
Zensors: Adaptive, Rapidly Deployable,
Human-Intelligent Sensor Feeds

Gierad Laput1 Walter S. Lasecki2 Jason Wiese1 Robert Xiao1 Jeffrey P. Bigham1 Chris Harrison1
1 HCI Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{glaput, jwwiese, brx, jbigham, chris.harrison}
@cs.cmu.edu

2 ROC HCI, University of Rochester
500 Joseph C. Wilson Boulevard

Rochester, NY 14627
wlasecki@cs.rochester.edu

ABSTRACT
The promise of “smart” homes, workplaces, schools, and
other environments has long been championed. Unattrac-
tive, however, has been the cost to run wires and install sen-
sors. More critically, raw sensor data tends not to align with
the types of questions humans wish to ask, e.g., do I need to
restock my pantry? Although techniques like computer vi-
sion can answer some of these questions, it requires signifi-
cant effort to build and train appropriate classifiers. Even
then, these systems are often brittle, with limited ability to
handle new or unexpected situations, including being repo-
sitioned and environmental changes (e.g., lighting, furni-
ture, seasons). We propose Zensors, a new sensing approach
that fuses real-time human intelligence from online crowd
workers with automatic approaches to provide robust, adap-
tive, and readily deployable intelligent sensors. With Zen-
sors, users can go from question to live sensor feed in less
than 60 seconds. Through our API, Zensors can enable a
variety of rich end-user applications and moves us closer to
the vision of responsive, intelligent environments.
Author Keywords: Smart environments; sensing; human
computation; computer vision; machine learning; end-user
programming;
ACM Keywords: H.5.2. [Information interfaces and presen-
tation]: User interfaces – Input devices and strategies.
INTRODUCTION
For decades, “intelligent” environments have promised to
improve our lives by inferring context, activity and events
in diverse environments, ranging from public spaces, offic-
es, and labs, to homes and healthcare facilities. To achieve
this vision, smart environments require sensors, and lots of
them. However, installation continues to be expensive, spe-
cial purpose, and often invasive (e.g., running power).
An even more challenging problem is that sensor output

rarely matches the types of questions humans wish to ask.
For example, a door opened/closed sensor may not answer
the user’s true question: “are my children home from
school?” A restaurateur may want to know how many pa-
trons need their beverages refilled, and graduate students
want to know, “is there free food in the kitchenette?” Unfor-
tunately, these sophisticated, multidimensional and often
contextual questions are not easily answered by the simple
sensors we deploy today. Although advances in sensing,
computer vision (CV) and machine learning (ML) have
brought us closer, systems that generalize across these
broad and dynamic contexts do not yet exist.
In this work, we introduce Zensors, a new sensor approach
that requires minimal and non-permanent sensor installation
and provides human-centered and actionable sensor output.
To achieve this, we fuse answers from crowd workers and
automatic approaches to provide instant, human-intelligent
sensors, which end users can set up in under one minute.
To illustrate the utility of Zensors, we return to our restau-
rant example. John, the proprietor, finds a disused
smartphone or tablet and affixes it to the wall of his restau-
rant. He installs and launches our Zensors app, which uses
the front facing camera to provide a live overview of the
restaurant. John presses the “new sensor” button and circles
the bar countertop, thus specifying a region of interest. John
can then enter a plain text question, for example: “how
many drinks are almost empty?”
By pressing “go”, the sensor is activated and starts provid-
ing real-time data, in this case numerical. John can now use
e.g., a companion app to see a real time visualization of how
many drinks need to be refilled, or use an end user pro-
gramming tool to have the system automatically message a
co-worker requesting help if the number exceeds ten. With-
in a few minutes, John could similarly set up sensors for:
“does table four need to be cleaned?”, “are customers
wearing their coats inside?”, “is a check sitting on the ta-
ble?” and other questions relevant to the dining experience.
Unbeknownst to John, his sensors are initially powered by
crowd workers interpreting his plain text question, provid-
ing immediate human-level accuracy, as well as rich, hu-
man-centered abstractions. However, using crowd workers
can be costly and difficult to scale, and so ideally it is only
used temporarily – answers from the crowd are recorded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04��$15. http://dx.doi.org/10.1145/2702123.2702416

and used as labels to bootstrap automatic processes. More
specifically, our system begins training and testing image-
based machine learning classifiers, testing against the
ground truth provided by the crowd labels. If the classifiers
begin to achieve human-like accuracies, they begin to vote
alongside crowd responses. Eventually, if sufficiently ro-
bust, the classifiers can take full control. This human-
computer handoff is seamless and invisible to end-users; as
far as users like John are concerned, they have a sensor with
human-level accuracy from minute one and onward. Even
when the classifiers do not achieve the needed level of accu-
racy, we have designed savings measures into our crowd-
based method to conserve costs. Through our API, Zensors
enables a variety of applications that help realize the poten-
tial of smart environments. This abstracts the complexity of
crowdsourcing, computer vision and machine learning, ena-
bling developers to treat our “zensors” just as they would
traditional electro-mechanical sensors.
We designed Zensors to achieve five key criteria 1) answer
diverse natural language “sensor” questions, 2) with reason-
ably high-accuracy, 3) while being easy enough to be used
by non-experts, 4) requiring zero training, and 5) receive
live data within seconds. We are unaware of a single prior
computer vision system that achieves these five properties.
We make the following contributions in this work:

• Zensors, a new approach and architecture for hybrid
crowd-ML powered sensors, with an API to enable access
to sensor data streams.

• A proof-of-concept mobile application for easy, end-user
authoring of on-demand intelligent sensors.

