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ABSTRACT 
The promise of “smart” homes, workplaces, schools, and 
other environments has long been championed. Unattrac-
tive, however, has been the cost to run wires and install sen-
sors. More critically, raw sensor data tends not to align with 
the types of questions humans wish to ask, e.g., do I need to 
restock my pantry? Although techniques like computer vi-
sion can answer some of these questions, it requires signifi-
cant effort to build and train appropriate classifiers. Even 
then, these systems are often brittle, with limited ability to 
handle new or unexpected situations, including being repo-
sitioned and environmental changes (e.g., lighting, furni-
ture, seasons). We propose Zensors, a new sensing approach 
that fuses real-time human intelligence from online crowd 
workers with automatic approaches to provide robust, adap-
tive, and readily deployable intelligent sensors. With Zen-
sors, users can go from question to live sensor feed in less 
than 60 seconds. Through our API, Zensors can enable a 
variety of rich end-user applications and moves us closer to 
the vision of responsive, intelligent environments. 
Author Keywords: Smart environments; sensing; human 
computation; computer vision; machine learning; end-user 
programming;  
ACM Keywords: H.5.2. [Information interfaces and presen-
tation]: User interfaces – Input devices and strategies. 
INTRODUCTION 
For decades, “intelligent” environments have promised to 
improve our lives by inferring context, activity and events 
in diverse environments, ranging from public spaces, offic-
es, and labs, to homes and healthcare facilities. To achieve 
this vision, smart environments require sensors, and lots of 
them. However, installation continues to be expensive, spe-
cial purpose, and often invasive (e.g., running power).  
An even more challenging problem is that sensor output 

rarely matches the types of questions humans wish to ask. 
For example, a door opened/closed sensor may not answer 
the user’s true question: “are my children home from 
school?” A restaurateur may want to know how many pa-
trons need their beverages refilled, and graduate students 
want to know, “is there free food in the kitchenette?” Unfor-
tunately, these sophisticated, multidimensional and often 
contextual questions are not easily answered by the simple 
sensors we deploy today. Although advances in sensing, 
computer vision (CV) and machine learning (ML) have 
brought us closer, systems that generalize across these 
broad and dynamic contexts do not yet exist.  
In this work, we introduce Zensors, a new sensor approach 
that requires minimal and non-permanent sensor installation 
and provides human-centered and actionable sensor output. 
To achieve this, we fuse answers from crowd workers and 
automatic approaches to provide instant, human-intelligent 
sensors, which end users can set up in under one minute.  
To illustrate the utility of Zensors, we return to our restau-
rant example. John, the proprietor, finds a disused 
smartphone or tablet and affixes it to the wall of his restau-
rant. He installs and launches our Zensors app, which uses 
the front facing camera to provide a live overview of the 
restaurant. John presses the “new sensor” button and circles 
the bar countertop, thus specifying a region of interest. John 
can then enter a plain text question, for example: “how 
many drinks are almost empty?” 
By pressing “go”, the sensor is activated and starts provid-
ing real-time data, in this case numerical. John can now use 
e.g., a companion app to see a real time visualization of how 
many drinks need to be refilled, or use an end user pro-
gramming tool to have the system automatically message a 
co-worker requesting help if the number exceeds ten. With-
in a few minutes, John could similarly set up sensors for: 
“does table four need to be cleaned?”, “are customers 
wearing their coats inside?”, “is a check sitting on the ta-
ble?” and other questions relevant to the dining experience. 
Unbeknownst to John, his sensors are initially powered by 
crowd workers interpreting his plain text question, provid-
ing immediate human-level accuracy, as well as rich, hu-
man-centered abstractions. However, using crowd workers 
can be costly and difficult to scale, and so ideally it is only 
used temporarily – answers from the crowd are recorded 
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and used as labels to bootstrap automatic processes. More 
specifically, our system begins training and testing image-
based machine learning classifiers, testing against the 
ground truth provided by the crowd labels. If the classifiers 
begin to achieve human-like accuracies, they begin to vote 
alongside crowd responses. Eventually, if sufficiently ro-
bust, the classifiers can take full control. This human-
computer handoff is seamless and invisible to end-users; as 
far as users like John are concerned, they have a sensor with 
human-level accuracy from minute one and onward. Even 
when the classifiers do not achieve the needed level of accu-
racy, we have designed savings measures into our crowd-
based method to conserve costs. Through our API, Zensors 
enables a variety of applications that help realize the poten-
tial of smart environments. This abstracts the complexity of 
crowdsourcing, computer vision and machine learning, ena-
bling developers to treat our “zensors” just as they would 
traditional electro-mechanical sensors. 
We designed Zensors to achieve five key criteria 1) answer 
diverse natural language “sensor” questions, 2) with reason-
ably high-accuracy, 3) while being easy enough to be used 
by non-experts, 4) requiring zero training, and 5) receive 
live data within seconds. We are unaware of a single prior 
computer vision system that achieves these five properties. 
We make the following contributions in this work:  

• Zensors, a new approach and architecture for hybrid 
crowd-ML powered sensors, with an API to enable access 
to sensor data streams. 

• A proof-of-concept mobile application for easy, end-user 
authoring of on-demand intelligent sensors. 

