency for scalability

T

Cassandra
ety Y
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Current Solutions

Performance

Freshness

Consistency

v

OLTP/

SQL DBs x V V
Data

warehouse V x V
NoSQL ’ x
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Current Solutions

Performance | Freshness Consistency

LazyBase Is designed to
support all three
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Key ideas

« Separate concepts of consistency and freshness
« Batching to improve throughput, provide consistency

* Trade latency for freshness

« Can choose on a per-query basis
— Fast queries over stale data
— Slower queries over fresh data
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Consistency # freshness

Separate concepts of
consistency and freshness

* Query results may be stale: missing recent writes
* Query results must be consistent
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Query (or read) transactions

* A query transaction is a group of queries

« Each query asks for some subset of the data
« “All rows where the user name is ‘jcipar™

* Possibly aggregated in different ways
* “The average size of tweets from user ‘jcipar’™
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Write transactions

Group of inserts, updates and deletes

Insert — “add a new row with these values”

Update — “modify row with id X"

Delete — “remove row with id X”
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Snapshot isolation

« Commonly used in OLTP databases
« Simple case: read-only/write-only transactions

* Write transactions applied atomically to most
recent version of database

* Read transactions act on single version in
database

« Every query in the transaction accesses same
snapshot
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Consistency in LazyBase

* Atomic multi-row updates
* Monotonicity:

 If a query sees update A, all subsequent queries
will see update A

« Consistent prefix:
« Total ordering of updates

 If a query sees update number X, it will also see
updates 1...(X-1)
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LazyBase limitations

* Only supports observational data
« Transactions are read-only or write-only
* No read-modify-write
* Not online transaction processing

* Not (currently) targeting really huge scale
* 10s of servers, not 1000s
* Not everyone is a Google (or a Facebook...)
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LazyBase design

« LazyBase is a distributed database
« Commodity servers (e.g. 8 CPU cores, 16 GB RAM)

« Can use direct attached storage
« Each server runs:
« General purpose worker process
 Ingest server that accepts client requests
* Query agent that processes query requests
* Logically LazyBase is a pipeline
» Each pipeline stage can be run on any worker
« Single stage may be parallelized on multiple workers
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Pipelined data flow

[ Client H Ingest ]
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Pipelined data flow
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Batching updates

« Batching for performance and atomicity

« Common technique for throughput
« E.g. bulk loading of data in data warehouse ETL

 Also provides basis for atomic multi-row operations
« Batches are applied atomically and in-order
« Called SCU (self-consistent update file)
« SCUs contain inserts, updates, deletes
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Batching for performance

Large batches of updates increase throughput
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Problem with batching: latency

« Batching trades update latency for throughput
« Large batches — database is very stale
» Very large batches/busy system — could be hours old

* OK for some queries, bad for others
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Put the “lazy” in LazyBase

As updates are processed through pipeline,
they become progressively “easier” to query.

We can use this to trade query
latency for freshness.
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Query freshness
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Query freshness

Merge ]
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Query freshness

Graph
analysis
>

Authority
table
Slow, fresh Fast, stale >
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Query freshness
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Query freshness

Graph
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Query freshness

Graph
analysis

Authority
table
Slow, fresh Fast, stale >
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Query interface

« User issues high-level queries
« Programatically or like a limited subset of SQL
« Specifies freshness

SELECT COUNT(*) FROM tweets
WHERE user = “jcipar”
FRESHNESS 30;

« Client library handles all the “dirty work”
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Query latency/freshness

Queries allowing staler results return faster
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Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
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Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
« Throughput and scalability of updates

« Performance for queries
« Both “small” and “big” queries

« Consistency relative to Cassandra
* Freshness relative to Cassandra
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Experimental setup

» Ran on OpenCirrus cluster in DCO
* 6 dedicated cores, 12GB RAM, per server

« Local storage

« Data set was ~38 million tweets
« 50 GB uncompressed

 Compared to Cassandra
« Reputation as “write-optimized” NoSQL database
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Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
 Throughput and scalability of ingest

« Performance for queries
« Both “small” and “big” queries

« Consistency relative to Cassandra
* Freshness relative to Cassandra
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Ingest scalability experiment

 Measured time to ingest entire data set

« Uploaded in parallel from 20 servers

« Varied number of worker processes
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Ingest scalability results

LazyBase scales effectively up to 20 servers

Efficiency is ~4x better than Cassandra
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Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
* Throughput and scalability of ingest

* Performance for queries
 Both “small” and “big” queries

« Consistency relative to Cassandra
* Freshness relative to Cassandra
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Query experiments

» Test performance of fastest queries
« Access only authority table

« Two types of queries: point and range

» Point queries get single tweet by 1D
« Range queries get list of valid tweet IDs in range
— Range size chosen to return ~0.1% of all IDs

« Cassandra range queries used get_slice
» Actual range queries discouraged

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/ 45 Jim Cipar © July 12




Point query throughput

Queries scale to multiple clients

Raw performance suffers due to on-disk format
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Range query throughput

Range query performance ~4x Cassandra

1
1
a1
@
o 1
-
=1 &~ |azyBase |
a 8l e-e Cassandral
-
S 6}
O
= ALL® @ -~ ®---@®---9---0
%10 20 30 40 50 60
Carnegie .
Parallel D , Query clients

70

http://www.pdl.cmu.edu/

47

Jim Cipar © July 12



Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
* Throughput and scalability of ingest

» Performance for queries
« Both “small” and “big” queries

« Consistency relative to Cassandra
* Freshness relative to Cassandra
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Consistency experiments

Goal: test atomicity of updates

Table with 2 rows, A and B
Each row stores an integer

Write transactions simultaneously increment
A and decrement B

A+B should always be 0
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Sum = A+B

LazyBase maintains inter-row consistency
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Experiments to show...

* Importance of batching
* Freshness/performance tradeoff
* Throughput and scalability of ingest

» Performance for queries
« Both “small” and “big” queries

« Consistency relative to Cassandra
* Freshness relative to Cassandra
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Freshness experiment

Goal: test freshness in consistency
experiment

Same 2 rows, A and B, but add timestamps
Timestamp shows age of data in database
A and B should have the same timestamp
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Freshness
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Summary

* Provide performance, consistency and freshness
« Batching improves update throughput, hurts latency

« Separate ideas of consistency and freshness
« Tradeoff between freshness and latency

* Use pipelined database to meet these needs
« Allow queries to access intermediate pipeline data
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Future work

Soft causality constraints
« LazyBase assumes updates have total ordering

 |n reality it is often useful to reorder updates
« Shortest Job First policy for improved update latency
* Process “high priority” updates quickly

 Many systems use causal consistency
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Causal consistency

* An update can be caused by previous updates
* A tweet may depend on a user’s previous tweets
« A Tweet can refer to a previous tweet explicitly

» Allow updates to be reordered
* Must respect causalality
 If A caused B, then update A must happen before B
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Causal consistency is hard

* Need to track causal relationships:

« Must maintain information about each update

« Can become a performance problem
« Often infeasible

* May be (practically) impossible

o Tweets refer to other tweets

* It is difficult to determine which update a Tweet
was in
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Estimating causality

« Causality may not be that important...
* Some messages out of order
* Roll back and re-execute operations

« Can we estimate causal relationships using
already available data”

* Relative time stamps
 UserID
« User popularity
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“Soft” causal consistency

« Estimating causal relationships means we
might occasionally violate them

 |Instead of treating them as hard constraints,
consider them another objective

« Trade off between causality violations and...
« Latency

 Parallelism
* |ntermediate results
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Thanks!
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