What’s New? — Making Web Page Updates Accessible

Yevgen Borodin* Jeffrey P. Bigham®

Rohit Raman* [.V. Ramakrishnan*

*Stony Brook University, Comp. Sci. Department, Stony Brook, NY 11790, {borodin, rraman, ram}@cs.sunysb.edu
# University of Washington, Dpt. of Comp. Sci. & Eng., Seattle, WA 98195, jbigham@cs.washington.edu

ABSTRACT

Web applications facilitated by technologies such as JavaScript,
DHTML, AJAX, and Flash use a considerable amount of dynamic
web content that is either inaccessible or unusable by blind
people. Server side changes to web content cause whole page
refreshes, but only small sections of the page update, causing
blind web users to search linearly through the page to find new
content. The connecting theme is the need to quickly and
unobtrusively identify the segments of a web page that have
changed and notify the user of them. In this paper we propose
Dynamo, a system designed to unify different types of dynamic
content and make dynamic content accessible to blind web users.
Dynamo treats web page updates uniformly and its methods
encompass both web updates enabled through dynamic content
and scripting, and updates resulting from static page refreshes,
form submissions, and template-based web sites. From an
algorithmic and interaction perspective Dynamo detects
underlying changes and provides users with a single and intuitive
interface for reviewing the changes that have occurred. We report
on the quantitative and qualitative results of an evaluation
conducted with blind users. These results suggest that Dynamo
makes access to dynamic content faster, and that blind web users
like it better than existing interfaces.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia — architectures, navigation

General Terms
Design, Experimentation, Human Factors, Standardization,
Algorithms

Keywords
HearSay, Blind Users, Web Browser, Dynamic Content, Screen
Reader, Non-Visual Aural Interface.

1. INTRODUCTION

The Web is evolving from a collection of static pages into a
platform for interactive web applications. To facilitate this
transformation, web developers are increasingly using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ASSETS 08, October 13—15, 2008, Halifax, Nova Scotia, Canada.
Copyright 2008 ACM 978-1-59593-976-0/08/10...$5.00.

145

technologies like DHTML, AJAX, and Flash to make their web
sites more interactive. The popular screen readers, however, have
lagged behind the new technologies, resulting in a widening of the
accessibility gap between sighted and blind web users. As a
result, accessing dynamic web pages remains difficult, frustrating,
and sometimes impossible for more than 10 million' partially-
sighted and blind people in the United States alone.

The W3C standard for Accessible Rich Internet Applications
(ARIA) [10] addresses the problems of accessing dynamic content
using content markup. ARIA provides a standard method for
assigning roles and states to DHTML elements, and for describing
how such elements dynamically update. While popular screen-
readers and web browsers are already beginning to support ARIA
markup, they are currently unable to automatically identify and
present to users dynamic content changes that occur in web pages
without the appropriate markup. Although ARIA may be the
ultimate solution, like most annotation standards, the ARIA
approach will only work if the developers choose to implement it;
unfortunately, most dynamic content available today does not
implement the ARIA standard. As a result, blind users may not be
aware of important dynamic updates occurring in the web pages
they view, and can in turn waste time and edge on the inability to
perform online transactions, such as shopping or banking.
Observations of browsing patterns have shown that blind people
tend to avoid dynamic web pages altogether [2].

This paper introduces Dynamo — a unified approach to handling
content changes in web pages that is agnostic of the technical
methods used to update the pages. Dynamo enables users to
interact with most types of dynamic content, even that which has
not been annotated according to the ARIA specifications. In
addition, Dynamo unifies the interface used to explore dynamic
content with the one used for other types of content changes that
occur while browsing the Web. As a result, users need not know
how web content updated — whether it was from JavaScript, page
refresh or navigation, whether it happened on the client or server
side — all of these are functionally equivalent. From the user’s
perspective, JavaScript-powered web page updates are just the
latest symptom for the underlying trend of inaccessible web
content.

