Building and Using Webpages

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Making the Web Easier to See with Opportunistic
Accessibility Improvement

Jeffrey P. Bigham
Human-Computer Interaction and Language Technology Institutes
Carnegie Mellon University
jbigham@cs.cmu.edu

ABSTRACT

Many people would find the Web easier to use if content was
a little bigger, even those who already find the Web possible
to use now. This paper introduces the idea of opportunistic
accessibility improvement in which improvements intended
to make a web page easier to access, such as magnification,
are automatically applied to the extent that they can be with-
out causing negative side effects. We explore this idea with
oppaccess. js, an easily-deployed system for magnify-
ing web pages that iteratively increases magnification until
it notices negative side effects, such as horizontal scrolling or
overlapping text. We validate this approach by magnifying
existing web pages 1.6x on average without introducing neg-
ative side effects. We believe this concept applies generally
across a wide range of accessibility improvements designed
to help people with diverse abilities.

Author Keywords
low vision; magnification; zoom; accessibility

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: Misc.

INTRODUCTION

In real life, what someone can do is a function of not only a
static notion of their abilities, but also their dynamic context
and the effort needed to complete a task. This is particularly
true of people with visual impairments accessing web con-
tent. Some use screen magnifiers to make computer content
larger, others sit closer to the screen, and some do both (Fig-
ure 1). It is difficult for content creators to anticipate and
adapt to the various display needs that individuals may have,
and so often content is not laid out in a way that fully lever-
ages the available space.

This is important because a large number of people could ben-
efit from content that is a little bigger. While 39 million peo-
ple worldwide are blind, many more (246 million) have low
vision [6]. Even more people do not consider themselves to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
UIST 2014, October 5-8, 2014, Honolulu, HI, USA.

Copyright © 2014 ACM 978-1-4503-3069-5/14/10...$15.00.
http://dx.doi.org/10.1145/2642918.2647357

117

= getGoal();
ude= coordinates[8];
tude= coordinates(1];

al [1]—longit

Figure 1. People with low vision use a combination of magnification soft-
ware and physical accommodations like positioning themselves closer to
the screen. Opportunistic accessibility is about improving accessibility
when possible without adverse side effects, even if to a small degree.

have visual impairment and use no special software at all, but
yet could benefit from improved accessibility, such as slightly
larger content [3]. This is especially common among aging
adults. Instead, these users may find their own solutions. For
instance, they may prefer lower-resolution monitors on which
content appears bigger, move their head closer to the screen
when needed, or even prefer software programs or web sites
that use larger fonts. Most are unaware that specialized soft-
ware or features of their existing software exist, and many do
not want (or would find it too complicated) to learn how to use
it. As one example, we asked 50 Google Survey respondents
over the age of 55 to tell us (without looking) how to make
content in their web browser bigger. Only one wrote ctr1+,
whereas the rest wrote some variant of “I don’t know.”

In this paper, we explore the potential of automatically mak-
ing the Web display a little bit larger when we can do so with-
out causing negative side effects. We call the generalization
of this idea opportunistic accessibility improvement. In the
case of web magnification, the idea is to make content a little
bigger on web pages that a user visits, but only so much as
can be done without introducing problems that otherwise af-
fect the page. Opportunistic accessibility provides a new way
of thinking about the sort of “messy,” dynamic, and adjustable
accessibility needs that people have. It may open a space for
access technology that does not provide a perfect solution to

http://dx.doi.org/10.1145/2642918.2647357
http:5/14/10$15.00
mailto:Permissions@acm.org
http:oppaccess.js
mailto:jbigham@cs.cmu.edu

Building and Using Webpages

problems, but rather makes access easier for people when it
can, recognizing that they often find a way to access content
even when the tool is unable to help.

We introduce oppaccess. js, a system that helps to make
the Web a little easier to see. oppaccess. js does not
overhaul the Web —in most cases we suspect users won’t
even notice the changes made unless told. Instead, content
is just a little bigger so it is easier to see and a little easier to
use. It detects common problems that occur when magnifying
web content, and automatically sets its magnification level to
avoid those problems.