• A tool for end-user programming of case-based events
that turn sensor output into meaningful actions.

• A study that demonstrates the accuracy and reliability of
Zensors in a variety of settings.

• Evidence that our human-powered sensors can be used to
train computer vision approaches in situ, leading to an au-
tomatic handoff in most cases.

RELATED WORK
Our work touches on several areas including crowd-driven
annotation, computer vision, and more generally, smart en-
vironments and activity sensing. We now summarize key
related work in these respective domains.
Crowd-Driven Annotation
Crowdsourcing allows systems to access human intelligence
through online marketplaces such as Mechanical Turk. For
example, the ESP Game asked workers to label images with
keywords in order to make the web more accessible [24].
VizWiz [3] asks crowd workers to answer visual questions
for blind users with a latency of under a minute. However,
both VizWiz and the ESP Game have difficulty scaling be-
cause they elicit un-typed, natural language responses to
non-repeated images, making it difficult for machine learn-
ing algorithms to learn key patterns with high accuracy.

Marcus et al. [20] explored how to perform SQL query es-
timations that computers cannot do alone, e.g., answer how
many people in a database of images were of a certain gen-
der. In their system, users could pre-define functions that
specified crowd tasks, which were used to find an answer
estimation for query filtering. CrowdDB [10] explored a
similar crowdsourcing concept, using the crowd to fill in
missing data and overcome the closed-world assumption
held in traditional DBs. In both of these examples, the lan-
guage the user must use to pose queries is a slight variant of
SQL, and the crowd’s input is used to estimate relationships
and missing data over large, pre-existing datasets. In con-
trast, Zensors turn a live stream of images into an easily
accessible structured data stream.
Tohme [13] use the crowd to improve accessibility infor-
mation in maps by asking workers to label curbs in Google
StreetView images. Unlike Zensors, Tohme addressed a
single, specific question, using a specialized interface to
facilitate labeling. Tohme also included a computer vision
component that enabled it to learn how to identify curbs in
specific areas over time. They demonstrated that this auto-
mated approach could be successful. However it, too, relied
on the detailed object segmentation and labeling infor-
mation obtained from workers through the custom interface
(and in combination with GPS and other metadata from
Google Maps). Zensors, by contrast, targets general-purpose
domains in which no additional information is available,
and answers a broad range of user-defined questions.
VATIC [25] uses the crowd to annotate video with labels
and object bounding boxes. Glance [17] annotates spans of
time with user-requested event labels within minutes by
leveraging the ability of large sets of crowd workers to con-
currently complete an otherwise time-consuming task. Both
VATIC and Glance are approaches for analyzing previously
recorded, fixed-length video. By contrast, Zensors is fo-
cused on real-time analysis of still images, and offers the
potential for handing sensor labeling off from the crowd to
machine learning algorithms.
Legion:AR [18] recruits the crowd to provide activity labels
using data from live video and RFID tags. It uses an active
learning approach to request crowd labels for partial streams
of live video. While this solution is related to Zensors, the
crowd architecture is different. Legion:AR does not use
computer vision, only attempts automatic activity recogni-
tion via RFID tags, and collects open-ended questions and
answers, not typed values (i.e., data type). More specifical-
ly, Legion:AR collects open-ended plain text answers, in
contrast to the structured labels of Zensors. Further, Le-
gion:AR gathers multiple workers into a single session for a
long duration, having them synchronously generate multiple
incomplete sets of labels that are merged into a final
stream—a configuration that costs tens of dollars for a few
minutes. Legion:AR monitors an instrumented space (RFID
scanners, Kinects), and was not designed to be a general-
izable sensing platform.

Image- and Video-Based Sensors
The field of computer vision has largely developed in pur-
suit of extracting meaning from images without the need for
human assistance. Today, there exist robust and automatic
approaches for applications as diverse as face detection [28]
and traffic monitoring [15]. Most related to our present
work are video-based, end-user sensing systems, such as the
techniques proposed in Crayons [8] and the Eyepatch sys-
tem [21]. Light Widgets [9] allowed users to create virtual
interactive elements on everyday surfaces through video-
based sensing. Other systems, e.g. Slit-Tear Visualizations
[23], aim to help users better recognize environmental
events. These systems often rely on users annotating images
to provide training data or demarcate regions of interest.
Researchers have also explored crowd-based approaches for
improving computer vision techniques [7,26], which could
be used to enhance systems such as our own.

Smart Environments
A broad body of work in the HCI and UbiComp communi-
ties has outfitted home, work and public environments and
objects in those environments with sensors to detect various
activities in the environment [1]. The Context Toolkit [22]
utilized data from numerous sensors to make contextual
inferences about a place (e.g. what is going on in a space, or
how many people are around). In a project to support aging-
in-place, Lee and Dey created an augmented pillbox that
detected whether or not an older adult had taken their pills
for a given day [19]. In another example, the AwareOffice
project [29] outfitted various office artifacts with diverse
sensors to detect their state, including: whiteboard pen
(writing or not), eraser (wiping whiteboard), chair (in use or
free), window & door (open/closed).
While there are clearly many benefits of dedicated hardware
sensors in UbiComp smart environments, there are many
drawbacks that limit their use. Compared to Zensors, these
approaches are fairly heavyweight, requiring one sensor per
item that is being sensed. In contrast, by segmenting the
view from a single camera to evaluate the current state of
many objects, Zensors offers this same functionality with
just a single device. Furthermore, Zensors enables almost
anyone to answer arbitrary questions about their environ-
ment, without requiring the hardware/software technical
skills needed to implement traditional sensor approaches.
APPLICATION SPACE
To help us understand the expanse of questions and func-
tionalities enabled by a human-intelligent, camera-driven
sensing system, we recruited 13 interaction designers and
solicited their input in a structured ideation session.
First, participants were split into four groups, and each
group was asked to enumerate scenarios that would greatly
benefit from a "super smart environment sensor." After fif-
teen minutes, groups were asked to share their ideas with
one another. Immediately after, four groups were merged
into two, and the new teams were asked to discuss potential
issues from the ideas mentioned prior. Next, all groups were