Although traditionally dynamic content is associated with
technologies such as DHTML, AJAX, and Flash, we expand it to
include: (i) page refreshes, both manual and automatic, which
happen without warning, and interrupt and confuse users (Figure
2); (i) template-based web sites that only change part of the page,
as users browse from one page to the next (Figure 4); (iii) links
that bring up content in new frames, and form submission pages

! According to the American Foundation for the Blind.



that return the user back to the form with the errors in form fields
highlighted (Figure 3). Common among all these content changes
is that the user performs an action, and the relevant content
appears or changes somewhere on the page. Furthermore, this
content is often updated without notifying the user and often with
no easy way to find it. The Dynamo approach unifies all of these
types of web page updates by automatically detecting the
underlying changes and providing users with a single and intuitive
interface for reviewing the changes.

In this paper, we address the problems of accessing changing
content and propose the Dynamo approach, as a solution. Below is
a summary of our contributions:

1. A unique and novel aspect of Dynamo is that it treats all
types of page updates mentioned above as “dynamic” and
handles them uniformly.

2. We implemented Hearsay-Dynamo (HD), a Dynamo
prototype in the framework of the HearSay non-Visual Web
Browser, specifically:

a.  We extend the buffer-based interface of the HD browser
to partially update its Voice XML dialogs as the changes
occur on the web page.

b. We propose a diff algorithm to filter out content that
does not change as a result of dynamic updates,
including refreshes and page-to-page navigation.

c. We provide a usable interface in HD to give users the
ability to review the changes and control the level of
intrusion caused by dynamic updates.

d.  We maintain user context in HD, and then use it to
reposition the users on the web page in case of dynamic
updates, refreshes, and simple page-to-page navigation.

3. We report on a study with blind users, which confirms that
our approach can help identify relevant information in web
pages, allow users to stay focused on their tasks, and, as a
result, save a significant amount of time in non-visual web
browsing.

In the remainder of the paper we will give an overview of the
scenarios that benefit from our approach, discuss the details of the
architecture and algorithms, and present the results of the user
study.

2. USE CASES

In this section we discuss two scenarios that motivate Dynamo.
Figure 1 shows a dynamic message (dashed box) appearing on the
Gmail.com web page as soon as one deletes an email. While there
are other ways to recover an email, it would be considerably
easier for users to simply jump to the update message and click
the “Undo” link. Using current screen readers, users are not
notified of this change and do not have access to the updated
content.

A more serious problem is captured in Figure 3, where an
incorrectly entered zip code results in error messages (dashed
boxes) appearing on the page. But only the first message is
actually new, the other one just changed the color. From the point
of view of a novice user, the form did not submit, because the
page almost did not change. A more experienced user would
know about form validation and would tab through all fields to
check for errors. However, the error may not be easy to find,

146

especially for a novice, and tabbing through the form skips the
error message describing the problem. If users had an easy way to
review the changes, they would be able to read the error message
and then jump to the highlighted field in no time at all. In fact, it
should not matter to the users whether the changes resulted from a
dynamic or server-side form validation. All that matters is finding
the errors fast.

GM il

Compose Mail L Dn:fu:mary com Word of the Day sub rosa; secretly; privately; confidentially

nhux [1023/1/. [ rchive | W More Actions 1- 5|] Uf12445

sh hop
Search Mail | | Search the Web | Sheusesrharens

-1 The conversation has heen moved to the Trash. Learn more Undu |

¥ | Refrash

Figure 1 — Dynamically appearing “Undo” link at Gmail.com

Figure 2 illustrates an automatic page refresh that causes changes
to the content of the Los Angeles Times news web site. Some
screen-readers, such as JAWS, have an option of suppressing
automatic refreshes, but in some cases, users may choose to
refresh the page manually. Not only should they then be able to
review the newly added content (solid box Figure 2b), but also
continue reading what they were reading before the refresh. So, if
the screen-reader’s cursor was on the article about the Pope’s
birthday party before the refresh (dashed box Figure 2a), instead
of starting from the beginning after the refresh, the cursor should
be repositioned to the same article (dashed box Figure 2b). And it
should not matter to the users whether the content changed from
page reload or an AJAX update, such as those happening at
Gmail.com when a new email arrives. In either case, users should
be able to choose to continue reading from where they left off.