We make three contributions: (i) we introduce the idea of op-
portunistic accessibility, (ii) we demonstrate the opportunity
for making the Web a little bigger while minimizing negative
impacts on usability, and (iii) we introduce oppaccess. Js
to make many web pages a little bigger when it can.

MAGNIFICATION AND THE WEB

oppaccess. s builds on prior work on magnification.
ZoomText! is a popular example of the magnification soft-
ware used by people with low vision. It graphically zooms
screen content, which applies across a wide variety of content
but tends to introduce horizontal scrolling (Figure 2a). Web
pages are generally designed for vertical but not horizontal
scrolling, and so horizontal scrolling can cause usability prob-
lems, e.g. needing to scroll constantly from left to right while
reading a block of text. Another approach is to allow users
to apply standard magnification in layers —for instance, ap-
plying some level of base magnification to the entire content
area, and then a higher level of magnification to content of
interest [5]. This is the approach taken by sitecues®, which
allows users to magnify web page content in layers.

Web browser magnification features have the potential to do
better than graphical zoom. As content is magnified, the Web
browser’s layout engine reflows content to better utilize avail-
able space. The effect of magnification on web page layout
is similar to what happens if the width of the window is de-
creased proportionally. For instance, a 2x zoom produces a
layout similar to what would result if the window’s width was
divided by 2. The Web is characterized by diversity in both
content and displays, and web browsers have developed so-
phisticated layout engines to reflow content to adapt. One
simple example is wrapping of inline elements, such as text
and images, within containing block-level elements.

Designing web pages that adapt to different devices is diffi-
cult, which has caused many web pages to be developed in-
flexibly assuming minimum requirements, e.g. for some time
it was common to create web page content that was 800px
wide and much of this content still exists. Internally, web
browsers implement zoom by simply multiplying any fixed
dimensions by the zooming factor. A DIV element that has
been assigned a width 800px will be a fixed 1200px if the
zoom level is set to 1.5z. When web pages designed in this
way are magnified they quickly grow beyond the width of the
web browser window and introduce horizontal scrolling.

Uhttp://www.aisquared.com/zoomtext
Zhttp://www.sitecues.com

118

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Responsive design allows web content to flexibly adapt to
constraints. One component is CSS media queries, which
allow different stylesheets to be applied based on different
characteristics of the media the page is being displayed on,
e.g. apply a stylesheet that displays less content horizontally
when the width of the media is small. Another component is
using flexibly-sized container elements. For instance, instead
of setting the width of a DIV to 400px, its width might be
set to 40%. The element then takes up 40% of the window,
regardless of the magnification level that is applied.

Pages that use responsive design well can be magnified to
higher levels of zoom before introducing problems like hori-
zontal scrolling. At high magnification levels, flexibly-sized
elements can result in two other problems. The first is that
elements assigned percentage dimensions eventually start to
overlap (Figure 2b), and the second is that growing text sizes
with word wrapping can cause very narrow lines (Figure 2c).

oppaccess. js detect the three problems outlined above:
(i) introduction of horizontal scrolling, (ii) overlapping DOM
elements, and (iii) lines that are too narrow. It magnifies web
content until it either detects one of these problems or reaches
a maximum (currently 3z).

More intelligent magnification of content has generally been
more complicated and not yet been successfully ported to the
Web. For instance, Supple automatically personalizes an in-
terface to make it better for people with visual and motor dis-
abilities [4], but it requires a formal description of the inter-
face as input. oppaccess. js is not meant as a replace-
ment for these, but as a much simpler alternative that may be
“good enough” for many people. The fact that some of the
more complicated approaches are not yet widely used may be
seen as partial validation for our simpler opportunistic acces-
sibility approach, even if it isn’t as powerful.