• A tool for end-user programming of case-based events 
that turn sensor output into meaningful actions. 

• A study that demonstrates the accuracy and reliability of 
Zensors in a variety of settings. 

• Evidence that our human-powered sensors can be used to 
train computer vision approaches in situ, leading to an au-
tomatic handoff in most cases. 

RELATED WORK 
Our work touches on several areas including crowd-driven 
annotation, computer vision, and more generally, smart en-
vironments and activity sensing. We now summarize key 
related work in these respective domains. 
Crowd-Driven Annotation 
Crowdsourcing allows systems to access human intelligence 
through online marketplaces such as Mechanical Turk. For 
example, the ESP Game asked workers to label images with 
keywords in order to make the web more accessible [24]. 
VizWiz [3] asks crowd workers to answer visual questions 
for blind users with a latency of under a minute. However, 
both VizWiz and the ESP Game have difficulty scaling be-
cause they elicit un-typed, natural language responses to 
non-repeated images, making it difficult for machine learn-
ing algorithms to learn key patterns with high accuracy. 

Marcus et al. [20] explored how to perform SQL query es-
timations that computers cannot do alone, e.g., answer how 
many people in a database of images were of a certain gen-
der. In their system, users could pre-define functions that 
specified crowd tasks, which were used to find an answer 
estimation for query filtering. CrowdDB [10] explored a 
similar crowdsourcing concept, using the crowd to fill in 
missing data and overcome the closed-world assumption 
held in traditional DBs. In both of these examples, the lan-
guage the user must use to pose queries is a slight variant of 
SQL, and the crowd’s input is used to estimate relationships 
and missing data over large, pre-existing datasets. In con-
trast, Zensors turn a live stream of images into an easily 
accessible structured data stream. 
Tohme [13] use the crowd to improve accessibility infor-
mation in maps by asking workers to label curbs in Google 
StreetView images. Unlike Zensors, Tohme addressed a 
single, specific question, using a specialized interface to 
facilitate labeling. Tohme also included a computer vision 
component that enabled it to learn how to identify curbs in 
specific areas over time. They demonstrated that this auto-
mated approach could be successful. However it, too, relied 
on the detailed object segmentation and labeling infor-
mation obtained from workers through the custom interface 
(and in combination with GPS and other metadata from 
Google Maps). Zensors, by contrast, targets general-purpose 
domains in which no additional information is available, 
and answers a broad range of user-defined questions. 
VATIC [25] uses the crowd to annotate video with labels 
and object bounding boxes. Glance [17] annotates spans of 
time with user-requested event labels within minutes by 
leveraging the ability of large sets of crowd workers to con-
currently complete an otherwise time-consuming task. Both 
VATIC and Glance are approaches for analyzing previously 
recorded, fixed-length video. By contrast, Zensors is fo-
cused on real-time analysis of still images, and offers the 
potential for handing sensor labeling off from the crowd to 
machine learning algorithms. 
Legion:AR [18] recruits the crowd to provide activity labels 
using data from live video and RFID tags. It uses an active 
learning approach to request crowd labels for partial streams 
of live video. While this solution is related to Zensors, the 
crowd architecture is different. Legion:AR does not use 
computer vision, only attempts automatic activity recogni-
tion via RFID tags, and collects open-ended questions and 
answers, not typed values (i.e., data type). More specifical-
ly, Legion:AR collects open-ended plain text answers, in 
contrast to the structured labels of Zensors. Further, Le-
gion:AR gathers multiple workers into a single session for a 
long duration, having them synchronously generate multiple 
incomplete sets of labels that are merged into a final 
stream—a configuration that costs tens of dollars for a few 
minutes. Legion:AR monitors an instrumented space (RFID 
scanners, Kinects), and was not designed to be a general-
izable sensing platform. 



Image- and Video-Based Sensors 
The field of computer vision has largely developed in pur-
suit of extracting meaning from images without the need for 
human assistance. Today, there exist robust and automatic 
approaches for applications as diverse as face detection [28] 
and traffic monitoring [15]. Most related to our present 
work are video-based, end-user sensing systems, such as the 
techniques proposed in Crayons [8] and the Eyepatch sys-
tem [21]. Light Widgets [9] allowed users to create virtual 
interactive elements on everyday surfaces through video-
based sensing. Other systems, e.g. Slit-Tear Visualizations 
[23], aim to help users better recognize environmental 
events. These systems often rely on users annotating images 
to provide training data or demarcate regions of interest. 
Researchers have also explored crowd-based approaches for 
improving computer vision techniques [7,26], which could 
be used to enhance systems such as our own. 