asked to examine the area of "camera-based sensing." Spe-
cifically, we asked them to generate and categorize "ques-
tions" that they might want to ask from a "highly intelli-
gent" camera-based sensing system. Finally, using input
from the previous round, we asked participants to “pro-
gram” image-based sensing applications (using a mockup
software we provided) inspired from the questions they pre-
viously explored. In total, the session lasted 90 minutes. All
participants were briefed at the end of the session, and were
compensated for their time.
Data gathered from the session were analyzed using affini-
ty-diagramming techniques. From this, several themes
emerged from the categories of questions generated by each
group, including optimization of domestic tasks (e.g., “what
food in my fridge will go bad if I don’t cook them the next
day?”), health (e.g., “who is experiencing the most severe
depression right now?”), public space monitoring (e.g.,
“how many cars are in this parking lot?”), and item finding
(e.g., “where did I last leave my keys?”). These questions
were also tied to a strong set of contexts and environments:
including the home, urban and public spaces, educational
institutions (e.g., “are students interested in the topic?”),
health facilities, and supply chains (e.g., “what items should
I restock from my inventory?”). When asked about issues
concerning the deployment of “super smart environment
sensing,” participants cited consent and privacy (e.g., data
storage), as well as technical feasibility (e.g., sensing capa-
bilities, computation) as chief concerns. Altogether, these
results draw out the expansive set of applications that would
otherwise be hard or impossible to implement with CV-
based technologies alone.
COMPARISION TO COMPUTER VISION
Additionally, we wanted to understand the work require-
ments and economic implications of building smart envi-
ronment sensing using existing software engineering ap-
proaches. Intuitively, one or more experienced programmers
would be able to implement most of our proposed intelli-
gent sensors. But, how long would it take, and at what cost?
We conducted informal interviews with nine freelance de-
velopers from oDesk.com, a popular online workplace. To
recruit capable candidates, we created a targeted job posting
(titled “Image-Based Sensing System”), asking experienced
software developers to build a computer vision-based auto-
matic “bus detection” system. The job posting included il-
lustrative details and clear task requirements (e.g., system
should perform with at least 90+% accuracy), along with a
labeled image set (e.g., a view of a bus stop on a city street).
Interested candidates were asked a series of follow-up ques-
tions, most notably: “how long do you think the project will
take?”, “what is your hourly rate?” and “how many hours
will you expect to work per week?” Candidates were en-
couraged to ask follow-up questions. All interviews were
conducted online using oDesk’s internal messaging system.
Afterwards, participants were debriefed (e.g., we clarified
the true intent of the job posting), and were paid $25.

Across all users, the average estimated project cost was
$3,044 (SD=$2,113), with an average completion time of
4.5 weeks (SD=2.2 weeks), excluding time spent for data
collection. While these results are anecdotal – given that
none of the developers went ahead and actually built the
system – we do believe it illustrates the significant com-
plexity, cost and development time of special purpose com-
puter-vision-driven sensing systems.
ZENSORS
We now describe how Zensors provides end-users with in-
telligent sensing capabilities, leveraging both crowd-
sourcing and machine learning. Figure 1 provides an illus-
trated overview of the architecture.
System Architecture
First, a mobile application serves as the primary end-point
for creating and modifying sensors. Users highlight a region
of the camera image and an associated question, e.g., “how
many parking spots are available?” As images stream from
the device’s front-facing camera, our system intelligently
decides when to push requests to the crowd.
Next, crowd workers process these requests through a web-
based interface. To reduce noise and reject malicious work-
ers, several answers are collected per image, then fused to-
gether using quality-control algorithms (e.g., voting) to de-
termine the best response for a given instance. Finally, the
responses gathered from the crowd are stored into a back-
end database. These responses provide immediate, human-
intelligent answers to the questions asked by users, and also
serve as a corpus for training computer-vision based, ma-
chine learning classifiers.
Sensors from Images
Leveraging cameras as multi-purpose sensors. From mobile
phones, security cameras, and Kinects in people’s living

rooms, cameras are everywhere. They continue to become
more powerful, while remaining small. More importantly,
time-series data from cameras offers rich contextual infor-
mation about an activity or environment far more than what
basic sensors (e.g., proximity) can provide. One can ask
several multi-dimensional questions from camera images
across a time period, such as “how many people are smil-
ing?”, “is it sunny?” or “is the table messy?”, all of which
provide useful information in learning about the context or
activity within an environment. Thus, the cost, availability,
and information bandwidth that cameras offer make them an
ideal “multi-purpose” commodity sensor.
Repurposing old mobile devices as sensor hosts. Users up-
grade their devices on average once every two years [27]. It
is not uncommon for people to have a slew of older smart
devices stashed in a drawer or closet. Although older, these
devices are capable computers, typically featuring one or
more cameras, a touchscreen, and wifi connectivity. This is
the ideal platform for rapidly deployable, image-based sens-
ing. Users simply download our Zensors app onto the de-
vices, which allows them to create or modify sensors. Users
then "stick" the device in a context of their choosing.
WiFi Cameras. Zensors can also utilize stand-alone wifi-
enabled cameras, costing as little as $30 today. In this case,
a web interface can be used to define sensors (Figure 3).
Privacy Preservation
Image Subregions. Contextual information from cameras
creates an inherent tradeoff between information and priva-
cy [4,5,14]. A naïve approach would utilize the entire raw
image. However, this can easily violate privacy, especially
when personally identifying information is present, or when
images depict people in sensitive situations. To partially
mitigate this issue, our system asks users to select an arbi-