Past tools that do not fully replicate the functionality of ex-
isting solutions, yet are easy to access and transparent, have
been successful. For instance, the WebAnywhere web-based
screen reader has a subset of features available in screen read-
ers and only works for the Web, but the fact that it can be
accessed without installing new software has drawn hundreds
of thousands of users [1]. oppaccess. js is similarly easy
to install by injecting a single Javascript script via either a
browser extension or by the web content developer.

MAKING THE WEB EASIER TO SEE

In this section, we describe oppaccess. Js, our system for
opportunistically magnifying web pages to make them easier
to see. The system is implemented as a single cross-browser
Javascript script (615 lines), not including jQuery. It can be
delivered to web pages either by a web browser extension
—we have implemented a Chrome extension —or by includ-
ing the script directly in a web page. Thus, it can be used by
either web developers to opportunistically improve the acces-
sibility of their own web pages or by end users who want to
apply it to all of the web pages they visit.

Magnifying web pages is surprisingly easy with Javascript.
The base method is to programmatically set the value of the

http:oppaccess.js
http:oppaccess.js
http:oppaccess.js
http:oppaccess.js
http:http://www.sitecues.com
http://www.aisquared.com/zoomtext
http:oppaccess.js
http:oppaccess.js
http:oppaccess.js

Building and Using Webpages

UIST’14, October 5-8, 2014, Honolulu, HI, USA

@ ©)

Figure 2. Illustrated examples of three of the most common problems introduced by web magnification: (a) graphical zoom introduces horizontal
scrolling, (b) responsive design works well to adapt a web page to higher levels of magnification but often results in overlapping content as magnification
grows too large, and (c) as the size of text grows too large relative to its container the lines of text become undesirably thin.

CSS property document .body.style.zoom. For in-
stance, setting this property to 2.0 results in a doubling of
the size of page elements. The effect is quite similar to what
results when a user presses ctrl + or cmd + several times
to manually magnify the page. Using the script, the magnifi-
cation is optimally applied as soon as the page is loaded. The
script uses a page-specific cookie to remember the optimal
zoom level for the given web page, so that it can be magni-
fied immediately next time.

Page Health

To determine the magnification level to apply,
oppaccess. js iteratively increases magnification in
steps of 0.1 and checks after each to see if it decreases what
we call page health. The page health is currently defined as 1
minus the sum of the area of the page that (i) is horizontally
scrolled out of the viewport, (ii) overlaps with another
element, or (iii) contains narrow word-wrapped text. The
area considers the full dimensions of the page, regardless of
whether or not they are visible. The page health is calculated
and recorded when the page loads because some pages
exhibit these problems when they are first loaded. Iterative
magnification is stopped whenever the page health decreases
by more than 0.05. Modern web browsers are smart enough
not to visually re-render the page in between iterations, and
so it appears to happen all at once.

Horizontal Scrolling

Horizontal scrolling occurs when the width of the web page
content is larger than the width of the viewport. Horizontal
scrolling can be detected by comparing the width of a web
page’s document element to the width of the window. This
is efficient and robust to check, and we have found it to be the
first problem introduced when magnifying most web pages.

Overlapping Text

When elements are assigned CSS positioning other than the
default, e.g. static, absolute, relative, there is potential for
elements to overlap. The likelihood of this happening in-
creases when web pages are magnified because usually the
web page author has not carefully thought about or designed
for this case. To detect area of the page that has overlap-
ping text areas, oppaccess. js first finds all elements that

119

contain text, records their location and dimension, and then
runs an efficient line-scanning algorithm (also implemented
in Javascript) to find overlapping area. It then returns the sum
of the overlapped area.

Narrow Word Wrapping

A common problem encountered on web pages that use con-
tainer elements with percentage widths is that as the text they
contain grows larger with magnification, the number of words
per line decreases (Figure 2¢). oppaccess. js detects this
sort of problem with word wrapping by checking each block-
level element that contains text to ensure that enough words
are able to be displayed per line (5 is currently used as the cut-
off). It ignores elements that do not contain enough words (2z
the cut-off, so 10 in this example).