Smart Environments 
A broad body of work in the HCI and UbiComp communi-
ties has outfitted home, work and public environments and 
objects in those environments with sensors to detect various 
activities in the environment [1]. The Context Toolkit [22] 
utilized data from numerous sensors to make contextual 
inferences about a place (e.g. what is going on in a space, or 
how many people are around). In a project to support aging-
in-place, Lee and Dey created an augmented pillbox that 
detected whether or not an older adult had taken their pills 
for a given day [19]. In another example, the AwareOffice 
project [29] outfitted various office artifacts with diverse 
sensors to detect their state, including: whiteboard pen 
(writing or not), eraser (wiping whiteboard), chair (in use or 
free), window & door (open/closed).  
While there are clearly many benefits of dedicated hardware 
sensors in UbiComp smart environments, there are many 
drawbacks that limit their use. Compared to Zensors, these 
approaches are fairly heavyweight, requiring one sensor per 
item that is being sensed. In contrast, by segmenting the 
view from a single camera to evaluate the current state of 
many objects, Zensors offers this same functionality with 
just a single device. Furthermore, Zensors enables almost 
anyone to answer arbitrary questions about their environ-
ment, without requiring the hardware/software technical 
skills needed to implement traditional sensor approaches. 
APPLICATION SPACE 
To help us understand the expanse of questions and func-
tionalities enabled by a human-intelligent, camera-driven 
sensing system, we recruited 13 interaction designers and 
solicited their input in a structured ideation session. 
First, participants were split into four groups, and each 
group was asked to enumerate scenarios that would greatly 
benefit from a "super smart environment sensor." After fif-
teen minutes, groups were asked to share their ideas with 
one another. Immediately after, four groups were merged 
into two, and the new teams were asked to discuss potential 
issues from the ideas mentioned prior. Next, all groups were 

asked to examine the area of "camera-based sensing." Spe-
cifically, we asked them to generate and categorize "ques-
tions" that they might want to ask from a "highly intelli-
gent" camera-based sensing system. Finally, using input 
from the previous round, we asked participants to “pro-
gram” image-based sensing applications (using a mockup 
software we provided) inspired from the questions they pre-
viously explored. In total, the session lasted 90 minutes. All 
participants were briefed at the end of the session, and were 
compensated for their time.  
Data gathered from the session were analyzed using affini-
ty-diagramming techniques. From this, several themes 
emerged from the categories of questions generated by each 
group, including optimization of domestic tasks (e.g., “what 
food in my fridge will go bad if I don’t cook them the next 
day?”), health (e.g., “who is experiencing the most severe 
depression right now?”), public space monitoring (e.g., 
“how many cars are in this parking lot?”), and item finding 
(e.g., “where did I last leave my keys?”). These questions 
were also tied to a strong set of contexts and environments: 
including the home, urban and public spaces, educational 
institutions (e.g., “are students interested in the topic?”), 
health facilities, and supply chains (e.g., “what items should 
I restock from my inventory?”). When asked about issues 
concerning the deployment of “super smart environment 
sensing,” participants cited consent and privacy (e.g., data 
storage), as well as technical feasibility (e.g., sensing capa-
bilities, computation) as chief concerns. Altogether, these 
results draw out the expansive set of applications that would 
otherwise be hard or impossible to implement with CV-
based technologies alone. 
COMPARISION TO COMPUTER VISION 
Additionally, we wanted to understand the work require-
ments and economic implications of building smart envi-
ronment sensing using existing software engineering ap-
proaches. Intuitively, one or more experienced programmers 
would be able to implement most of our proposed intelli-
gent sensors. But, how long would it take, and at what cost? 
We conducted informal interviews with nine freelance de-
velopers from oDesk.com, a popular online workplace. To 
recruit capable candidates, we created a targeted job posting 
(titled “Image-Based Sensing System”), asking experienced 
software developers to build a computer vision-based auto-
matic “bus detection” system. The job posting included il-
lustrative details and clear task requirements (e.g., system 
should perform with at least 90+% accuracy), along with a 
labeled image set (e.g., a view of a bus stop on a city street). 
Interested candidates were asked a series of follow-up ques-
tions, most notably: “how long do you think the project will 
take?”, “what is your hourly rate?” and “how many hours 
will you expect to work per week?” Candidates were en-
couraged to ask follow-up questions. All interviews were 
conducted online using oDesk’s internal messaging system. 
Afterwards, participants were debriefed (e.g., we clarified 
the true intent of the job posting), and were paid $25.  



Across all users, the average estimated project cost was 
$3,044 (SD=$2,113), with an average completion time of 
4.5 weeks (SD=2.2 weeks), excluding time spent for data 
collection. While these results are anecdotal – given that 
none of the developers went ahead and actually built the 
system – we do believe it illustrates the significant com-
plexity, cost and development time of special purpose com-
puter-vision-driven sensing systems. 
ZENSORS 
We now describe how Zensors provides end-users with in-
telligent sensing capabilities, leveraging both crowd-
sourcing and machine learning. Figure 1 provides an illus-
trated overview of the architecture. 
System Architecture 
First, a mobile application serves as the primary end-point 
for creating and modifying sensors. Users highlight a region 
of the camera image and an associated question, e.g., “how 
many parking spots are available?” As images stream from 
the device’s front-facing camera, our system intelligently 
decides when to push requests to the crowd. 
Next, crowd workers process these requests through a web-
based interface. To reduce noise and reject malicious work-
ers, several answers are collected per image, then fused to-
gether using quality-control algorithms (e.g., voting) to de-
termine the best response for a given instance. Finally, the 
responses gathered from the crowd are stored into a back-
end database. These responses provide immediate, human-
intelligent answers to the questions asked by users, and also 
serve as a corpus for training computer-vision based, ma-
chine learning classifiers. 
Sensors from Images 
Leveraging cameras as multi-purpose sensors. From mobile 
phones, security cameras, and Kinects in people’s living 