Figure 1. Zensors architecture. A bartender repurposes a tablet as a sensor host, affixing it to the wall behind the bar (A).
Using the live view from the front facing camera, he selects a region of the scene and asks, “how many glasses need a
refill?” (B). Periodically, the device takes snapshots, and forwards this data to a dispatcher (C). Initially, the dispatcher
uses crowd workers to power the sensor, providing immediate human-level accuracy (D). In the background, answers
from the crowd train a computer-vision-based, machine learning classifier (E). As it approaches crowd-level accuracy, the
system employs a hybrid crowd-ML scheme to power the sensor stream. Sensor output can drive end-user applications,
such as a real time visualizer (F, left) or event-based end-user programmable system (F, right).

trarily shaped subregion relating to the question they wish
to ask; image data outside the subregion is masked away.
This approach helps users to strike a balance between priva-
cy and information content, and as a positive side effect, it
reduces file size, removes unnecessary image elements, and
simplifies the sensing effort for both human raters and com-
puter vision techniques.
Image Obfuscation. For users wishing to add an additional
level of privacy, we offer several image obfuscation tech-
niques. These are applied to images on the device before
they are sent to the cloud. Image obfuscation and privacy
has been previously researched, and therefore we integrated
the guidelines suggested by Hudson [14] and Boyle [4,5].
Users can choose to leave the image subregion unaltered, or
select from four obfuscation methods: light blur, heavy blur,
median filter, and edge filter (Figure 2).
Creating New Sensors
Sensor Questions. Every sensor starts with a question. Users
create a new sensor by selecting a region of the image, and
entering a plain text question. For example, in Figure 1, the
bartender highlights the bar area, and asks, “how many
glasses need a refill?” Questions define the “capabilities” of
a sensor, and thus, the quality of answers depends on sever-
al factors, such as the question’s context and relevance.
Data Types. To further add context and relevance, our sys-
tem requires users to define a data type when creating new
sensors. Data types curb variance and constrain the range of
possible values returned by a sensor (i.e., the answer to the
sensor’s question), and facilitate simple automated pro-
cessing of the data stream. To this end, we categorize ques-
tions into four example data types:
YesNo – This type of question can be answered by either
yes or no. It is analogous to an ON/OFF sensor mechanism.
Examples include: “is the door open or closed?”, “is there
food in the kitchen?”, or “can you see a bus in this image?”
Number – Number data types are intended for questions
that require counting. Numbers are continuous and are
bound between a minimum and maximum range. Examples
include: “how many cars do you see in the parking lot?
(min=0, max=30)”, and “what percentage of the water tank
is full? (min=0, max=100)”
Scale – Scale data types are analogous to Likert-scale
questions. Answers belong to discrete values specified with-
in an increasing/decreasing scale. For this data type, users
are required to supply scale-value pairs. Examples include:
“how messy is this table? (1= Clean, 2=Average, 3=
Messy)”, or “how happy does the person look? (1=Very
Sad, 2=Sad, 3=Neutral, 4=Happy, 5=Very Happy)”
MultipleChoice – When creating multiple-choice ques-
tions, users are required to specify the list of choices. Unlike
scale data types, choice order is irrelevant. Examples in-
clude: “what type of food do you see? (None, Indian, Thai,
Asian, Salad, Bagels, Other)” and “what are people doing?
(reading, using computers, eating, other)”.

Frequency. When creating sensors, users need to specify the
frequency at which sensor readings are taken. Depending on
the question, frequency readings can range from near real-
time (e.g., every one or two seconds for questions like “is
the refrigerator door open? [YesNo]”), to extended periods
(e.g., once per day for: “what product is advertised on the
billboard? [MultipleChoice]).”

Web Interface. Along with the mobile application, we built
a companion web interface for sensor management (Figure
3). Users link one or more sensors to a web account, where
they can create, modify, and synchronize sensors across all
of their devices. The web UI also makes it possible to create
new sensors remotely. For example, users can “stick” a sen-
sor device at an elevated vantage point (e.g., for viewing an
entire parking lot), and then manage and create sensors
without having to physically touch the device.
Similar Image Detection and Rejection
Sensor image streams often have periods of little variation
(e.g., buildings after closing hours, outdoor scenes at night).
Thus, to avoid soliciting redundant (and thus costly) re-
sponses from the crowd on highly similar images, we col-
lapse runs of similar images. We calculate image similarity
using a simple technique. First, we count the number of
pixels that have changed from the previous frame using
their RGB values and a predetermined pixel difference
threshold. If the number of changed pixels in an image ex-
ceeds a certain image area percentage threshold, we con-
sider the image to be different. Although this algorithm
worked well for our purposes, we note that more sophisti-
cated approaches (see e.g., [16]) could be used.
To determine optimal parameters, we performed a brute
force optimization experiment. We compiled a corpus of
roughly 6000 time-stamped images taken from multiple
pilot sensor streams. We then manually labeled whether or
not an image was the same as the previous image, providing

Figure 2. In addition to subregion masking, users can
select image obfuscation methods if desired. From top
to bottom: raw image, light blurring, heavy blurring,
median filter, and edge masking.

