GOTCHA Password Hackers!

Jeremiah Blocki
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

jblocki@cs.cmu.edu

ABSTRACT

We introduce GOTCHAs (Generating panOptic Turing Tests
to Tell Computers and Humans Apart) as a way of pre-
venting automated offline dictionary attacks against user
selected passwords. A GOTCHA is a randomized puzzle
generation protocol, which involves interaction between a
computer and a human. Informally, a GOTCHA should
satisfy two key properties: (1) The puzzles are easy for the
human to solve. (2) The puzzles are hard for a computer
to solve even if it has the random bits used by the com-
puter to generate the final puzzle — unlike a CAPTCHA
[@3]. Our main theorem demonstrates that GOTCHASs can
be used to mitigate the threat of offline dictionary attacks
against passwords by ensuring that a password cracker must
receive constant feedback from a human being while mount-
ing an attack. Finally, we provide a candidate construction
of GOTCHAs based on Inkblot images. Our construction re-
lies on the usability assumption that users can recognize the
phrases that they originally used to describe each Inkblot
image — a much weaker usability assumption than previous
password systems based on Inkblots which required users
to recall their phrase exactly. We conduct a user study to
evaluate the usability of our GOTCHA construction. We
also generate a GOTCHA challenge where we encourage ar-
tificial intelligence and security researchers to try to crack
several passwords protected with our scheme.

Categories and Subject Descriptors

K.6.5 [Computing Milieux]: Security and Protection—
Authentication

*This work was partially supported by the NSF Science and
Technology TRUST and the AFOSR MURI on Science of
Cybersecurity. The first author was also partially supported
by an NSF Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AlSec’13, November 4, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2488-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517312.2517319

Manuel Blum
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

mblum@cs.cmu.edu

Anupam Datta
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

danupam@cmu.edu

Keywords

Human Authentication; Passwords; GOTCHA; Inkblots; Of-
fline Dictionary Attack; CAPTCHA; HOSP

1. INTRODUCTION

Any adversary who has obtained the cryptographic hash
of a user’s password can mount an automated brute-force at-
tack to crack the password by comparing the cryptographic
hash of the user’s password with the cryptographic hashes
of likely password guesses. This attack is called an offline
dictionary attack, and there are many password crackers
that an adversary could use [[7]. Offline dictionary at-
tacks against passwords are — unfortunately — powerful
and commonplace [25]. Adversaries have been able to com-
promise servers at large companies (e.g., Zappos, LinkedIn,
Sony, Gawker [B, 2, @, 4, [, 3]) resulting in the release of mil-
lions of cryptographic password hashes ®. It has been repeat-
edly demonstrated that users tend to select easily guessable
passwords [27, I8, [T], and password crackers are able to
quickly break many of these passwords[Bd]. Offline attacks
are becoming increasingly dangerous as computing hardware
improves — a modern GPU can evaluate a cryptographic
hash function like SHA2 about 250 million times per sec-
ond [@9] — and as more and more training data — leaked
passwords from prior breaches — becomes available [25].
Symantec reported that compromised passwords have sig-
nificant economic value to an adversary (e.g., compromised
passwords are sold on black market for between $4 and $30
) [22].

HOSPs (Human-Only Solvable Puzzles) were suggested by
Canetti, Halevi and Steiner as a way of defending against of-
fline dictionary attacks [4]. The basic idea is to change the
authentication protocol so that human interaction is required
to verify a password guess. The authentication protocol be-
gins with the user entering his password. In response the
server randomly generates a challenge — using the pass-
word as a source of randomness — for the user to solve.
Finally, the server appends the user’s response to the user’s
password, and verifies that the hash matches the record on
the server. To crack the user’s password offline the adver-
sary must simultaneously guess the user’s password and the
answer to the corresponding puzzle. The challenge should
be easy for a human to solve consistently so that a legiti-
mate user can authenticate. To mitigate the threat of an
offline dictionary attack the HOSP should be difficult for a

Tn a few of these cases [3, ] the passwords were stored in
the clear.



computer to solve — even if it has all of the random bits
used to generate the challenge.

The basic HOSP construction proposed by Canetti et al.
[4] was to to fill a hard drive with regular CAPTCHAs (e.g.,
distorted text) by storing the puzzles without the answers.
This solution only provides limited protection against an ad-
versary because the number of unique puzzles that can be
generated is bounded by the size of the hard drive (e.g., the
adversary could pay people to solve all of the puzzles on the
hard drive). See appendix B for more discussion. Finding
a usable HOSP construction which does not rely on a very
large dataset of pregenerated CAPTCHAS is an open prob-
lem. Several candidate HOSPs were experimentally tested
[5] (they are called POSHs in the second paper), but the
usability results were underwhelming.

Contributions.

We introduce a simple modification of HOSPs that we call
GOTCHASs (Generating panOptic Turing Tests to Tell Com-
puters and Humans Apart). We use the adjective Panoptic
to refer to a world without privacy — there are no hidden
random inputs to the puzzle generation protocol. The basic
goal of GOTCHAs is similar to the goal of HOSPs — de-
fending against offline dictionary attacks. GOTCHAs differ
from HOSPs in two ways (1) Unlike a HOSP a GOTCHA
may require human interaction during the generation of the
challenge. (2) We relax the requirement that a user needs
to be able to answer all challenges easily and consistently.
If the user can remember his password during the authen-
tication protocol then he will only ever see one challenge.
We only require that the user must be able to answer this
challenge consistently. If the user enters the wrong password
during authentication then he may see new challenges. We
do not require that the user must be able to solve these chal-
lenges consistently because authentication will fail in either
case. We do require that it is difficult for a computer to dis-
tinguish between the “correct” challenge and an “incorrect”
challenge. Our main theorem demonstrates that GOTCHAs
like HOSPs can be used to defend against offline dictionary
attacks. The goal of these relaxations is to enable the design
of usable GOTCHAs.

We introduce a candidate GOTCHA construction based
on Inkblot images. While the images are generated ran-
domly by a computer, the human mind can easily imagine
semantically meaningful objects in each image. To generate
a challenge the computer first generates ten inkblot images
(e.g., figure M). The user then provides labels for each im-
age (e.g., evil clown, big frog). During authentication the
challenge is to match each inkblot image with the corre-
sponding label. We empirically evaluate the usability of our
inkblot matching GOTCHA construction by conducting a
user study on Amazon’s Mechanical Turk. Finally, we chal-
lenge the Al community to break our GOTCHA construc-
tion.

Organization.
The rest of the paper is organized as follows: We next dis-

cuss related work in section Il. We formally define GOTCHAs

in section B and formalize the properties that a GOTCHA
should satisfy. We present our candidate GOTCHA con-
struction in section B, and in section Bl we demonstrate
how our GOTCHA could be integrated into an authentica-
tion protocol. We present the results from our user study

-
0%

Figure 1: Randomly Generated Inkblot Image—An evil
clown?

in section B2, and in section BZ3 we challenge the Al and
security communities to break our GOTCHA construction.
In section @ we prove that GOTCHAs like HOSPs can also
be used to design a password storage system which mitigates
the threat of offline attacks. We conclude by discussing fu-
ture directions and challenges in section B.

1.1 Related Work

Inkblots [49] have been proposed as an alternative way to
generate and remember passwords. Stubblefield and Simon
proposed showing the user ten randomly generated inkblot
images, and having the user make up a word or a phrase to
describe each image. These phrases were then used to build
a 20 character password (e.g., users were instructed to take
the first and last letter of each phrase). Usability results
were moderately good, but users sometimes had trouble re-
membering their association. Because the Inkblots are pub-
licly available there is also a security concern that Inkblot
passwords could be guessable if different users consistently
picked similar phrases to describe the same Inkblot.