rooms, cameras are everywhere. They continue to become 
more powerful, while remaining small. More importantly, 
time-series data from cameras offers rich contextual infor-
mation about an activity or environment far more than what 
basic sensors (e.g., proximity) can provide. One can ask 
several multi-dimensional questions from camera images 
across a time period, such as “how many people are smil-
ing?”, “is it sunny?” or “is the table messy?”, all of which 
provide useful information in learning about the context or 
activity within an environment. Thus, the cost, availability, 
and information bandwidth that cameras offer make them an 
ideal “multi-purpose” commodity sensor. 
Repurposing old mobile devices as sensor hosts. Users up-
grade their devices on average once every two years [27]. It 
is not uncommon for people to have a slew of older smart 
devices stashed in a drawer or closet. Although older, these 
devices are capable computers, typically featuring one or 
more cameras, a touchscreen, and wifi connectivity. This is 
the ideal platform for rapidly deployable, image-based sens-
ing. Users simply download our Zensors app onto the de-
vices, which allows them to create or modify sensors. Users 
then "stick" the device in a context of their choosing.  
WiFi Cameras. Zensors can also utilize stand-alone wifi-
enabled cameras, costing as little as $30 today. In this case, 
a web interface can be used to define sensors (Figure 3). 
Privacy Preservation 
Image Subregions. Contextual information from cameras 
creates an inherent tradeoff between information and priva-
cy [4,5,14]. A naïve approach would utilize the entire raw 
image. However, this can easily violate privacy, especially 
when personally identifying information is present, or when 
images depict people in sensitive situations. To partially 
mitigate this issue, our system asks users to select an arbi-

 

Figure 1. Zensors architecture. A bartender repurposes a tablet as a sensor host, affixing it to the wall behind the bar (A). 
Using the live view from the front facing camera, he selects a region of the scene and asks, “how many glasses need a 
refill?” (B). Periodically, the device takes snapshots, and forwards this data to a dispatcher (C). Initially, the dispatcher 
uses crowd workers to power the sensor, providing immediate human-level accuracy (D). In the background, answers 
from the crowd train a computer-vision-based, machine learning classifier (E). As it approaches crowd-level accuracy, the 
system employs a hybrid crowd-ML scheme to power the sensor stream. Sensor output can drive end-user applications, 
such as a real time visualizer (F, left) or event-based end-user programmable system (F, right). 

 



trarily shaped subregion relating to the question they wish 
to ask; image data outside the subregion is masked away. 
This approach helps users to strike a balance between priva-
cy and information content, and as a positive side effect, it 
reduces file size, removes unnecessary image elements, and 
simplifies the sensing effort for both human raters and com-
puter vision techniques. 
Image Obfuscation. For users wishing to add an additional 
level of privacy, we offer several image obfuscation tech-
niques. These are applied to images on the device before 
they are sent to the cloud. Image obfuscation and privacy 
has been previously researched, and therefore we integrated 
the guidelines suggested by Hudson [14] and Boyle [4,5]. 
Users can choose to leave the image subregion unaltered, or 
select from four obfuscation methods: light blur, heavy blur, 
median filter, and edge filter (Figure 2).  
Creating New Sensors 
Sensor Questions. Every sensor starts with a question. Users 
create a new sensor by selecting a region of the image, and 
entering a plain text question. For example, in Figure 1, the 
bartender highlights the bar area, and asks, “how many 
glasses need a refill?” Questions define the “capabilities” of 
a sensor, and thus, the quality of answers depends on sever-
al factors, such as the question’s context and relevance.  
Data Types. To further add context and relevance, our sys-
tem requires users to define a data type when creating new 
sensors. Data types curb variance and constrain the range of 
possible values returned by a sensor (i.e., the answer to the 
sensor’s question), and facilitate simple automated pro-
cessing of the data stream. To this end, we categorize ques-
tions into four example data types: 
YesNo – This type of question can be answered by either 
yes or no. It is analogous to an ON/OFF sensor mechanism. 
Examples include:  “is the door open or closed?”, “is there 
food in the kitchen?”, or “can you see a bus in this image?” 
Number – Number data types are intended for questions 
that require counting. Numbers are continuous and are 
bound between a minimum and maximum range. Examples 
include:  “how many cars do you see in the parking lot? 
(min=0, max=30)”, and “what percentage of the water tank 
is full? (min=0, max=100)” 
Scale – Scale data types are analogous to Likert-scale 
questions. Answers belong to discrete values specified with-
in an increasing/decreasing scale. For this data type, users 
are required to supply scale-value pairs. Examples include: 
“how messy is this table? (1= Clean, 2=Average, 3= 
Messy)”, or “how happy does the person look? (1=Very 
Sad, 2=Sad, 3=Neutral, 4=Happy, 5=Very Happy)” 
MultipleChoice – When creating multiple-choice ques-
tions, users are required to specify the list of choices. Unlike 
scale data types, choice order is irrelevant. Examples in-
clude: “what type of food do you see? (None, Indian, Thai, 
Asian, Salad, Bagels, Other)” and “what are people doing? 
(reading, using computers, eating, other)”. 