a ground truth set. We then ran our image similarity algo-
rithm, seeded with all combinations of the following thresh-
olds: 2% to 40% pixel difference threshold, in 2% incre-
ments, and 0.1% to 5.0% image area percentage threshold,
in 0.1% increments. This produced 130 result sets, which
we compare to our ground truth using Jaccard's distance
metric. By using a pixel difference and image area threshold
of 10% and 1.0% respectively, a Jaccard distance of .64 is
achieved. On average, this process removes roughly 40% of
images – a significant saving.
Sensing with the Crowd
Images streamed from sensor devices are stored in a data-
base. Crowd workers process un-answered instances
through a web-based interface seen in Figure 4. The inter-
face varies slightly based on the question/response type.
Each sensor instance is answered (i.e., labeled) by several
different crowd workers; we use voting to determine the
best response (at present, we use three workers, but other
numbers are possible). The resulting value is then saved in
the database and the instance is considered answered and
ready for sharing with end users or powering applications.
Our goal is to ensure workers are presented with a simple
task that they can answer quickly. As such, we present one
image to each worker and collect a single response. If
workers are unable to answer an image-based question, they
can mark it as an exception (“I can’t tell” button, Figure 4),
which informs the system that there is something amiss with
the sensor itself (e.g., occlusion, insufficient lighting, poorly
defined question). In addition, workers are prompted to pro-
vide textual descriptions when exceptions occur. This ap-
proach provides actionable user feedback to help remedy
the problem.
To recruit users fast enough to receive answers in real time,
we use LegionTools [17], a toolkit for quickly recruiting
workers from Mechanical Turk using a web-based interface.

It leverages a retainer model [2], which pre-recruits workers
so they are ready to respond to a task within as little as two
seconds. When sensors are crowd-powered, this sets the
lower-bound on our system latency.

Training Automated Sensors
Solutions using crowd-power alone can be costly and diffi-
cult to scale (i.e., more sensors requires more people). Zen-
sors reduces its reliance on crowd workers over time by
using crowd-provided answers to train machine learning
classifiers, which are fast and inexpensive. However, even
after machine learning has taken over processing sensors
feeds, crowd workers are still needed to provide a periodic
human-accuracy baseline to ensure high accuracy. Here, we
describe the machine learning framework for our prototype
deployment.
The classifier is trained on all the input data to date, except
for the most recent full day of data, which is set aside for
evaluation. For sensors that produce data infrequently, the
test set can be extended to one week or more to ensure there
are sufficient test instances.
Histogram equalization is applied to each image to reduce
the effect of lighting variances. Then, each input image is
processed into a large number of global features. Addition-
ally, each sensor image (which is itself a subregion of the
larger original image) is broken into a grid of sub-images.
In addition to a 1x1 grid (simply the image unchanged), we
also use 4x4, 7x7 and 10x10. Each of these variously-sized
sub-images is then converted to a luminance image, and the
mean, standard deviation and mean-squared error across the
window are used as numerical features. This produces a
total of 332 image features. Feature selection is used as a
post-process to extract exemplar features for a given sensor
feed. Of course, much more advanced computer vision and
scene understanding approaches exist that are beyond the
scope of this work.
We use correlation-based feature selection [12] to select
features from the training set, coupled with a backtracking
best-first attribute searcher. Both algorithms are implement-
ed in the Weka [11] machine learning toolkit. This selection
process typically chooses between 10 and 30 features. Of
note, the feature sets for different sensors rarely overlap.

Figure 4. Our Mechanical Turk interface, which lets
workers answer the question or raise an exception.

Figure 3. Users create and synchronize Zensors across
all of their devices using a web API, allowing them to
manage sensors without physical device interaction.

We then train classifiers depending on the type of sensor. A
“pre-classifier” is first trained to distinguish between excep-
tions and non-exceptions, to ensure that the main classifier
is not polluted by incorrect data. For continuous (numeric or
scale) sensors, we train a support vector machine regression
classifier using the SMOReg algorithm. For discrete sensors
(yes/no, multiple choice), we use a one-versus-one mul-
ticlass quadratic-kernel SVM trained with the SMO algo-
rithm, and for simple binary sensors we train a single SVM.
The SVM was chosen as the basic classifier because of its
ease of training and predictable behavior, though other clas-
sification approaches are certainly possible and valid. A
more robust version of this system would maintain a library
of feature extractors and classification algorithms, selecting
those exhibiting the best performance for a given sensor.
Machine Learning Handoff
As the training corpus grows from crowd labeled instances,
the accuracy of the machine learning classifiers typically
improves. Once the accuracy of the machine learning ex-
ceeds a predefined threshold (e.g., 95%) for several days,
the sensor hands off classification tasks to the machine
learning algorithm. It is also possible to do a soft handoff,
where the relative weighting between crowd and machine
learning labels shifts over time.
Periodic Ground Truth Validation and Adaptation
To ensure continued sensor accuracy after the handoff to
machine learning, the system periodically submits small
batches of fresh sensor data to the crowd for labeling. This
is used to benchmark the classifier accuracy. If accuracy is
sufficiently robust, the machine learning can continue to
power the sensor. However, if the accuracy has fallen below
a threshold, the system can revert to crowd-power. This
serves two immediate purposes: 1) the sensor immediately
regains human-intelligence level accuracy, and 2) the sys-
tem can incorporate new labels in its training for a hopeful
future handoff.
In this way, Zensors can automatically handle infrequent
changes (such as the first snow fall in a parking lot; Figure