3. HANDLING WEB CONTENT UPDATES

3.1 Overview of Traditional Dynamic Content
With the advent of Web 2.0, the use of dynamic content in web
pages has become ubiquitous. Some of the most popular
technologies are JavaScript, DHTML, AJAX, Flash, and Java
Applets. The last two are not in scope of this paper. With many
free tutorials and shared JavaScript repositories, it is now very
easy even for beginners to insert some script to spice up web
pages with pull-down menus, dynamic tabs, etc. Dynamic content
is used in most flight reservation and car rentals web sites. It
is often used in web forms to point out the errors in the fields.
Many ads now update periodically.

But not all dynamic updates are created equal. Depending on the
type of dynamic content it may or may not be accessible with
regular screen-readers. Very often web developers use dynamic
content to pack more information in less space. For example, a
modest menu with just 5 menu elementscan easily hide
50+submenu items, which will eagerly pop outas soon as you
mouse-over. Since most screen-readers get page content from the
HTML DOM trees and do not filter out hidden content,
such dynamic content is technically “accessible”. However, it
may be very difficult to navigate if web developers did not follow
the Accessible Rich Internet Applications (ARIA) [10] or even
Web Content Accessibility Guidelines (WCAG) guidelines. In
case of form-filling, all possible error messages are often hidden
from sight, but not from the screen readers, which can read them
all, thus, making it impossible for blind users to find the actual



Southern

California hame

! prices slide to

- 2004 levels

| By Peter ¥. Hong | 10:20 a.m.

© The median sales price of

I a home in Southern
California fell helow

$400,000 in March.

Southern
California home
prices slide to
2004 levels

By Peter v, Hong | 10020 am.
The median sales price af
a home in Southern
California fell below
$400,000 in March.

T

'White House birthday

bash for the pope

By Robert Jacobson | 7:30 a.m
'Thuusands gather onthe
T'5guth Lawn on his 81st
I hirthday. Photos

Springsteen latest star
| | to join Obama camp
ByJohanna Heuman | 2:50 a.m
The rocker says the senator is
I best able to lead "a great
Arnetican reclaration project”|

Mary Alfanso has |

1 LA, NOW
I Good mornil

' "White House birthday
- | bash for the pope
By Robert Jacobson | 7:30 a.m

Cement dust clouds life
in worried community
By Janet Wilsan

Riverside-area plant's
neighhors reactto news about
a carcinogen in the air

Awhite candle
of rmourning, ex
shooting in moc

| By veronique da -~
- - Thousands gather an the | There's toxic ce
1 South Lawn an his &1t | Riverside area,
| I hitthday. Photos | Live video 1

a) Before b) After

Figure 2 — Automatically refreshing front page at L.A. Times

errors without carefully reviewing the content of each form
element. In addition, our observations showed that, although
hidden content visually appears in the correct position, it is often
placed at the end of the DOM tree, often in no particular order.
This means that most screen-readers will get to this content at the
end of the page, and blind users are unlikely to find spatial or even
sequential relationships that are obvious to sighted people.

In other situations, dynamic content maybe pulled from the web
server by Asynchronous JavaScript and XML (AJAX), which
updates portions of page content without refreshing the entire web
page. Additionally, dynamic content may also be hard-coded in
the JavaScript and, thus, made invisible to screen-readers. In both
cases, to make the dynamic content “appear”, a screen-reader has
to refresh its buffer, hopefully, without losing the position of its
cursor, which, if not successful, can result in the screen reader
restarting from the beginning. Often users will end up browsing
stale content or not be able to access it at all, often without
knowledge that the page has changed. Both of these situations
could be addressed by proper use of the ARIA guidelines, but it
seems unlikely that web developers will do this consistently.