Frequency. When creating sensors, users need to specify the 
frequency at which sensor readings are taken. Depending on 
the question, frequency readings can range from near real-
time (e.g., every one or two seconds for questions like “is 
the refrigerator door open? [YesNo]”), to extended periods 
(e.g., once per day for: “what product is advertised on the 
billboard? [MultipleChoice]).”  

Web Interface. Along with the mobile application, we built 
a companion web interface for sensor management (Figure 
3). Users link one or more sensors to a web account, where 
they can create, modify, and synchronize sensors across all 
of their devices. The web UI also makes it possible to create 
new sensors remotely. For example, users can “stick” a sen-
sor device at an elevated vantage point (e.g., for viewing an 
entire parking lot), and then manage and create sensors 
without having to physically touch the device.  
Similar Image Detection and Rejection 
Sensor image streams often have periods of little variation 
(e.g., buildings after closing hours, outdoor scenes at night). 
Thus, to avoid soliciting redundant (and thus costly) re-
sponses from the crowd on highly similar images, we col-
lapse runs of similar images. We calculate image similarity 
using a simple technique. First, we count the number of 
pixels that have changed from the previous frame using 
their RGB values and a predetermined pixel difference 
threshold. If the number of changed pixels in an image ex-
ceeds a certain image area percentage threshold, we con-
sider the image to be different. Although this algorithm 
worked well for our purposes, we note that more sophisti-
cated approaches (see e.g., [16]) could be used. 
To determine optimal parameters, we performed a brute 
force optimization experiment. We compiled a corpus of 
roughly 6000 time-stamped images taken from multiple 
pilot sensor streams. We then manually labeled whether or 
not an image was the same as the previous image, providing 

 

 

 

 

 

Figure 2. In addition to subregion masking, users can 
select image obfuscation methods if desired. From top 
to bottom: raw image, light blurring, heavy blurring, 
median filter, and edge masking. 



a ground truth set. We then ran our image similarity algo-
rithm, seeded with all combinations of the following thresh-
olds: 2% to 40% pixel difference threshold, in 2% incre-
ments, and 0.1% to 5.0% image area percentage threshold, 
in 0.1% increments. This produced 130 result sets, which 
we compare to our ground truth using Jaccard's distance 
metric. By using a pixel difference and image area threshold 
of 10% and 1.0% respectively, a Jaccard distance of .64 is 
achieved. On average, this process removes roughly 40% of 
images – a significant saving. 
Sensing with the Crowd 
Images streamed from sensor devices are stored in a data-
base. Crowd workers process un-answered instances 
through a web-based interface seen in Figure 4. The inter-
face varies slightly based on the question/response type. 
Each sensor instance is answered (i.e., labeled) by several 
different crowd workers; we use voting to determine the 
best response (at present, we use three workers, but other 
numbers are possible). The resulting value is then saved in 
the database and the instance is considered answered and 
ready for sharing with end users or powering applications. 
Our goal is to ensure workers are presented with a simple 
task that they can answer quickly. As such, we present one 
image to each worker and collect a single response. If 
workers are unable to answer an image-based question, they 
can mark it as an exception (“I can’t tell” button, Figure 4), 
which informs the system that there is something amiss with 
the sensor itself (e.g., occlusion, insufficient lighting, poorly 
defined question). In addition, workers are prompted to pro-
vide textual descriptions when exceptions occur. This ap-
proach provides actionable user feedback to help remedy 
the problem. 
To recruit users fast enough to receive answers in real time, 
we use LegionTools [17], a toolkit for quickly recruiting 
workers from Mechanical Turk using a web-based interface. 

It leverages a retainer model [2], which pre-recruits workers 
so they are ready to respond to a task within as little as two 
seconds. When sensors are crowd-powered, this sets the 
lower-bound on our system latency. 

 
Training Automated Sensors 
Solutions using crowd-power alone can be costly and diffi-
cult to scale (i.e., more sensors requires more people). Zen-
sors reduces its reliance on crowd workers over time by 
using crowd-provided answers to train machine learning 
classifiers, which are fast and inexpensive. However, even 
after machine learning has taken over processing sensors 
feeds, crowd workers are still needed to provide a periodic 
human-accuracy baseline to ensure high accuracy. Here, we 
describe the machine learning framework for our prototype 
deployment. 
The classifier is trained on all the input data to date, except 
for the most recent full day of data, which is set aside for 
evaluation. For sensors that produce data infrequently, the 
test set can be extended to one week or more to ensure there 
are sufficient test instances.  
Histogram equalization is applied to each image to reduce 
the effect of lighting variances. Then, each input image is 
processed into a large number of global features. Addition-
ally, each sensor image (which is itself a subregion of the 
larger original image) is broken into a grid of sub-images. 
In addition to a 1x1 grid (simply the image unchanged), we 
also use 4x4, 7x7 and 10x10. Each of these variously-sized 
sub-images is then converted to a luminance image, and the 
mean, standard deviation and mean-squared error across the 
window are used as numerical features. This produces a 
total of 332 image features. Feature selection is used as a 
post-process to extract exemplar features for a given sensor 
feed. Of course, much more advanced computer vision and 
scene understanding approaches exist that are beyond the 
scope of this work. 
We use correlation-based feature selection [12] to select 
features from the training set, coupled with a backtracking 
best-first attribute searcher. Both algorithms are implement-
ed in the Weka [11] machine learning toolkit. This selection 
process typically chooses between 10 and 30 features. Of 
note, the feature sets for different sensors rarely overlap. 