VALIDATING OUR APPROACH

In order to understand the diversity of the web in terms of
what might be difficult for a person with low vision to see, we
conducted a study with 50 Mechanical Turk workers. Each
worker was instructed to enter the URL of a web page that
they either currently had open in their browser or that they
had recently visited (other than mturk.com). We also cap-
tured the width and height of each worker’s window. The av-
erage window width was 1236px (SD=232.9), which was our
primary concern since height does not influence page health.
We then ran oppaccess. js on the URLs provided by each
worker in a window with the width and height set to what
the worker had provided. We recorded the magnification that
oppaccess. js achieved, which component of page health
prevented it from magnifying the page further, and the time
required to do the calculation.

Overall, the web pages were magnified 1.6x (SD=0.9) with-
out causing a significant decrease in page health (Figure
3). Magnification stopped on 41 of the web pages be-
cause of horizontal scrolling, on 6 because of narrow word
wrapping, and on only 2 because of text overlap (Table 1).
We also computed the achieved magnification level for web
browsers with pixels widths from 500 to 2000. As expected,
oppaccess. Js is able to increase the magnification more
as available width increases (Figure 4). Figure 5 shows the
effect of oppaccess. js on the UIST 2014 homepage.

http:oppaccess.js
http:oppaccess.js
http:oppaccess.js
http:oppaccess.js
http:mturk.com
http:oppaccess.js
http:oppaccess.js
http:oppaccess.js

Building and Using Webpages

1.0x i-
- m
||
0
)
@ E ol
o
8 | |
=
|]
- |
3.0x
Opx 10 20 30 40

Figure 3. Font size distribution across 50 web pages (red) and the new
spread when applying oppaccess. js (blue). Each row is a web page,
and each column is a font size. Web pages are ordered by the level of
magnification applied. The effect is to pull the font sizes higher.

M
| 000

1000 1500
Web Browser Width (pixels)

Figure 4. Achieved magnification level across different web browser
widths. oppaccess. js is able to magnify content more when the win-
dow size is larger.

Magnification

2000

The time required to compute the magnification was 2.2 sec-
onds (SD=3) on average, although this was dominated by the
time required to check text overlap and word wrapping, e.g.
those elements that result from responsive design. While web
pages are likely to include these even more frequently in the
future, we believe the performance of our implementation
could be dramatically improved by either building it into the
browser, using predictive methods, or by sharing the magni-
fication levels that prior visitors with similar window sizes
found useful. We conservatively increased magnification in
an iterative fashion in case the browser rendered intermediate
steps; in the future, a binary search approach may be used be-
cause modern browsers do not render the intermediate steps.

DISCUSSION & FUTURE WORK

This paper has introduced the idea of opportunistic accessi-
bility improvement and validated the concept for web magni-
fication by showing that oppaccess. js can magnify con-
tent by 60% without decreasing page health. We do not claim

120

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Figure 5. The observed result of applying oppaccess.js to the UIST
2014 web page. In the after screenshot the page is automatically mag-
nified to 1.3x the original, while ensuring that negative effects (horizon-
tal scrolling, overlapping elements, or narrow word-wrapping) are not
introduced. This may seem like a small change, but can improve the
realized accessibility of this web page for many people with low vision.

to have developed a robust solution to web access for peo-
ple with visual impairments, only to have introduced a tool
that will make web content slightly larger, which will bene-
fit people who currently find it difficult to see. Future work
may seek to better understand how much of a difference small
improvements make.

Future work may also extend our approach for magnifying the
Web. yln particular, it may be possible to allow the user more
direct control of how much magnification they would like to
have. In the case that the desired magnification level has not
been reached, we may involve the user in deciding how and to
what extent they may be comfortable in reducing page health.
Education about existing browser features, such as ctrl +
are likely to be part of the solution. We might substitute other
magnification strategies likely to affect the page in different
ways or applied only to portions of the page that are not yet
experiencing problems.