We stress that our use of Inkblot images is different in two
ways: (1) Usability: We do not require users to recall the
word or phrase associated with each Inkblot. Instead we re-
quire user’s to recognize the word or phrase associated with
each Inkblot so that they can match each phrase with the
appropriate Inkblot image. Recognition is widely accepted
to be easier than the task of recall [7, 45]. (2) Security: We
do not need to assume that it would be difficult for other
humans to match the phrases with each Inkblot. We only
assume that it is difficult for a computer to perform this
matching automatically.

CAPTCHAs — formally introduced by Von Ahn et al.
[3] — have gained widespread adoption on the internet to
prevent bots from automatically registering for accounts. A
CAPTCHA is a program that generates a puzzle — which
should be easy for a human to solve and difficult for a com-
puter to solve — as well as a solution. Many popular forms
of CAPTCHAs (e.g., reCAPTCHA [44]) generate garbled
text, which is easy ? for a human to read, but difficult for
a computer to decipher. Other versions of CAPTCHASs rely
on the natural human capacity for audio [87] or image recog-
nition [I9].

2 Admitedly some people would dispute the use of the label
‘easy.’



CAPTCHAS have been used to defend against online pass-
word guessing attacks — users are sometimes required to
solve a CAPTCHA before signing into their account. An
alternative approach is to lock out a user after several incor-
rect guesses, but this can lead to denial of service attacks
[[8]. However, if the adversary has access to the crypto-
graphic hash of the user’s password, then he can circum-
vent all of these requirements and execute an automatic
dictionary attack to crack the password offline. By contrast
HOSPs — proposed by Canetti et al.[[d] — were proposed to
defend against offline attacks. HOSPs are in some ways sim-
ilar to CAPTCHASs (Completely Automated Turing Tests to
Tell Computers and Humans Apart) [43]. CAPTCHAs are
widely used on the internet to fight spam by preventing bots
from automatically registering for accounts. In this setting
a CAPTCHA is sent to the user as a challenge, while the
secret solution is used to grade the user’s answer. The im-
plicit assumption is that the answer and the random bits
used to generate the puzzle remain hidden — otherwise a
spam bot could simply regenerate the puzzle and the an-
swer. While this assumption may be reasonable in the spam
bot setting, it does not hold in our offline password attack
setting in which the server has already been breached. A
HOSP is different from a CAPTCHA in several key ways:
(1) The challenge must remain difficult for a computer to
solve even if the random bits used to generate the puzzle
are made public. (2) There is no single correct answer to a
HOSP. It is okay if different people give different responses
to a challenge as long as people can respond to the challenges
easily, and each user can consistently answer the challenges.

The only HOSP construction proposed in [i4] involved
stuffing a hard drive with unsolved CAPTCHAs. The prob-
lem of finding a HOSP construction that does not rely on a
dataset of unsolved CAPTCHAs was left as an open prob-
lem [04]. Several other candidate HOSP constructions have
been experimentally evaluated in subsequent work [[I5] (they
are called POSHs in the second paper), but the usability re-
sults for every scheme that did not rely on a large dataset
on unsolved CAPTCHASs were underwhelming.

GOTCHAs are very similar to HOSPs. The basic appli-
cation — defending against offline dictionary attacks — is
the same as are the key tools: exploiting the power of inter-
action during authentication, exploiting hard artificial intel-
ligence problems. While the authentication with HOSPs is
interactive, the initial generation of the puzzle is not. By
contrast, our GOTCHA construction requires human inter-
action during the initial generation of the puzzle. This sim-
ple relaxation allows for the construction of new solutions.
In the HOSP paper humans are simply modeled as a puz-
zle solving oracle, and the adversary is assumed to have a
limited number of queries to a human oracle. We introduce
a more intricate model of the human agent with the goal of
designing more usable constructions.

Password Storage.

Password storage is an incredibly challenging problem.
Adversaries have been able to compromise servers at many
large companies (e.g., Zappos, LinkedIn, Sony, Gawker [, 2,
g, d, M, 8]). For example, hackers were able to obtain 32 mil-
lion plaintext passwords from RockYou using a simple SQL
injection attack [Ml]. While it is considered an extremely poor
security practice to store passwords in the clear [A1], the
practice is still fairly common [I2, B, 0]. Many other com-

panies [@, 2] have used cryptographic hashes to store their
passwords, but failed to adopt the practice of salting (e.g.,
instead of storing the cryptographic hash of the password
h(pw) the server stores (h (pw,r),r) for a random string r
[6]) to defend against rainbow table attacks. Rainbow ta-
bles, which consist of precomputed hashes, are often used by
an adversary to significantly speed up a password cracking
attack because the same table can be reused to attack each
user when the passwords are unsalted [33].

Cryptographic hash functions like SHA1, SHA2 and MD5
— designed for fast hardware computation — are popular
choices for password hashing. Unfortunately, this allows an
adversary to try up to 250 million guesses per second on a
modern GPU [29]. The BCRYPT [5] hash function was de-
signed specifically with passwords in mind — BCRYPT was
intentionally designed to be slow to compute (e.g., to limit
the power of an adversary’s offline attack). The BCRYPT
hash function takes a parameter which allows the program-
mer to specify how costly the hash computation should be.
The downside to this approach is that it also increases costs
for the company that stores the passwords (e.g., if we want
it to cost the adversary $1,000 for every million guesses then
it will also cost the company at least $1,000 for every million
login attempts).

Users are often advised (or required) to follow strict guide-
lines when selecting their password (e.g., use a mix of up-
per/lower case letters, include numbers and change the pass-
word frequently) [B¥]. However, empirical studies show that
user’s are are often frustrated by restricting policies and
commonly forget their passwords [28, 29, 20] ®. Further-
more, the cost of these restrictive policies can be quite high.
For example, a Gartner case study [d7] estimated that it cost
over $17 per password-reset call. Florencio and Herley [21]
studied the economic factors that institutions consider be-
fore adopting password policies and found that they often
value usability over security.

2. DEFINITIONS

In this section we seek to establish a theoretical basis for
GOTCHASs. Several of the ideas behind our definitions are
borrowed from theoretical definitions of CAPTCHAs [43]
and HOSPs [14]. Like CAPTCHAs and HOSPs, GOTCHAs
are based on the assumption that some AI problem is hard
for a computer to solve, but easy for a person to solve. Ul-
timately, these assumptions are almost certainly false (e.g.,
because the human brain can solve a GOTCHA it is rea-
sonable to believe that there exists a computer program to
solve the problems). However, it may still be reasonable
to assume that these problems cannot be solved by applying
known ideas. By providing a formal definition of GOTCHAs
we can determine whether or not a new idea can be used to
break a candidate GOTCHA construction.

We use ¢ € C to denote the space of challenges that
might be generated. We use H to denote the set of hu-
man users and H (¢, o) to denote the response that a hu-
man H € H gives to the challenge ¢ € C at time t. Here,
o: denotes the state of the human’s brain at time ¢t. o; is
supposed to encode our user’s existing knowledge (e.g., vo-
cabulary, experiences) as well as the user’s mental state at
time ¢ (e.g., what is the user thinking about at time t). Be-

3In fact the resulting passwords are sometimes more vulner-
able to an offline attack! [28, 29|



cause o; changes over time (e.g., new experiences) we use
H (¢) = {H (c,0¢) | t € N} to denote the set of all answers a
human might give to a challenge c. We use A to denote the
range of possible responses (answers) that a human might
give to the challenges.