 
Figure 4. Our Mechanical Turk interface, which lets 
workers answer the question or raise an exception. 

 

 

Figure 3. Users create and synchronize Zensors across 
all of their devices using a web API, allowing them to 
manage sensors without physical device interaction. 



We then train classifiers depending on the type of sensor. A 
“pre-classifier” is first trained to distinguish between excep-
tions and non-exceptions, to ensure that the main classifier 
is not polluted by incorrect data. For continuous (numeric or 
scale) sensors, we train a support vector machine regression 
classifier using the SMOReg algorithm. For discrete sensors 
(yes/no, multiple choice), we use a one-versus-one mul-
ticlass quadratic-kernel SVM trained with the SMO algo-
rithm, and for simple binary sensors we train a single SVM. 
The SVM was chosen as the basic classifier because of its 
ease of training and predictable behavior, though other clas-
sification approaches are certainly possible and valid. A 
more robust version of this system would maintain a library 
of feature extractors and classification algorithms, selecting 
those exhibiting the best performance for a given sensor. 
Machine Learning Handoff 
As the training corpus grows from crowd labeled instances, 
the accuracy of the machine learning classifiers typically 
improves. Once the accuracy of the machine learning ex-
ceeds a predefined threshold (e.g., 95%) for several days, 
the sensor hands off classification tasks to the machine 
learning algorithm. It is also possible to do a soft handoff, 
where the relative weighting between crowd and machine 
learning labels shifts over time. 
Periodic Ground Truth Validation and Adaptation 
To ensure continued sensor accuracy after the handoff to 
machine learning, the system periodically submits small 
batches of fresh sensor data to the crowd for labeling. This 
is used to benchmark the classifier accuracy. If accuracy is 
sufficiently robust, the machine learning can continue to 
power the sensor. However, if the accuracy has fallen below 
a threshold, the system can revert to crowd-power. This 
serves two immediate purposes: 1) the sensor immediately 
regains human-intelligence level accuracy, and 2) the sys-
tem can incorporate new labels in its training for a hopeful 
future handoff. 
In this way, Zensors can automatically handle infrequent 
changes (such as the first snow fall in a parking lot; Figure 

5) that would prove challenging for most computer-vision-
driven systems (which are first trained and then deployed). 
This ability to seamlessly toggle between crowd and auto-
matic approaches, without sensor interruption, makes our 
approach highly adaptive and robust. 
End-User Programming 
We built a basic end-user programming tool that lets users 
design event-based notifications using data from one or 
more sensors (e.g., "send an email when the stove is ON 
and ZERO people are in the house"). These directives can 
be chained together as set of conjunctions (“and” clauses), 
or for alternative responses (“or” clauses). Multiple chains 
can be defined to represent different configurations. These 
disjunctions of conjunctions comprise a fully expressive set 
of logical terms. 
This interface works similar to the popular If This Than 
That tool (ifttt.com) – users can select a sensor, select a val-
ue and comparison operator, and then select an action type 
from the set of supported APIs. Our current implementation 
allows users to select from an email, text message, audio, or 
chat alert. For each alert type, users are able to define a cus-
tom message, which can also display the current value of 
the sensor by using a specially marked variable. 
Implementation and API 
As a proof of concept, our Zensors mobile application was 
developed on Android, and deployed on a fleet of DOPO 9” 
Internet tablet M975, each costing less than $50. Our web 
UI, backend server, and end-user programming interfaces 
were implemented using PHP, MySQL, jQuery, d3.js, 
node.js, and socket.io. For our machine-learning compo-
nent, we used the Weka toolkit [11]. We also provide a web 
API that allows services and end-user applications to lever-
age sensor data. As a proof of concept, we built two appli-
cations using this facility: our end user programming tool, 
described in the previous section, and a basic data visualiza-
tion tool – both can be seen in our Video Figure. 
PROTOTYPE DEPLOYMENT 
The goal of our prototype deployment was to illustrate that 
even with a basic approach, the Zensors architecture can 
achieve high accuracy, at low cost, quickly, and author-able 
by end users using plain text queries.. 
We deployed 16 sensors across four diverse environments: a 
home kitchen, office kitchenette, building food court, and 
parking lot (see Figure 6 for four examples). Sensor ques-
tions ranged from “is this café door open?” to “what type of 
food is on the counter?” A range of reporting frequencies 
(from once per minute to twice per hour) and deployment 
durations (10 days to 3 weeks) were represented by our 
sample sensor set. We also manually labeled images from 
seven sensors to create a ground-truth dataset for later ex-
periments. These “expert” labels have the advantage of su-
perior context understanding as well as being able to view 
the entire dataset, not just a small snapshot. 