5) that would prove challenging for most computer-vision-
driven systems (which are first trained and then deployed).
This ability to seamlessly toggle between crowd and auto-
matic approaches, without sensor interruption, makes our
approach highly adaptive and robust.
End-User Programming
We built a basic end-user programming tool that lets users
design event-based notifications using data from one or
more sensors (e.g., "send an email when the stove is ON
and ZERO people are in the house"). These directives can
be chained together as set of conjunctions (“and” clauses),
or for alternative responses (“or” clauses). Multiple chains
can be defined to represent different configurations. These
disjunctions of conjunctions comprise a fully expressive set
of logical terms.
This interface works similar to the popular If This Than
That tool (ifttt.com) – users can select a sensor, select a val-
ue and comparison operator, and then select an action type
from the set of supported APIs. Our current implementation
allows users to select from an email, text message, audio, or
chat alert. For each alert type, users are able to define a cus-
tom message, which can also display the current value of
the sensor by using a specially marked variable.
Implementation and API
As a proof of concept, our Zensors mobile application was
developed on Android, and deployed on a fleet of DOPO 9”
Internet tablet M975, each costing less than $50. Our web
UI, backend server, and end-user programming interfaces
were implemented using PHP, MySQL, jQuery, d3.js,
node.js, and socket.io. For our machine-learning compo-
nent, we used the Weka toolkit [11]. We also provide a web
API that allows services and end-user applications to lever-
age sensor data. As a proof of concept, we built two appli-
cations using this facility: our end user programming tool,
described in the previous section, and a basic data visualiza-
tion tool – both can be seen in our Video Figure.
PROTOTYPE DEPLOYMENT
The goal of our prototype deployment was to illustrate that
even with a basic approach, the Zensors architecture can
achieve high accuracy, at low cost, quickly, and author-able
by end users using plain text queries..
We deployed 16 sensors across four diverse environments: a
home kitchen, office kitchenette, building food court, and
parking lot (see Figure 6 for four examples). Sensor ques-
tions ranged from “is this café door open?” to “what type of
food is on the counter?” A range of reporting frequencies
(from once per minute to twice per hour) and deployment
durations (10 days to 3 weeks) were represented by our
sample sensor set. We also manually labeled images from
seven sensors to create a ground-truth dataset for later ex-
periments. These “expert” labels have the advantage of su-
perior context understanding as well as being able to view
the entire dataset, not just a small snapshot.

Figure 5. Sensors can toggle between the crowd and
machine learning to adapt to environment changes.
Note that end users and applications only ever see
the max of the crowd and ML accuracies.

Accuracy of the Crowd
To analyze how well our sensors can quickly provide accu-
rate sensing data, we measured the precision, recall, and
latency of our aggregated crowd responses. Figure 7 shows
the accuracy of crowd workers’ ratings, using expert labels
as the ground truth. Cohen’s kappa [6] is calculated to miti-
gate the effects of skewed class distribution (e.g., the lefto-
ver food sensor returned “no” over 75% of the time). Crowd
accuracy reaches as high as 96.8% (kappa score 0.859),
with mean accuracy 77.4% (median 76.0%). The crowd
performed very well on three sensors (accessible parking
spots occupied, number of cars in parking lot, and dish-
washer door), moderately well on one sensor (leftover
food), and poorly on three sensors (food type, line length
sensor, countertop messy).
The food type sensor required users to distinguish between
seven types of cuisine (“I do not see any food”, “Pizza”,
“Sandwiches”, “Cake or pastries”, “Asian or Indian”, “Sal-
ad”, “Bagels or doughnuts”, “Other cuisine or I can't tell”)
based on a very low-resolution image, while the line length
sensor and countertop sensors both involved subjective
judgments (e.g. “is the line orderly”, “how messy is the
countertop”). By contrast, quantitative questions (“is there
food here”, “is the door closed”, “how many cars are there”)
generally had superior performance.
In designing questions to be posed to the crowd, operators
may make assumptions that are not obvious to crowd work-
ers, leading to incorrect results. In one example, workers
were asked to identify the presence of food on a kitchen
countertop. The countertop has a permanent candy jar,
which the experimenters assumed would not be classified as
food, yet several crowd workers marked the otherwise-
empty countertop as having food. Based on the observed
results, the question was amended to explicitly exclude can-
dy, after which the expected results were obtained.
Estimating Live Accuracy
This experiment sought to estimate the accuracy of a sensor,
over the course of its deployment, as viewed “live” by its
operator. For each sensor, we defined ten time periods each
covering one-tenth of the data, numbered t=0.1 through
t=1.0. To estimate live accuracy at time t, we trained on all
data up to time t, and then tested on all data from time t to
time t+0.3 (i.e. we tested on a sliding window of 30% of the
data). The results for three representative sensors are shown
in Figure 7, compared against the crowd accuracies. In
many cases, a relatively small portion of the data is needed
to reach crowd-level accuracies.
Assessing Future Accuracy Post ML Handoff
Alternatively, it is equally important to assess what the ac-
curacy of a sensor would be going forward, assuming a ML
handoff occurs at time t. To assess this, we simulate a com-
plete ML handoff at each time increment. All data up to that
point is used for training, while all future data is used for
testing. We stop this analysis when less than 30% of the
data is available for testing, to avoid noisy results from in-
sufficient test data. These results are summarized in Figure