DEFINITION 1. Given a metric d : A x A — R, we say
that a human H can consistently solve a challenge ¢ € C
with accuracy o if Vt € N

d(H (C,JQ),H(C, Ji)) <a,

where oo denotes the state of the human’s brain when he
initially answers the challenge. If |H (¢)| = 1 then we simply
say that the human can consistently solve the challenge.

Notation: When we have a group of challenges (c1, ..., ck)
we will sometimes write H ({(c1,...,ck),01) =
(H (c1,0¢),...,H (ck,04)) for notational convenience. We

use y ~ D to denote a random sample from the distribution

D, and we use r & {0,1}™ to denote a element drawn from
the set {0,1}" uniformly at random.

One of the requirements of a HOSP puzzle system [I4] is
that the human H must be able to consistently answer any
challenge that is generated (e.g., Vc € C, H can consistently
solve ¢). These requirements seem to rule out promising
ideas for HOSP constructions like Inkblots[TH]. In this con-
struction the challenge is a randomly generated inkblot im-
age I, and the response H (I, 0¢) is word or phrase describing
what the user initially sees in the inkblot image (e.g., evil
clown, soldier, big lady with a ponytail). User studies have
shown that H (I, 00) does not always match H (I,0:) — the
phrase describing what the user sees at time ¢ [I5]. In a
few cases the errors may be correctable (e.g., capitalization,
plural/singular form of a word), but oftentimes the phrase
was completely different — especially if a long time passed
in between trials ®. By contrast, our GOTCHA construction
does not require the user to remember the phrases associ-
ated with each Inkblot. Instead we rely on a much weaker
assumption — the user can consistently recognize his solu-
tions. We say that a human can recognize his solutions to
a set of challenges if he can consistently solve a matching
challenge (definition B) in which he is asked to match each
of his solutions with the corresponding challenge.

DEFINITION 2. Given an integer k, and a permutation T :
[k] — [k], a matching challenge é, = (¢,a@) € C of size k is
given by a k-tuple of challenges € = (Cr(1),. .-, Cn(k)) € C*
and solutions @ = H ({c1,...,ck),00). The response to a
matching challenge is a permutation ™’ = H (&, 0¢).

For permutations 7 : [k] — [k] we use the distance metric
di (my,m2) = [{i| m1(3) # ma(i) N1 <i <k} .

di (71, 7m2) simply counts the number of entries where the
permutations don’t match. We say that a human can consis-
tently recognize his solution to a matching challenge ¢, with

accuracy o if Vt.dg (H (éx,0¢),m) < a. Weuse {7’ |dy (7, 7") <

a} to denote the set of permutations 7’ that are a-close to
.

We would add the requirement that the human must be
able to consistently answer the challenges without spending
time memorizing and rehearsing his response to the chal-
lenge. Otherwise we could just as easily force the user to
remember a random string to append on to his password.

The puzzle generation process for a GOTCHA involves
interaction between the human and a computer: (1) The
computer generates a set of k challenges. (2) The human
solves these challenges. (3) The computer uses the solutions
to produce a final challenge ®. Formally,

DEFINITION 3. A puzzle-system is a pair (G1,G2), where
G1 is a randomized challenge generator that takes as in-
put 1F (with k security parameter) and a pair of random bit
strings ri,72 € {0,1}* and outputs k challenges {(c1, ..., ck)
G1 (1’“, 1, 7‘2). G2 is a randomized challenge generator that
takes as input 1% (security parameter), a random bit string
r1 € {0,1}, and proposed answers @ = (a1, ...,ar) to the
challenges G1 (lk,rl, 7‘2) and outputs a challenge
¢+ Go (1]“,7’1,5). We say that the puzzle-system is (a, 3)-
usable if

Pr [Accurate (H,é,a)] > 8,

HEH

whenever @ = H (G1 (lk, r1, 7‘2) ,ao), where Accurate (H, é, o)
denotes the event that the human H can consistently solve ¢
with accuracy o.

In our authentication setting the random string r; is ex-
tracted from the user’s password using a strong pseudoran-
dom function Extract. To provide a concrete example of a
puzzle-system, G1 could be a program that generates a set of
inkblot challenges (I1,..., Ix) using random bits 71, selects
a random permutation m : [k] — [k] using random bits r2,
and returns (Ir1y,...,Ir(x)). The human’s response to an
Inkblot — H (I, 00) — is whatever he/she imagines when he
sees the inkblot I; for the first time (e.g., some people might
imagine an evil clown when they look at figure m). Finally,
G2 might generate Inkblots ¢ = ([1,...,I;) using random
bits r1, and return the matching challenge é. = (¢,d@). In
this case the matching challenge is for the user to match his
labels with the appropriate Inkblot images to recover the
permutation w. Observe that the final challenge — é» —
can only be generated after a round of interaction between
the computer and a human. By contrast, the challenges in
a HOSP must be generated automatically by a computer.
Also notice that if G2 is executed with a different random
bit string 7 then we do not require the resulting challenge
to be consistently recognizable (e.g., if the user enters in the
wrong password then authentication will fail regardless of
how he solves the resulting challenge). For example, if the
user enters the wrong password the user might be asked to
match his labels <£.,r<1), ey Zﬂ.(k)> =H (<Iﬂ.(1), ceey Iﬂ.(k)>, 0'())
with Inkblots (I1,...,I;,) that he has never seen.

An adversary could attack a puzzle system by either (1)
attempting to distinguish between the correct puzzle, and
puzzles that might be meaningless to the human, or (2) by
solving the matching challenge directly.

We say that an algorithm A can distinguish distributions
D; and D> with advantage € if

Pr [A(z)=1]— Pr [A(y)=1]| > €.
P A@ == P A = 1)| 2

Our formal definition of a GOTCHA is found in defini-
tion @. Intuitively, definition @ says that (1) The underlying

®We note that a HOSP puzzle system (G) [Id] can be mod-
eled as a GOTCHA puzzle system (G1,G2) where G1 does
nothing and G2 simply runs G to generate the final challenge
¢ directly.




puzzle-system should be usable — so that legitimate users
can authenticate. (2) It should be difficult for the adversary
to distinguish between the correct matching challenge (e.g.,
the one that the user will see when he types in the cor-
rect password), and an incorrect matching challenge (e.g.,
if the user enters the wrong password he will be asked to
match his labels with different Inkblot images), and (3) It
should be difficult for the adversary to distinguish between
the user’s matching, and a random matching drawn from a
distribution R with sufficiently high minimum entropy.

DEFINITION 4. A puzzle-system (G1,G2) is an («, B,¢€,0, u)-

GOTCHA if (1) (G1,G2) tis (e, B)-usable (2) Given a hu-
man H € H no probabilistic polynomial time algorithm can
distinguish between distributions

Dy — H(Gl(lkyﬁ,m),fm)
v G2(1kﬂ“17H(G1(1k,T1,T2),Uo))

and

T1,T2 & {0, 1}”}

Do — H(G1(1F,r1,m2),00),
2= G2 (1%,r3,H(G1 (1% ,r1,m2),00))

with advantage greater than e, and (8) Given a human H €
H, there is a distribution R(c) with p(m) bits of minimum
entropy such that no probabilistic polynomial time algorithm
can distinguish between distributions

r1,72,73 (i {0, 1}”}

H(G1 (1k,7‘1,r2),o'0)

D3 = Gg(lk,Tl,H(Gl(lk,’l‘l,’I‘Q),Uo)),
H(

Gg(lk’,'rl ,H(G1 (1k,r1,T2),o'0)),00)

r1,T2 (i {0, 1}”}

and

H(Gl(lkﬂ“lﬂ“z),ao)
Dy = G2(1k7T17H(G1(1k,T1,?"2),00))7

R(G2(1™,r1,(a1,...,am)),00)

r1,T2 (i {07 l}n}

with advantage greater then §.