 
Figure 5. Sensors can toggle between the crowd and 
machine learning to adapt to environment changes. 
Note that end users and applications only ever see 
the max of the crowd and ML accuracies. 

 



Accuracy of the Crowd  
To analyze how well our sensors can quickly provide accu-
rate sensing data, we measured the precision, recall, and 
latency of our aggregated crowd responses. Figure 7 shows 
the accuracy of crowd workers’ ratings, using expert labels 
as the ground truth. Cohen’s kappa [6] is calculated to miti-
gate the effects of skewed class distribution (e.g., the lefto-
ver food sensor returned “no” over 75% of the time). Crowd 
accuracy reaches as high as 96.8% (kappa score 0.859), 
with mean accuracy 77.4% (median 76.0%). The crowd 
performed very well on three sensors (accessible parking 
spots occupied, number of cars in parking lot, and dish-
washer door), moderately well on one sensor (leftover 
food), and poorly on three sensors (food type, line length 
sensor, countertop messy).  
The food type sensor required users to distinguish between 
seven types of cuisine (“I do not see any food”, “Pizza”, 
“Sandwiches”, “Cake or pastries”, “Asian or Indian”, “Sal-
ad”, “Bagels or doughnuts”, “Other cuisine or I can't tell”) 
based on a very low-resolution image, while the line length 
sensor and countertop sensors both involved subjective 
judgments (e.g. “is the line orderly”, “how messy is the 
countertop”). By contrast, quantitative questions (“is there 
food here”, “is the door closed”, “how many cars are there”) 
generally had superior performance. 
In designing questions to be posed to the crowd, operators 
may make assumptions that are not obvious to crowd work-
ers, leading to incorrect results. In one example, workers 
were asked to identify the presence of food on a kitchen 
countertop. The countertop has a permanent candy jar, 
which the experimenters assumed would not be classified as 
food, yet several crowd workers marked the otherwise-
empty countertop as having food. Based on the observed 
results, the question was amended to explicitly exclude can-
dy, after which the expected results were obtained. 
Estimating Live Accuracy 
This experiment sought to estimate the accuracy of a sensor, 
over the course of its deployment, as viewed “live” by its 
operator. For each sensor, we defined ten time periods each 
covering one-tenth of the data, numbered t=0.1 through 
t=1.0. To estimate live accuracy at time t, we trained on all 
data up to time t, and then tested on all data from time t to 
time t+0.3 (i.e. we tested on a sliding window of 30% of the 
data). The results for three representative sensors are shown 
in Figure 7, compared against the crowd accuracies. In 
many cases, a relatively small portion of the data is needed 
to reach crowd-level accuracies. 
Assessing Future Accuracy Post ML Handoff 
Alternatively, it is equally important to assess what the ac-
curacy of a sensor would be going forward, assuming a ML 
handoff occurs at time t. To assess this, we simulate a com-
plete ML handoff at each time increment. All data up to that 
point is used for training, while all future data is used for 
testing. We stop this analysis when less than 30% of the 
data is available for testing, to avoid noisy results from in-
sufficient test data. These results are summarized in Figure 

8, compared against the overall crowd accuracies. The accu-
racies follow similar curves to the curves of Figure 7, sug-
gesting that live classification accuracy may be able to pre-
dict future post-handoff classification accuracy. 
Similar Image Rejection in Practice 
As described previously, our system sends labeling requests 
to the crowd only when there is a sufficient visual change 
between consecutive images, otherwise the last sensor value 
is simply copied forward. In our deployment, we found that 
our image similarly mechanism rejected an average of 
61.2% of images (SD=17.2%, minimum=40.5%, maxi-
mum=93.7%).  
Sensors that Fail 
It is important to acknowledge that some of our sensors 
failed to produce reliable output. We initially hypothesized 
that failure would primarily be due to shortcomings in our 
computer vision implementation. However, we found that 
our classifiers work well in practice, with six of our seven 
sensors (for which we had expert labels, and thus a ground 
truth) getting to within 90% of crowd accuracy when we 
trained on half of the crowd-labeled data (mean 98.1%, 
SD=14.4%; tested on the second half). Instead, we found 
that the classification bottleneck for several of the sensors 
was caused by the poor accuracy of the crowd answers (as 
compared against our ground truth). For these underper-
forming sensors, we found a common theme: the sensor 
questions were subjective or required additional context. 
For example, one sensor asked, “how orderly is the line?” 
(Figure 6) with three possible answers: “no people visible in 
image”, “people present, but no obvious organization”, and 
“people standing in a line”. Because this is subjective (e.g., 
relative to local cultural norms) we found that crowd work-
ers provided widely varying answers. Another sensor was 

   

 

 
 

 
Figure 6. Sensor image time series. Associated ques-
tions top to bottom “do you see a parked car?”, “how 
many dishes in the sink?”, “do you see a dishwasher 
door?”, and “how orderly is the line?” 