While the page health measures for text overlap and narrow
word wrapping affected only 14% of web pages, it seems
likely that this proportion will increase as responsive design
becomes more popular. Elements of our methods for detect-
ing when responsive design elements break down may find
broader application. While the majority of the population
may not use high levels of magnification, the duality between

http:oppaccess.js
http:oppaccess.js
http:oppaccess.js
http:oppaccess.js

Building and Using Webpages

screen size and magnification means that these could be rele-
vant for controlling responsiveness on small screen devices.

Many areas within accessibility could benefit from the idea
of opportunistic accessibility improvement, especially those
areas characterized by enormous variability. Problems for
which people are currently “getting by” and could benefit
from even small improvements seem most promising, such as
those resulting from visual, motor, or cognitive impairments.
The concept of opportunistic accessibility may open up the
possibilty for tools to make targets a little easier to click or
web interfaces a bit easier to understand.

To some extent, accessibility is already opportunistic. As-
sistive technology often only works correctly when content
and software is produced in a way that allows it to work,
which they often are not. As another example, the Webln-
Sight system provided labels for images so that blind people
could access them, but could provide labels for less than half
of them [2]. Nevertheless, this technology is useful because
of the increased access it provides when it does work, and
so in some sense the idea is not new. Articulating the oppor-
tunistic nature of these tools may lead future work to embrace
and leverage our inability to always make access perfect.

CONCLUSION

We have introduced opportunistic accessibility improve-
ment and explored it through oppaccess. js, an easily-
deployed Javascript system for magnifying web pages. We
have shown that the Web could be on average 60% larger
for people on the Web without introducing the most common
negative effects of magnification. The approach of improv-
ing accessibility when possible without introducing negative
side effects may make seemingly small improvements, but if
broadly applied could improve experienced accessibility for
a wide range of people.

121

UIST’14, October 5-8, 2014, Honolulu, HI, USA

ACKNOWLEDGEMENTS

This paper was developed under a grant from the Department
of Education, NIDRR grant number H133A 130057, National
Science Foundation Award #IIS-1149709, and an Alfred P.
Sloan Foundation Fellowship. We thank our anonymous re-
viewers for their many helpful comments.

REFERENCES
1. Bigham, J.P., Prince, C.M., and Ladner, R.E.
WebAnywhere: A Screen Reader On-the-Go. W4A
2008. 73-82.

. Bigham, J.P., Kaminsky, R.S., Ladner, R.E., Danielsson,
0O.M., and Hempton, G.L. WebInSight: making web
images accessible. ASSETS 2006. 181-188.

3. Forrester Research. Accessible Technology in
Computing —Examining Awareness, Use, and Future
Potential. 2004.

. Gajos, K.Z., Wobbrock, J.O., and Weld, D.S.
Automatically generating user interfaces adapted to
users’ motor and vision capabilities. UIST 2007.
231-240.

5. Kline, R.L. and Glinert, E.P. Improving GUI
accessibility for people with low vision. CHI 1995.
114-121.

. World Health Organization. Visual impairment and
blindness. 2013.
http://www.who.int/mediacentre/factsheets/fs282/en/