2.1 Password Storage and Offline Attacks

To protect users in the event of a server breach organiza-
tions are advised to store salted password hashes — using
a cryptographic hash function (h : {0,1}* — {0,1}") and
a random bit string (s € {0,1}") [B8]. For example, if a
user (u) chose the password (pw) the server would store
the tuple (u, s, h (s,pw)). Any adversary who has obtained
(u, s, h (s,pw)) (e.g., through a server breach) may mount a
— fully automated — offline dictionary attack using pow-
erful password crackers like John the Ripper [['7]. To verify
a guess pw’ the adversary simply computes h (s, pw’) and
checks to see if this hash matches h (s, pw).

We assume that an adversary Adv who breaches the server

can obtain the code for h, as well as the code for any GOTCHAs

used in the authentication protocol. Given the code for h
and the salt value s the adversary can construct a function

1 if h(s,pw) = h(s,pw’)

VerifyHash (pw/) = {0 otherwise.

We also allow the adversary to have black box access to
a GOTCHA solver (e.g., a human). We use cyg to denote
the cost of querying a human and c¢;, to denote the cost of
querying the function VerifyHash®, and we use ny (resp.

5The value of ¢, may vary widely depending on the par-
ticular cryptographic hash function — it is inexpensive to
evaluate SHA1, but BCRYPT [35] may be very expensive
to evaluate.

np) to denote the number of queries to the human (resp.
VerifyHash). Queries to the human GOTCHA solver are
much more expensive than queries to the cryptographic hash
function (cg > cx) [B1]. For technical reasons we limit our
analysis to conservative adversaries.

DEFINITION 5. We say that an adversary Adv is conser-
vative if (1) Adv uses the cryptographic hash function h
in a black box manner (e.g., the hash function h and the
stored hash value are only used to construct a subroutine
VerifyHash which is then used as a black bozx by Adv ),
(2) The pseudorandom function Extract is used as a black
boz, and (8) The adversary only queries a human about chal-
lenges generated using a password guess.

It is reasonable to believe that our adversary is conservative.
All existing password crackers (e.g., [I'7]) use the hash func-
tion as a black box, and it is difficult to imagine that the
adversary would benefit by querying a human solver about
Inkblots that are unrelated to the password.

We use D C {0,1}" to denote a dictionary of likely guesses
that the adversary would like to try,

Cost (Adv, D) = (nyen +nucu)

to denote the cost of the queries that the adversary makes to
check each guess in D, and Succeed (Adv, D, pw) to denote
the event that the adversary makes a query to VerifyHash
that returns 1 (e.g., the adversary successfully finds the
user’s password pw). The adversary might use a computer
program to try to solve some of the GOTCHAs — to save
cost by not querying a human. However, in this case the ad-
versary might fail to crack the password because the GOTCHA
solver found the wrong solution to one of the challenges.

DEFINITION 6. An adversary Adv is (C,~, D)-successful
if Cost (Adv, D) < C, and

Pr [Succeed (Adv,D,pw)] >~ .

pwﬁD

Our attack model is slightly different from the attack
model in [4]. They assume that the adversary may ask
a limited number of queries to a human challenge solution
oracle. Instead we adopt an economic model similar to [IT],
and assume that the adversary is instead limited by a budget
C, which may be used to either evaluate the cryptographic
hash function h or query a human H.

3. INKBLOT CONSTRUCTION

Our candidate GOTCHA construction is based on Inkblots
images. We use algorithm I to generate inkblot images. Al-
gorithm [ takes as input random bits 1 and a security pa-
rameter kK — which specifies the number of Inkblots to out-
put. Algorithm 0 makes use of the randomized subroutine
DrawRandomEllipsePairs (I, ¢, width, height) which draws
t pairs of ellipses on the image I with the specified width
and height. The first ellipse in each pair is drawn at a ran-
dom (z,y) coordinate on the left half of the image with a
randomly selected color and angle « of rotation, and the sec-
ond ellipse is mirrored on the right half of the image. Figure
0 is an example of an Inkblot image generated by algorithm
m.

Our candidate GOTCHA is given by the pair (G1,G2)
— algorithms B and B. G runs algorithm 0 to generate k



Algorithm 1 GeneratelnkblotImages

Input: Security Parameter 1%, Random bit string r1 €
{0,1}".
for j=1,...,k do
I; < new Blank Image > The
following operations only use the random bit string r1 as
a source of randomness
DrawRandomEllipsePairs (I}, 150, 60, 60)
DrawRandomEllipsePairs (/;, 70, 20, 20)

DrawRandomEllipsePairs (/;, 150, 60, 20)
return (I1,...,1I;) > Inkblot Images

Inkblot images, and then returns these images in permuted
order — using a function
GenerateRandomPermutation (k, ), which generates a
random permutation 7 : [k] — [k] using random bits r. G2
also runs algorithm 0 to generate k Inkblot images, and then
outputs a matching challenge.

Algorithm 2 G,

Input: Security Parameter 17, Random bit strings
r,Tr2 € {07 1}*.

(I1,...,Ir) < GenerateInkblotImages (k,71)

7 < GenerateRandomPermutation (k, r2)

return <I7r(1), RN I‘Il'(k)>

After the Inkblots (Ir(1,. .., Ix(x)) have been generated,
the human user is queried to provide labels £r(1),. .., k)
where

<€ﬂ.(1), - ,Zﬂm) =H ((1,,(1), -

In our authentication setting the server would store the la-
bels £r(1),...,£rx) in permuted order. The final challenge
— generated by algorithm B — is to match the Inkblot im-
ages I1,...,I; with the user generated labels ¢1,...,¢; to
recover the permutation .

aIW(k)>a UO) .

Algorithm 3 GenerateMatchingChallenge G

Input: Security Parameter 1¥, Random bits r; € {0,1}*
and labels @ = (£r(1), .-, r(k))-

(I,...,Ii) + GenerateInkblotImages (1%, r)
return ¢, = (G, @) > Matching Challenge

Observation: Notice that if the random bits provided
as input to GeneratelnkblotImages and
GenerateMatchingChallenge match that the user will
see the same Inkblot images in the final matching challenge.
However, if the random bits do not match (e.g., because
the user typed the wrong password in our authentication
protocol) then the user will see different Inkblot images. The
labels £1, ..., ¢, will be the same in both cases.

3.1 GOTCHA Authentication

To illustrate how our GOTCHAs can be used to defend
against offline attacks we present the following authentica-
tion protocols: Create Account (protocol Bl) and Au-
thenticate (protocol B4). Communication in both proto-
cols should take place over a secure channel. Both protocols
involve several rounds of interaction between the user and

the server. To create a new account the user sends his user-
name/password to the server, the server responds by gen-
erating k Inkblot images Ii,..., Ix, and the user provides
a response ({1,...,0k) = H ((I1,...,Ix),00) based on his
mental state at the time — the server stores these labels in
permuted order £r(1y, ..., Lx(k) P To authenticate later the
user will have to match these labels with the corresponding
inkblot images to recover the permutation .