 



tasked with sensing whether a dishwasher was opened or 
closed (see Figure 6 for some example images). In piloting, 
the question was defined as “is the dishwasher door open?” 
However, this appeared to confuse crowd workers, reducing 
sensor accuracy. We hypothesize that this problem was 
caused by the fact that most of the time, no dishwasher was 
visible in the closed state. When presented with the question 
of “is the dishwasher door open?”, the crowd presumably 
wondered “what dishwasher?”. We found that rephrasing 
the question to be more context-free – “Do you see a dish-
washer door?” – significantly boosted accuracy. 
There are a number of ways to alleviate “bad” sensor ques-
tions. One approach is to suggest example questions or pro-
vide structured question templates (e.g., “do you see a 
_____ [in/on] the _____?”), helping end-users formulate 
questions with less ambiguity. Additionally, the “I can’t 
tell” button in the crowd interface (see “sensing with the 
crowd” section) could allow the system to flag sensors caus-
ing confusion and suggest the question or image subregion 
be modified. Another approach is for the crowd labeling 
interface to provide exemplar images, one for each possible 
answer (e.g., show examplars of both dishwasher door 
states). Finally, we can also show crowd workers a random 
set of previously collected sensor images that hopefully 
better capture the full range of possible states (e.g., orderly 
line to chaotic), so they can make better relative judgments. 
Zensors Economics 
The HITs we use for Zensors paid 2 cents each, a pay rate 
chosen to be above the U.S. minimum wage even for slower 
workers. This means, e.g., that a sensor that takes images 
every 10 minutes would cost roughly $100 per month (as-
suming an average similar image rejection rate) to be fully 
human-powered (30 days * 24 hours * 6 images per hour * 
40% different images * $0.02 * 3 workers). To offer a con-

crete example, our median sensor in terms of images cap-
tured was the dishwasher door sensor, which triggered eve-
ry minute. It captured 528 non-similar images over a 7-day 
deployment, which translates to $135/month in costs assum-
ing only human-power.  
For many of our sensors, we found that our automatic clas-
sification pipeline could reasonably approximate the 
crowd’s answers using the first week as training data. Once 
there is sufficient agreement between crowd and machine 
learning, we can decrease the number of human workers 
from three to two, and eventually to one (and recruit more 
workers when there is significant disagreement). This 
means we can reduce the price by 67% even before the ma-
chine learning is fully trained, without reducing accuracy. 
To get to a point where machine learning can shoulder the 
entire load, we found that our test sensors took between 90 
and 687 data points (depending on polling rate and setting). 
This means that we can train an automated sensor for as 
little as $5.40 (and our worst sensor for $41). 
One of the strengths of Zensors is its ability to use human-
intelligence to handle previously unseen scenarios. As such, 
even if a handoff to ML is possible, there is a continued cost 
to validate that the automated system is still working By 
periodically having the crowd spot-check the output of sen-
sors, we can detect e.g., errors and scene changes, switching 
back to human-power (and thus training) if needed. This 
periodic validation can run at different intensities. Validat-
ing e.g., 1 in every 50 sensor instances would cost roughly 
1/50th the typical human-powered cost, which is perhaps a 
few dollars per month.  
When ML Handoff is Not Possible 
Finally, there may be cases where the system cannot attain a 
full ML handoff (e.g., poor image resolution, noisy training 
data, or simply a hard question incompatible with CV ap-

 
Figure 8. “Future” accuracy evaluation of three sensors. This is the accuracy of the sensor assuming ML handoff at 
time t. X-axes represent ML handoff time t. Left: “do you see a dishwasher door.” Middle: “how messy is the counter.” 
Right: “which parking spots are occupied.” 

 
Figure 7. “Live” accuracy evaluation of three sensors. This is the accuracy of a sensor over the course of its deploy-
ment, as viewed “live” by its operator. X-axes represent training set cutoff time t. Left: “do you see a dishwasher door.” 
Middle: “how messy is the counter.” Right: “which parking spots are occupied.”  

 



proaches). As a result, the system will need to rely on a ful-
ly crowd-powered approach for an indefinite period, which 
can be relatively expensive; Table 1 offers some example 
costs from our deployment. However, even if ML handoff 
never occurs, it is important to note that end users and ap-
plications only ever see human-accuracy level answers.  
CONCLUSION 
Zensors enables easy end-user creation of arbitrary sensors 
for any visually observable property. Zensors uses crowd-
powered answers to produce near-instant sensor readings 
with high accuracy while requiring no explicit training. 
Once enough data labels have been collected, Zensors can 
seamlessly hand-off image classification to machine learn-
ing utilizing computer-vision-derived features. Our forma-
tive design exercises highlight the potential that Zensors 
holds for enabling a broad variety of applications beyond 
those available using contemporary electro-mechanical sen-
sors. We conclude with results from our prototype deploy-
ment, which suggest our approach is feasible, accurate and 
can be cost effective. 
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 Sensor Name / Question Freq, CP Cost 
per Mo. 

Exp. Cost 
per Mo. 

 Do you see a dishwasher door? 1 min $135 $35 

 How messy is the counter? 10 Min $82 $22 

 Do you see a parked car? 30 Min $30 $8 

 How many dishes in the sink? 10 Min $28 $7 

 How many cars do you see? 30 Min $43 $12 

 What type of food do you see? 10 Min $87 $23 
 

Table 1. Estimated monthly costs if sensors were fully 
crowd-powered (CP cost), as well as expected cost 
(Exp. Cost) assuming ML handoff after week one and 
continued periodic validation. 

 