8, compared against the overall crowd accuracies. The accu-
racies follow similar curves to the curves of Figure 7, sug-
gesting that live classification accuracy may be able to pre-
dict future post-handoff classification accuracy.
Similar Image Rejection in Practice
As described previously, our system sends labeling requests
to the crowd only when there is a sufficient visual change
between consecutive images, otherwise the last sensor value
is simply copied forward. In our deployment, we found that
our image similarly mechanism rejected an average of
61.2% of images (SD=17.2%, minimum=40.5%, maxi-
mum=93.7%).
Sensors that Fail
It is important to acknowledge that some of our sensors
failed to produce reliable output. We initially hypothesized
that failure would primarily be due to shortcomings in our
computer vision implementation. However, we found that
our classifiers work well in practice, with six of our seven
sensors (for which we had expert labels, and thus a ground
truth) getting to within 90% of crowd accuracy when we
trained on half of the crowd-labeled data (mean 98.1%,
SD=14.4%; tested on the second half). Instead, we found
that the classification bottleneck for several of the sensors
was caused by the poor accuracy of the crowd answers (as
compared against our ground truth). For these underper-
forming sensors, we found a common theme: the sensor
questions were subjective or required additional context.
For example, one sensor asked, “how orderly is the line?”
(Figure 6) with three possible answers: “no people visible in
image”, “people present, but no obvious organization”, and
“people standing in a line”. Because this is subjective (e.g.,
relative to local cultural norms) we found that crowd work-
ers provided widely varying answers. Another sensor was

Figure 6. Sensor image time series. Associated ques-
tions top to bottom “do you see a parked car?”, “how
many dishes in the sink?”, “do you see a dishwasher
door?”, and “how orderly is the line?”

tasked with sensing whether a dishwasher was opened or
closed (see Figure 6 for some example images). In piloting,
the question was defined as “is the dishwasher door open?”
However, this appeared to confuse crowd workers, reducing
sensor accuracy. We hypothesize that this problem was
caused by the fact that most of the time, no dishwasher was
visible in the closed state. When presented with the question
of “is the dishwasher door open?”, the crowd presumably
wondered “what dishwasher?”. We found that rephrasing
the question to be more context-free – “Do you see a dish-
washer door?” – significantly boosted accuracy.
There are a number of ways to alleviate “bad” sensor ques-
tions. One approach is to suggest example questions or pro-
vide structured question templates (e.g., “do you see a
_____ [in/on] the _____?”), helping end-users formulate
questions with less ambiguity. Additionally, the “I can’t
tell” button in the crowd interface (see “sensing with the
crowd” section) could allow the system to flag sensors caus-
ing confusion and suggest the question or image subregion
be modified. Another approach is for the crowd labeling
interface to provide exemplar images, one for each possible
answer (e.g., show examplars of both dishwasher door
states). Finally, we can also show crowd workers a random
set of previously collected sensor images that hopefully
better capture the full range of possible states (e.g., orderly
line to chaotic), so they can make better relative judgments.
Zensors Economics
The HITs we use for Zensors paid 2 cents each, a pay rate
chosen to be above the U.S. minimum wage even for slower
workers. This means, e.g., that a sensor that takes images
every 10 minutes would cost roughly $100 per month (as-
suming an average similar image rejection rate) to be fully
human-powered (30 days * 24 hours * 6 images per hour *
40% different images * $0.02 * 3 workers). To offer a con-

crete example, our median sensor in terms of images cap-
tured was the dishwasher door sensor, which triggered eve-
ry minute. It captured 528 non-similar images over a 7-day
deployment, which translates to $135/month in costs assum-
ing only human-power.
For many of our sensors, we found that our automatic clas-
sification pipeline could reasonably approximate the
crowd’s answers using the first week as training data. Once
there is sufficient agreement between crowd and machine
learning, we can decrease the number of human workers
from three to two, and eventually to one (and recruit more
workers when there is significant disagreement). This
means we can reduce the price by 67% even before the ma-
chine learning is fully trained, without reducing accuracy.
To get to a point where machine learning can shoulder the
entire load, we found that our test sensors took between 90
and 687 data points (depending on polling rate and setting).
This means that we can train an automated sensor for as
little as $5.40 (and our worst sensor for $41).
One of the strengths of Zensors is its ability to use human-
intelligence to handle previously unseen scenarios. As such,
even if a handoff to ML is possible, there is a continued cost
to validate that the automated system is still working By
periodically having the crowd spot-check the output of sen-
sors, we can detect e.g., errors and scene changes, switching
back to human-power (and thus training) if needed. This
periodic validation can run at different intensities. Validat-
ing e.g., 1 in every 50 sensor instances would cost roughly
1/50th the typical human-powered cost, which is perhaps a
few dollars per month.
When ML Handoff is Not Possible
Finally, there may be cases where the system cannot attain a
full ML handoff (e.g., poor image resolution, noisy training
data, or simply a hard question incompatible with CV ap-

Figure 8. “Future” accuracy evaluation of three sensors. This is the accuracy of the sensor assuming ML handoff at
time t. X-axes represent ML handoff time t. Left: “do you see a dishwasher door.” Middle: “how messy is the counter.”
Right: “which parking spots are occupied.”