In section @ we argue that the adversary who wishes to
mount a cost effective offline attack needs to obtain constant
feedback from a human. Following [[4] we assume that the
function Extract : {0,1}* — {0,1}" is a strong random-
ness extractor, which can be used to extract random strings
from the user’s password. Recall that h : {0,1}" — {0,1}"
denotes a cryptographic hash function.

Protocol 3.1: Create Account

Security Parameters: £k, n.

(User): Select username (u) and password (pw) and send

(u, pw) to the server.

(Server): Sends Inkblots (I1,...,I)) to the user where:
& {0,1}", r1 + Extract (pw,r’), r2 & {0,1}" and
(I,...,Ii) + GenerateInkblotImages (1*,7)

(User): Sends responses ({1, ...,{;) back to the server
where:

<é1, ce. ,£k> — ]7(<117 ce. ,Ik>70'0).
(Server):  Store the tuple ¢ where ¢ is computed as
follows:

Salt: s & {0,1}"

7 + GenerateRandomPermutation (k, rz).
hpw < h(u, s, pw,n(1),...,7(k))

t < (u, 7,8, hpw, (1), - iy

Protocol 3.2: Authenticate

Security Parameters: £k, n.
Usability Parameter: «
(User): Send username (u) and password (pw’) — puw’
may or may not be correct.
(Server): Sends challenge ¢ to the user where ¢ is com-
puted as follows:
Find t = (u, r' s, hpw, €r(1y, -
r1 < Extract (pw',r’)
(I3, ..., It) + GeneratelnkblotImages (11, k)
er = ((Tny o i)y (Lrays -+ b))
(User): Solves ¢, and sends the answer 7’ = H (&, 0¢).
(Server):
for all g s.t dy (7o, 7') < a do
hpw,o < h(u,s,pw’, mo(1), ..., mo(k))
if hpw,0 = hpw then
Authenticate
Deny

()

Our protocol could be updated to allow the user to re-
ject challenges he found confusing during account creation

"For a general GOTCHA, protocol Bl would need to have an
extra round of communication. The server would send the
user the final challenge generated by G2 and the user would
respond with H (G2 (,),00). Protocol B takes advantage
of the fact that m = H (G2 (, ), 00) is already known.



in protocol BTl. In this case the server would simply note
that the first GOTCHA was confusing and generate a new
GOTCHA. Once our user has created an account he can
login by following protocol B=2.

Claim O says that a legitimate user can successfully au-
thenticate if our Inkblot construction satisfies the usability
requirements of a GOTCHA. The proof of claim M can be
found in appendix Al

Cram 1. If (G1,G2) is a (o, B,€,0, u)-GOTCHA then at
least B-fraction of humans can successfully authenticate us-
ing protocol @2 after creating an account using protocol E.

One way to improve usability of our authentication pro-
tocol is to increase the neighborhood of acceptably close
matchings by increasing a. The disadvantage is that the
running time for the server in protocol B2 increases with
the size of a. Claim B bounds the time needed to enumer-
ate over all close permuations. The proof of claim B can be
found in appendix Al

CLAIM 2. For all permutations 7 : [k] — [k] and o > 0

' ) < <1435 (F)

For example, if the user matches £ = 10 Inkblots and we
want to accept matchings that are off by at most o = 5 en-
tries then the server would need to enumerate over at most
36,091 permutations®. Organizations are already advised to
use password hash functions like BCRYPT [B85] which inten-
tionally designed to be slower than standard cryptographic
hash functions — often by a factor of millions. Instead of
making the hash function a million times slower to evaluate
the server might instead make the hash function a thousand
times slower to evaluate and use these extra computation
cycles to enumerate over close permutations. The orga-
nization’s trade-off is between: security, usability and the
resources that it needs to invest during the authentication
process.

We observe that an adversary mounting an online attack
would be naturally rate limited because he would need to
solve a GOTCHA for each new guess. Protocol B2 could
also be supplemented with a k-strikes policy — in which a
user is locked out for several hours after k£ incorrect login
attempts — if desired.

3.2 User Study

To test our candidate GOTCHA construction we con-
ducted an online user study®. We recruited participants
through Amazon’s Mechanical Turk to participate in our
study. The study was conducted in two phases. In phase
1 we generated ten random Inkblot images for each partici-
pant, and asked each participant to provide labels for their
Inkblot images. Participants were advised to use creative
titles (e.g., evil clown, frog, lady with poofy dress) because
they would not need to remember the exact titles that they

8 A more precise calculation reveals that there are exactly
13,264 permutations s.t. dio (7',7) < 5 and a random
permuation 7’ would only be accepted with probability
3.66 x 107*

90ur study protocol was approved for exemption by the In-
stitutional Review Board (IRB) at Carnegie Mellon Univer-
sity (IRB Protocol Number: HS13-219).

Phase 1 | Phase 2
Average 9.3 4.5
StdDev 9.6 3
Max 57.5 18.5
Min 1.4 1.6
Average < 20 6.2 N/A

Table 1: Completion Times

a ” # part;;:ipants H{~"] dlol((;r!,w’)ga}\
accurate| partici-
pants

a=0 |17 0.29 2.76 x 1077
a=2 |22 0.38 1.27 x 107°
a=3 |26 0.45 7.88 x 107°
a=4 |34 0.59 6.00 x 1077
a=5 |40 0.69 3.66 x 103

Table 2: Usability Results: Fraction of Participants who
would have authenticated with accuracy parameter «

used. Participants were paid $1 for completing this first
phase. A total of 70 users completed phase 1.

After our participants completed the first phase we waited
ten days before asking our participants to return and com-
plete phase 2. During phase 2 we showed each participant
the Inkblot images they saw in phase 1 (in a random or-
der) as well as the titles that they created during phase 1
(in alphabetical order). Participants were asked to match
the labels with the appropriate image. The purpose of the
longer waiting time was to make sure that participants had
time to forget their images and their labels. Participants
were paid an additional $1 for completing phase 2 of the
user study. At the beginning of the user study we let par-
ticipants know that they would be paid during phase 2 even
if their answers were not correct. We adopted this policy to
discourage cheating (e.g., using screen captures from phase
1 to match the images and the labels) and avoid positively
biasing our results.

We measured the time it took each participant to complete
phase 1. Our results are summarized in table M. It is quite
likely that some participants left their computer in the mid-
dle of the study and returned later to complete the study
(e.g., one user took 57.5 minutes to complete the study).
While we could not measure time away from the computer,
we believe that it is likely that at least 9 of our participants
left the computer. Restricting our attention to the other 61
participants who took at most 20 minutes we get an adjusted
average completion time of 6.2 minutes.

Fifty-eight of our participants returned to complete phase
2 by taking our matching test. It took these participants
4.5 minutes on average to complete the matching test. Sev-
enteen of our participants correctly matched all ten of their
labels, and 69% of participants matched at least 5 out of ten
labels correctly. Our results are summarized in table 2.

Discussion.

Our user study provides evidence that our construction is
at least (0,0.29)-usable or (5, 0.69)-usable. While this means
that our Inkblot Matching GOTCHA could be used by a
significant fraction of the population to protect their pass-



words during authentication it also means that the use of
our GOTCHA would have to be voluntary so that users who
have difficulty won’t get locked out of their accounts. An-
other approach would be to construct different GOTCHAs
and allow users to choose which GOTCHA to use during
authentication.