http://www.who.int/mediacentre/factsheets/fs282/en
http:oppaccess.js

Building and Using Webpages UIST’14, October 5-8, 2014, Honolulu, HI, USA

URL Magnification | Stopping Cause
http://www.espncricinfo.com/ 1 scroll
http://www.oemcycle.com/Item/product/900076028/_Vid8§9455142n47 1 scroll
http://www.espncricinfo.com/ 1 scroll
http://www.espncricinfo.com/ci/engine/current/match/scores/live.html 1 scroll
https://www.facebook.com/profile.php?1d=XXX XX XXX XXX 1.1 scroll
http://www.imdb.com/title/tt1843866/reviews ?ref=tt_urv 1.1 scroll
http://ibnlive.in.com/ 1.1 scroll
http://bleacherreport.com/ 1.1 scroll
http://torrage.com/ 1.1 scroll
http://nav.sbilife.co.in/Ul/DailyNavInputOutput.aspx 1.1 scroll
http://espn.go.com/nba/draft2014/story/_/id/10780763/ 1.1 wrap
http://www.scribd.com/doc/61445642/Boolean-Expressions 1.2 scroll
http://www.goodbelly.com 1.2 scroll
https://www.facebook.com/fayiso77 1.2 scroll
http://hip2save.com 1.3 scroll
https://www.facebook.com/ 1.3 scroll
http://www.hcrealms.com/index.php?page=units 1.3 scroll
http://radar.weather.gov/ridge/Conus/centgrtlakes_loop.php 1.3 scroll
https://www.mturk.com/mturk/findhits?match=true 1.3 scroll
http://www.limeroad.com/ 1.3 scroll
http://www.pasadrexam2014.in/ 1.3 scroll
http://oldnavy.gap.com/browse/category.do?cid=6825 1.3 scroll
https://www.google.com/ 1.3 scroll
http://www.youtube.com/watch?v=jkNyC7FPJxc 1.3 scroll
http://slickdeals.net/ 1.3 text
http://hw.reddit.com/r/sixwordstories/ 1.4 scroll
http://www.mturkgrind.com/threads/15270-04-14-Happy-Black-Day-Monday!/page113 | 1.4 scroll
http://en.wikipedia.org/wiki/Tariq_Farid 1.4 wrap
http://translate.eu/ 1.5 scroll
http://www.reddit.com/ 1.5 scroll
https://tools.usps.com/go/ZipLookupAction_input 1.5 scroll
http://money.cnn.com/?hpt=sitenav 1.5 scroll
https://accounts.google.com/ServiceL.ogin?service=mail 1.5 scroll
http://en.wikipedia.org/wiki/Alexander_Mirtchev 1.5 wrap
http://www.noxxic.com/wow/pve/warlock/demonology/talent-build-and-glyphs 1.6 scroll
http://www.inboxdollars.com/search/... 1.6 scroll
https://hr.macys.net/iip/Login.aspx 1.6 scroll
http://www.oddee.com/ 1.6 scroll
https://mail.google.com/mail/u/0/#inbox 1.7 scroll
https://www.cedarpoint.com/blog-article/online-fun/Winter-Scenes 1.7 scroll
http://foodomania.com/mor-kuzhambu/ 1.7 scroll
https://us.battle.net/support/en/games/diablo3 1.7 scroll
https://chrome.google.com/webstore/category/apps?hl=en 1.8 wrap
http://www.twitch.tv/manvsgame 1.9 text
http://en.wikipedia.org/wiki/Italian _art 1.9 wrap
http://timesofindia.indiatimes.com/international-home 2.1 scroll
http://www.wral.com/severe-weather-freezing-temps-expected-tuesday/13567824/ 2.8 scroll
http://www.pinterest.com/ 3 none
https://www.flickr.com/photos/elisa_maza/12942331964/in/... 3 scroll
http://www.msnbc.com/rachel-maddow-show/the-bundy-crisis-nevada 3 wrap

Table 1. The web page URLSs gathered during our Mechanical Turk study, ordered by the magnification oppaccess. js achieved on each and what
caused magnification to stop —horizontal scrolling, text overlap, or narrow word wrapping.

122

http:oppaccess.js

	Introduction
	Magnification and the Web
	Making the Web Easier to See
	Page Health
	Horizontal Scrolling
	Overlapping Text
	Narrow Word Wrapping

	Validating Our Approach
	Discussion & Future Work
	Conclusion
	Acknowledgements
	REFERENCES

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 43.73, 55.27 Width 259.05 Height 84.98 points
 Origin: bottom left

 1
 0
 BL

 6
 CurrentPage
 7

 CurrentAVDoc

 43.7253 55.2697 259.0519 84.9756

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 0
 1

 1

 HistoryList_V1
 qi2base