Figure 7. “Live” accuracy evaluation of three sensors. This is the accuracy of a sensor over the course of its deploy-
ment, as viewed “live” by its operator. X-axes represent training set cutoff time t. Left: “do you see a dishwasher door.”
Middle: “how messy is the counter.” Right: “which parking spots are occupied.”

proaches). As a result, the system will need to rely on a ful-
ly crowd-powered approach for an indefinite period, which
can be relatively expensive; Table 1 offers some example
costs from our deployment. However, even if ML handoff
never occurs, it is important to note that end users and ap-
plications only ever see human-accuracy level answers.
CONCLUSION
Zensors enables easy end-user creation of arbitrary sensors
for any visually observable property. Zensors uses crowd-
powered answers to produce near-instant sensor readings
with high accuracy while requiring no explicit training.
Once enough data labels have been collected, Zensors can
seamlessly hand-off image classification to machine learn-
ing utilizing computer-vision-derived features. Our forma-
tive design exercises highlight the potential that Zensors
holds for enabling a broad variety of applications beyond
those available using contemporary electro-mechanical sen-
sors. We conclude with results from our prototype deploy-
ment, which suggest our approach is feasible, accurate and
can be cost effective.
ACKNOWLEDGEMENTS
This work was supported by Yahoo! InMind, National Sci-
ence Foundation award #IIS-1149709, NSERC of Canada,
an Alfred P. Sloan Foundation Fellowship, and fellowships
from Microsoft Research, Disney Research, and Qualcomm.
REFERENCES
1. Abowd, G. D. and Mynatt, E. D. Designing for the human

experience in smart environments. Smart environments:
technologies, protocols, and applications (2004).

2. Bernstein, M.S., Brandt, J., Miller, R.C., Karger, D.R.
Crowds in two seconds: enabling realtime crowd-powered
interfaces. In Proc. UIST ’11.

3. Bigham, J. P., et al. VizWiz: nearly real-time answers to
visual questions. In Proc. UIST '10.

4. Boyle, M. and Greenberg, S. The language of privacy:
Learning from video media space analysis and design.
ACM ToCHI, 2005.

5. Boyle, M., Edwards, C., Greenberg, S. The effects of fil-
tered video on awareness and privacy. In Proc. CSCW ‘00.

6. Cohen, J. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement 20(1), 1960.

7. Deng, J., Krause, J., Fei-Fei, L. Fine-grained crowdsourc-
ing for fine-grained recognition. In Proc. CVPR '13.

8. Fails, J.A. and Olsen, D. A design tool for camera-based
interaction. In Proc. CHI '03.

9. Fails, J.A. and Olsen, D. Light widgets: interacting in eve-
ry-day spaces. In Proc. IUI '02.

10. Franklin, M. J., Kossmann, D., Kraska, T., Ramesh, S. and
Xin, R. CrowdDB: answering queries with crowdsourcing.
In Proc. SIGMOD '11.

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., Witten, I. H. The WEKA data mining software:
an update. ACM SIGKDD explorations, 11(1) ‘09.

12. Hall, M.A., Correlation-based Feature Subset Selection for
Machine Learning. 1998.

13. Hara, K., Sun, J., Moore, R., Jacobs, D., Froehlich, J.E.
Tohme: Detecting Curb Ramps in Google Street View Us-
ing Crowdsourcing, Computer Vision, and Machine Learn-
ing. In Proc. UIST ‘14.

14. Hudson, S.E. and Smith, I. Techniques for addressing fun-
damental privacy and disruption tradeoffs in awareness
support systems. In Proc. CSCW '96.

15. Kastrinaki, V., Zervakis, M., Kalaitzakis, K. A survey of
video processing techniques for traffic applications. Image
and Vision Computing 21(4), 2003.

16. Khan, M., Acharya, B. and Verm, S. Comparison between
different illumination independent change detection tech-
niques. In Proc. ICCCS '11.

17. Lasecki, W., Gordon, M., Koutra, D., Jung, M., Dow, S.,
Bigham, J. Glance: Rapidly Coding Behavioral Video with
the Crowd. In Proc. UIST ’14.

18. Lasecki, W.S., Song, Y., Kautz, H., and Bigham, J.P. Real-
time crowd labeling for deployable activity recognition. In
Proc. CSCW ’13.

19. Lee, M. L., Dey, A. K. Sensor-based observations of daily
living for aging in place. Pers. Ubiquit. Comp., 2014, 1-17.

20. Marcus, A., Karger, D., Madden, S., Miller, R., Oh, S.
Counting with the crowd. In Proc. VLDB ’12.

21. Maynes-Aminzade, D., Winograd, T., Igarashi, T.
Eyepatch: prototyping camera-based interaction through
examples. In Proc. UIST '07.

22. Salber, D., Dey, A. K., Abowd, G. D. The context toolkit:
aiding the development of context-enabled applications. In
Proc. CHI '99.

23. Tang, A., Greenberg, S., and Fels, S. Exploring video
streams using slit-tear visualizations. Proc. AVI '08.

24. von Ahn, L. and Dabbish, L.. Labeling images with a com-
puter game. In Proc. CHI '04.

25. Vondrick, C., Patterson, D., and Ramanan, D. Efficiently
Scaling Up Crowdsourced Video Annotation. International
Journal of Computer Vision.

26. Wah, C. Crowdsourcing and its applications in computer
vision. University of California, San Diego. 2006.

27. Walton, A. Life Expectancy of a Smartphone. Retrieved
from chron.com, September 21, 2014.

28. Zhao, W., Chellappa, R., Phillips, P. and Rosenfeld, R.
Face recognition: A literature survey. ACM Comput. Surv.
35(4), 2003.

29. Zimmer, T., & Beigl, M. AwareOffice: Integrating Modular
Context-Aware Applications. In Proc. ICDCSW’06.

 Sensor Name / Question Freq, CP Cost
per Mo.

Exp. Cost
per Mo.

 Do you see a dishwasher door? 1 min $135 $35

 How messy is the counter? 10 Min $82 $22

 Do you see a parked car? 30 Min $30 $8

 How many dishes in the sink? 10 Min $28 $7

 How many cars do you see? 30 Min $43 $12

 What type of food do you see? 10 Min $87 $23

Table 1. Estimated monthly costs if sensors were fully
crowd-powered (CP cost), as well as expected cost
(Exp. Cost) assuming ML handoff after week one and
continued periodic validation.