Study Incentives: There is evidence that the lack of
monetary incentives to perform well on our matching test
may have negatively influenced the results (e.g., some par-
ticipants may have rushed through phase 1 of the study be-
cause their payment in round 2 was independent of their
ability to match their labels correctly). For example, none
of our 18 fastest participants during phase 1 matched all of
their labels correctly, and — excluding participants we be-
lieve left their computer during phase 1 (e.g., took longer
than 20 minutes) — on average participants who failed to
match at least five labels correctly took 2 minutes less time
to complete phase 1 than participants who did.

Time: We imagine that some web services may be re-
luctant to adopt GOTCHAs out of fear driving away cus-
tomers who don’t want to spend time labeling Inkblot im-
ages [21]. However, we believe that for many high security
applications (e.g., online banking) the extra security ben-
efits of GOTCHAs will outweigh the costs — GOTCHAs
might even help a bank keep its customers by providing
extra assurance that users’ passwords are secure. We are
looking at modifying our Inkblot generation algorithm to
produce Inkblots which require less “mental effort” to label.
In particular could techniques like Perlin Noise [34] be used
to generate Inkblots that can be labeled more quickly and
matched more accurately?

Accuracy: We believe that the usability of our Inkblot
Matching GOTCHA construction can still be improved. One
simple way to improve the usability of our GOTCHA con-
struction would be to allow the user to reject Inkblot images
that were confusing. We also believe that usability could be
improved by providing users with specific strategies for cre-
ating their labels (e.g., we found that simple labels like “a
voodoo mask” were often mismatched, while more elaborate
stories like “A happy guy on the ground, protecting himself
from ticklers” were rarely mismatched).

3.3 An Open Challenge to the Al Community

We envision a rich interaction between the security com-
munity and the artificial intelligence community. To facili-
tate this interaction we present an open challenge to break
our GOTCHA scheme.

Challenge Setup.

We chose several random passwords
(pw1, ..., pwa) & {0,107} and pws & {0,10%}. We used a

function Generatelnkblots (pw;, 10) to generate ten inkblots

Ii, ..., Ii, for each password, and we had a human label each
inkblot image (£,... 0i0) < H ((If7...,1fo>,ao). We se-
lected a random permutation m; : [10] — [10] for each ac-
count, and generated the tuple

T, = (Slvh(pwhshﬂ-l(l)v77r1(10))7£:r7(1)77€?rrl(10)) )

where s; is a randomly selected salt value and h is a cryp-
tographic hash function. We are releasing the source code
that we used to generate the Inkblots and evaluate the hash

function h along with the tuples 11, ..., 75 — see
http://www.cs.cmu.edu/" jblocki/GUTCHA-Challenge.html.
Challenge: Recover each password pw;.

Approaches.

One way to accomplish this goal would be to enumer-
ate over every possible password guess pw, and evaluate
h (pwj, si, (1), ..., m(10)) for every possible permutation 7 :
[10] — [10]. However, the goal of this challenge is to see
if AI techniques can be applied to attack our GOTCHA
construction. We intentionally selected our passwords from
a smaller space to make the challenge more tractable for
AT based attacks, but to discourage participants from try-
ing to brute force over all password/permutation pairs we
used BCRYPT (Level 15)™ — an expensive hash function
— to encrypt the passwords. Our implementation allows
the Inkblot images to be generated very quickly from a
password guess pw’ so an Al program that can use the la-
bels in the password file to distinguish between the correct
Inkblots returned by GenerateInkblots (pw;, 10) and in-
correct Inkblots returned by GenerateInkblots (pwj, 10)
would be able to quickly dismiss incorrect guesses. Similarly,
an Al program which generates a small set of likely permu-
tations for each password guess could allow an attacker to
quickly dismiss incorrect guesses.

4. ANALYSIS: COST OF OFFLINE ATTACKS

In this section we argue that our password scheme (proto-
cols B2 and B) significantly mitigates the threat of offline
attacks. An informal interpretation of our main technical
result — Theorem M — is that either (1) the adversary’s
offline attack is prohibitively expensive (2) there is a good
chance that adversary’s offline attack will fail, or (3) the
underlying GOTCHA construction can be broken. Observe
that the security guarantees are still meaningful even if the
security parameters ¢ and § are not negligably small.

THEOREM 1. Suppose that our user selects his password

uniformly at random from a set D (e.g., pw & D) and cre-
ates his account using protocol @A. If algorithms B and B are
an (€,0, u)-GOTCHA then no conservative offline adversary

is (Ca’V +e+d+ T D) -successful for C < v|D|2¢®)¢;, +

|DI>
NHCH

Proof of Theorem M. (Sketch) We use a hybrid argument.
An adversary who breaches the server is able to recover the
tuple t = (u, ', s, h(u, s,pw,m(1),...,7(k)), Lrcry, - - - ,éﬂk))
as well as the code for the cryptographic hash function h and
the code for our GOTCHA — (G1, G2).

1. World 0: Wy denotes the real world in which the ad-
versary has recovered the tuple

to = (uy T,a s, h (U,, S, pw, ﬂ—(l)? s aﬂ-(k)) 7‘€7'r(1)7 s aew(k))

as well as the code for the cryptographic hash function
h and the code for our GOTCHA — (G1, G2). Because

the adversary Adv is conservative it constructs the
function

10The level parameter specifies the computation complex-
ity of hashing. The amount of work necessary to evaluate
the BCRYPT hash function increases exponentially with the

level so in our case the work increases by a factor of 2'°.


http://www.cs.cmu.edu/~jblocki/GOTCHA-Challenge.html

1 if pw’ = pw and 7’ =
VerifyHash (pw/,ﬂl) = { P P =T

and uses VerifyHash as a blackbox. We say that Adv
queries a human H about password pw’ if it queries H

for H (GenerateInkblotImages (1%, Extract (pw',7"))),

and we let D’ C D denote the set of passwords for
which the adversary queries a human.

2. World 1: W; denotes a hypothetical world that is simi-
lar to Wy except that VerifyHash function the adver-
sary uses as a blackbox is replaced with the following
incorrect version

VerifyHash' (pw/, 7r') =
{ 1 ifpw' ¢ D pw' =pwand o’ ==

0 otherwise. ’

where D’ C D is a subset of passwords which denotes
the set of passwords for which the adversary makes
queries to a human in the real world.

3. World 2: W5 denotes a hypothetical world that is sim-
ilar to W, except that VerifyHash' function the ad-
versary uses as a blackbox is replaced with the follow-
ing incorrect version

VerifyHash? (pw/, 7r') =
1 ifn' =R (G (1'“7 Extract (pw',r') , l1,...,0))

and pw’ ¢ D', pw’ = pw ,

0 otherwise.

where R is a distribution with minimum entropy p(k)
as in definition @.

4. World 3: W3 denotes a hypothetical real world which is
similar to world 2, except that the labels Ew(l), N
are replaced w1th the labels ¢/ (1) - i = (k), Where

: [k] — [k] is a new random permutation, and the
labels l} are for a completely unrelated set of Inkblot
challenges

Oy H (Gl (11“,3:1,:@)) :
where z1,z2 € {0, 1}" are freshly chosen random value.

In world 3 it is easy to bound the adversary’s probability
of success. No adversary is (C,~y, D)-successful for C' <
7\D|2“(k)ch, because the fake Inkblot labels are not corre-
lated with the actual Inblots that were generated with the
real password. Our particular advesary cannot be (C,~, D)-
successful for C < v|D|2¢®) ¢, 4+ |D’|cy. In world 2 the ad-
versary might improve his chances of success by looking at
the Inblot labels, but by definition of («a, 8, €, 8, u)-GOTCHA
his chances change by at most §. In world 1 the adver-
sary might further improve his chances of success, but by
definition of (a, 8, €, d, u)-GOTCHA his chances improve by
at most e. Finally, in world 0 the adversary improves his
chances by at most |D’|/|D| by querying the human about
passwords in D’. O

0 otherwise. ’

S. DISCUSSION

We conclude by discussing some key directions for future
work.

Other GOTCHA Constructions.

Because GOTCHAs allow for human feedback during puz-
zle generation — unlike HOSPs [[[4] — our definition poten-
tially opens up a much wider space of potential GOTCHA
constructions. One idea might be to have a user rate/rank
random items (e.g., movies, activities, foods). By allowing
human feedback we could allow the user to dismiss poten-
tially confusing items (e.g., movies he hasn’t seen, foods
about which he has no strong opinion). There is some
evidence that this approach could provide security (e.g.,
Narayanan and Shmatikov showed that a Netflix user can
often be uniquely identified from a few movie ratings [82].).

Obfuscating CAPTCHAs.

If it were possible to efficiently obfuscate programs then
it would be easy to construct GOTCHAs from CAPTCHAs
(e.g., just obfuscate a program that returns the CAPTCHA
without the answer). Unfortunately, there is no general pro-
gram obsfuscator [R]. However, the approach may not be en-
tirely hopeless. Point functions [26] can be obfuscated, and
our application is similar to a point function — the puz-
zle generator G2 in an GOTCHA only needs to generate a
human solvable puzzle for one input. Recently, multilinear
maps have been used to obfuscate conjunctions [I3] and to
obfuscate NC* circuits [23] ™. Could similar techniques be
used obfuscate CAPTCHASs?

Exploiting The Power of Interaction.

Can interaction be exploited and used to improve secu-
rity or usability in human-authentication? While interac-
tion is an incredibly powerful tool in computer security (e.g.,
nonces [36], zero-knowledge proofs [24], secure multiparty
computation [48]) and in complexity theory™, human au-
thentication typically does not exploit interaction with the
human (e.g., the user simply enters his password). We view
the idea behind HOSPs and GOTCHAs — exploiting inter-
action to mitigate the threat of offline attacks — as a pos-
itive step in this direction. Could interaction be exploited
to reduce memory burden on the user by allowing a user to
reuse the same secret to authenticate to multiple different
servers? The human-authentication protocol of Hopper, et

[26] — based on the noisy parity problem — could be
used by a human to repeatedly authenticate over an insecure
channel. Unfortunately, the protocol is slow and tedious for
a human to execute, and it can be broken if the adversary
is able to ask adaptive parity queries [B0].

6. REFERENCES
[1] Rockyou hack: From bad to worse.
http://techcrunch.com/2009/12/14 /rockyou-hack-

1 The later result used a weaker notion of obfuscation known
as “indistinguishability obfuscation,” which (loosely) only
guarantees that the adversary cannot distinguish between
the obfuscations of two circuits which compute the same
function.

12 A polynomial time verifier can verify PSPACE-complete
languages by interacting with a powerful prover [&0], by
contrast the same verifier can only check proofs of NP-
Complete languages without interaction.



[15]

[16]

[17]

[18]

security-myspace-facebook-passwords/, December
2009. Retrieved 9/27/2012.

Update on playstation network/qriocity services.
http://blog.us.playstation.com/2011,/04/22/update-
on-playstation-network-qriocity-services/, April 2011.
Retrieved 5/22/2012.

Data breach at ieee.org: 100k plaintext passwords.
http://ieeelog.com/, September 2012. Retrieved
9/27/2012.

An update on linkedin member passwords
compromised.
http://blog.linkedin.com/2012/06/06/linkedin-
member-passwords-compromised/, June 2012.
Retrieved 9/27/2012.

Zappos customer accounts breached.
http://www.usatoday.com/tech/news/story/2012-01-
16 /mark-smith-zappos-breach-tips/52593484/1,
January 2012. Retrieved 5/22/2012.

S. Alexander. Password protection for modern
operating systems. ;login, June 2004.

A. Baddeley. Human memory: Theory and practice.
Psychology Pr, 1997.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang. On the (im)
possibility of obfuscating programs. In Advances in
Cryptology-CRYPTO 2001, pages 1-18. Springer,
2001.

S. Biddle. Anonymous leaks 90,000 military email
accounts in latest antisec attack.
http://gizmodo.com /5820049 /anonymous-leaks-90000-
military-email-accounts-in-latest-antisec-attack, July
2011. Retrieved 8/16/2011.

J. Blocki, M. Blum, and A. Datta. Naturally
rehearsing passwords. In Advances in
Cryptology-ASIACRYPT 2018 (to appear).

J. Bonneau. The science of guessing: analyzing an
anonymized corpus of 70 million passwords. In Proc.
of Oakland, pages 538-552, 2012.

J. Bonneau and S. Preibusch. The password thicket:
technical and market failures in human authentication
on the web. In Proc. of WEIS, volume 2010, 2010.
Z. Brakerski and G. N. Rothblum. Obfuscating
conjunctions. In Advances in Cryptology-CRYPTO
2013, pages 416-434. Springer, 2013.

R. Canetti, S. Halevi, and M. Steiner. Mitigating
dictionary attacks on password-protected local
storage. In Advances in Cryptology-CRYPTO 2006,
pages 160-179. Springer, 2006.

W. Daher and R. Canetti. Posh: A generalized
captcha with security applications. In Proceedings of
the 1st ACM workshop on Workshop on AlSec, pages
1-10. ACM, 2008.

M. Dailey and C. Namprempre. A text graphics
character captcha for password authentication. In
TENCON 2004. 2004 IEEE Region 10 Conference,
pages 45—-48. IEEE, 2004.

S. Designer. John the Ripper.
http://www.openwall.com/john/, 1996-2010.

K. Doel. Scary logins: Worst passwords of 2012 and
how to fix them.

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

32]

33]

http://www.prweb.com/releases/2012/10/prweb10046001.htm,
2012. Retrieved 1/21/2013.

J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra:
a captcha that exploits interest-aligned manual image
categorization. In Proc. of CCS.

D. Florencio and C. Herley. A large-scale study of web
password habits. In Proceedings of the 16th
international conference on World Wide Web, pages
657-666. ACM, 2007.

D. Floréncio and C. Herley. Where do security policies
come from? In Proceedings of the Sixth Symposium on
Usable Privacy and Security, pages 1-14. ACM, 2010.
M. Fossi, E. Johnson, D. Turner, T. Mack,

J. Blackbird, D. McKinney, M. K. Low, T. Adams,
M. P. Laucht, and J. Gough. Symantec report on the
undergorund economy, November 2008. Retrieved
1/8/2013.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai,
and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In Proc. of FOCS (to appear), 2013.

O. Goldreich, A. Sahai, and S. Vadhan. Can statistical
zero knowledge be made non-interactive? or on the
relationship of SZK and NISZK. In Advances in
Cryptology-CRYPTO 1999, pages 467-484, 1999.

D. Goodin. Why passwords have never been weaker
and crackers have never been stronger.
http://arstechnica.com/security /2012/08 /passwords-
under-assault/,

2012.

N. J. Hopper and M. Blum. Secure human
identification protocols. In Advances in
Cryptology-ASIACRYPT 2001, pages 52—66. Springer,
2001.

Imperva. Consumer password worst practices. 2010.
Retrived 1/22/2013.

S. Komanduri, R. Shay, P. Kelley, M. Mazurek,

L. Bauer, N. Christin, L. Cranor, and S. Egelman. Of
passwords and people: measuring the effect of
password-composition policies. In Proc. of CHI, pages
2595-2604, 2011.

H. Kruger, T. Steyn, B. Medlin, and L. Drevin. An
empirical assessment of factors impeding effective
password management. Journal of Information
Privacy and Security, 4(4):45-59, 2008.

E. Kushilevitz and Y. Mansour. Learning decision
trees using the Fourier spectrum. SIAM J. Comput.,
22(6):1331-1348, 1993.

M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re:
Captchas—understanding captcha-solving services in
an economic context. In USENIX Security
Symposium, volume 10, 2010.

A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In Proc. of
the 2008 IEEE Symposium on Security and Privacy,
pages 111-125. IEEE, 2008.

P. Oechslin. Making a faster cryptanalytic
time-memory trade-off. Advances in
Cryptology-CRYPTO 2003, pages 617-630, 2003.



[34]

[38]

[39]
[40]

[41]

[42]

[43]

K. Perlin. Implementing improved perlin noise. GPU
Gems, pages 73-85, 2004.

N. Provos and D. Mazieres. Berypt algorithm.

P. Rogaway. Nonce-based symmetric encryption. In
Fast Software Encryption, pages 348-358. Springer,
2004.

G. Sauer, H. Hochheiser, J. Feng, and J. Lazar.
Towards a universally usable captcha. In Proceedings
of the 4th Symposium on Usable Privacy and Security,
2008.

K. Scarfone and M. Souppaya. NIST special
publication 800-118: Guide to enterprise password
management (draft), 2009.

D. Seeley. Password cracking: A game of wits.
Communications of the ACM, 32(6):700-703, 1989.
A. Shamir. Ip= pspace. Journal of the ACM (JACM),
39(4):869-877, 1992.

A. Singer. No plaintext passwords. ;login: THE
MAGAZINE OF USENIX & SAGE, 26(7), November
2001. Retrieved 8/16/2011.

A. Stubblefield and D. Simon. Inkblot authentication.
Technical report, 2004.

L. Von Ahn, M. Blum, N. Hopper, and J. Langford.
Captcha: Using hard ai problems for security.
Advances in Cryptology-EUROCRYPT 2003, pages
646-646, 2003.

L. Von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. recaptcha: Human-based character
recognition via web security measures. Science,
321(5895):1465-1468, 2008.

M. J. Watkins and J. M. Gardiner. An appreciation of
generate-recognize theory of recall. Journal of Verbal
Learning and Verbal Behavior, 18(6):687-704, 1979.
H. Wee. On obfuscating point functions. In Proc. of
STOC, pages 523-532. ACM, 2005.

R. Witty, K. Brittain, and A. Allen. Justify identity
management investment with metrics. Gartner Group
report, 2004.

A. C. Yao. Protocols for secure computations. In Proc.
of FOCS, pages 160-164, 1982.

A. Zonenberg. Distributed hash cracker: A
cross-platform gpu-accelerated password recovery
system. Rensselaer Polytechnic Institute, page 27,
20009.

APPENDIX
A. MISSING PROOFS

Reminder of Claim M. If (G1,G2) is a (a,B,€,0,u)-
GOTCHA then at least B-fraction of humans can sucessfully
authenticate using protocol B2 after creating an account us-
ing protocol B.

Proof of Claim 0. A legitimate user H € H will use the
same passwords in protocols Bl and B=2. Hence,

r'l = Extract (pw',r') = Extract (pw, r') =7,

and the final matching challenge ¢, is the same one that
would be generated by G2 (lk,rl,H (G1 (lk,rl,rg) ,00)). If
¢r is consistently solvable with accuracy a by H — by def-
inition B this is the case for at least S-fraction of users —
then it follows that

dy, (TI‘,TI',,O't) <a,

where H (Gl (1k,r1,r2)). For some 7o (namely 7o = 7) s.t.
dy, (mo, ') < v it must be the case that

hpwo = h(u,s,pw/,ﬂo(l),...,Wo(k))
= h(u,s,pw,7(1),...,7(k))
= hw,
and protocol B2 accepts. a
Reminder of Claim Claim B. For all permutations

m: k] = [k] and o >0
{7 | di (m,7") < a}| < 1+Z: (’j)ﬂ 4

Proof of B. It suffices to show that (’;)]' > {n' | d (m,7") = 5}
We first choose the j unique indices ¢1,...,%; on which 7
and 7’ differ — there are (];) ways to do this. Once we have

fixed our indices i1, ...,i; we define 7’ (k) = m (k) for each
k ¢ {i1,...,1;}. Now j! upperbounds the number of ways
of selecting the remaining values 7’ (ix) s.t. m (ix) # 7 (ix)
for all £ <. a

B. HOSP: PRE-GENERATED CAPTCHAS
The HOSP construction proposed by [I4] was to simply
fill several high capacity hard drives with randomly gen-
erated CAPTCHAs — discarding the solutions. Once we
have compiled a database large D of CAPTCHASs we can
use algorithm @ as our challenge generator — simply return
a random CAPTCHA from D. The advantage of this ap-
proach is that we can make use of already tested CAPTCHA
solutions so there is no need to make hardness assumptions
about new Al problems. The primary disadvantage of this
approach is that the size of the database D will be limited
by economic considerations — storage isn’t free. While |D)|
the number of CAPTCHASs that could be stored on a hard
drive may be large, it is not exponentially large. An adver-
sary could theoretically pay humans to solve every puzzle in
D at which point the scheme would be completely broken.

Economic Cost.
Suppose that two 4 TB hard drives are filled will text
CAPTCHAS ™. Let S be the space required to store one

13At the time of submission a 4 TB hard drive can be pur-
chased on Amazon for less than $162.




Algorithm 4 GenerateChallenge

Input: Random bits r € {0,1}", Database D =
{‘P17 ceny Pzn} of CAPTCHASs
return P,

CAPTCHA, and let Cy denote the cost of paying a human
to solve a CAPTCHA. We use the values S = 8 KB ™ and
Cu = $0.001 ™. In this case |D| = 3775 ~ 10° so we can
store a billion unsolved CAPTCHASs on the hard drives. It
would cost the adversary |D|Cy = $1,000,000 to solve all
of the CAPTCHAs — or $500,000 to solve half of them.
The up front cost of this attack may be large, but once the
adversary has solved the CAPTCHASs he can execute offline
dictionary attacks against every user who had an account
on the server. Many server breaches have resulted in the
release of password records for millions of accounts [8, @, 2,
0]. If each cracked password is worth between $4 and $30
[22] then it may be easily worth the cost to pay humans to
solve every CAPTCHA in D.

1The exact value of S may vary slightly depending on the
particular method used to generate the CAPTCHA. When
we compressed a text CAPTCHA using popular GIF format
the resulting files were consistently 8 KB.

5Motoyama, et al. estimated that spammers paid humans
$1 to solve a thousand CAPTCHAs [&1]



	Introduction
	Related Work

	Definitions
	Password Storage and Offline Attacks

	Inkblot Construction
	GOTCHA Authentication
	User Study
	An Open Challenge to the AI Community

	Analysis: Cost of Offline Attacks
	Discussion
	References
	Missing Proofs
	HOSP: Pre-Generated CAPTCHAs