A review the front pages of 33 major news websites revealed that
nearly 50% automatically refreshed their front pages at certain
time intervals, which would make screen readers lose focus if the
page refreshed while they were browsing it, 30% contained an
automatic slide-show with both images and text, and 18% had
dynamic menus and tabs. Furthermore none of the 33 news sites
followed the ARIA standard for live regions, which would have
enabled them to communicate the type of updates that should be
expected to occur.

3.2 Content Updates: A Unified View

Recall that we take an expansive view of dynamic content
encompassing both the traditional ones reviewed above as well as
updates caused by page refreshes, inter-page browsing, form
submission, etc. We therefore propose a unified framework for

147

Outlet Center
hList

Store Locator

Weekly Ad

PHOMNES

CAMERAS &
: & OFFICE

CAMCORDERS EERLTRECE

TV & VIDEO ~ AUDIO ~ CAR

SEARCH FOR Keyword or em # IH All Categories

CREATE AN ACCOUNT

le Please enter a valid 5-digit ZIP code.
I Check for accuracy and try again.
o o o S D o a1 e g, i, e
If vou already have an account, please sian in now,
*Required fields.

*First Mame
“Yevgen

*Last Name
Eoradin

*E-Mail Address
boroding@gmail com

*Retype E-Mail Address
baradin®@gmail.zom

*Retype Password

Figure 3 — Server-side validation at BestBuy.com

*Password (6 to 30 characters)

I%71p Code 1
1179 1

handling all these types of dynamic content and describe an
integrated interface that can help users find changes in any web
page, and, with them, find relevant information more efficiently.

Dynamic content is often used to pack more content in less space
or attract attention to some information. For example, an entire
website can be packed into one web page using dynamic tabs, so
that when a tab is clicked the corresponding part of the content is
made visible, and the rest is hidden. In the “wild”, dynamic tabs
can be often found in news websites. In most cases, dynamic
content can be easily replaced with static solutions. For example,
simulated tabs are often used in the design of static websites such
as YouTube, where clicking on the tabs reloads the page, but only
the content inside the tabs changes (dashed box). To give an
example of an attention-grabber, many web forms use JavaScript
validation to highlight fields or make error messages visible as
soon as you tab out of a form field. On the other hand, other web
forms perform server-side validation, reloading the same web
page and highlighting the errors after you submit the form. In both
of these cases, the same function can be performed by either
dynamic JavaScript or static page load. Manifesting this technical
difference to users is unnecessary and likely to contribute to
confusion.

You TUhE SianUp | QuickList () | Help | Log | site. ©
Broadcast Yourself™ Home Videos Channels

Videos being watched right now...

il |

Figure 4 — Static tabs in the design of YouTube.com



Most static content can be replaced with AJAX, so that instead of
requiring multiple pages to be loaded, the system can simply load
new content and place it into the current page. GMail is one such
example. Each bit of new information or every user action could
require a full page refresh; however, because the site uses AJAX,
the site appears to operate similar to equivalent desktop
applications. If we imagine that a web browser interface (with its
menus, address bar, buttons) is just a template that is common for
all websites, then we can think of static web sites as web page
updates appearing within this template. Then, any content change
can be considered "dynamic". For example, following a link and
loading a new page can be thought of as a dynamic change of web
content within one generic template of your web browser.

Regardless of whether web sites are implemented using dynamic
or static approaches, users browsing for information usually care
only about the information that changed as a result of their
actions. For example, we could use web browser APIs to detect
that a new dynamic tab has become visible, or that an incorrectly
filled form element was highlighted red. People will care about
what information has changed. By the same token, we could use
some Diff algorithm to compare previous and current pages, and
identify that static tabs are a part of the page design, or that the
error message in the refreshed web form is the only difference.
Again, people care about the information that changed, so that
they can get their information, complete their task, and move on.

To achieve this transparency and make browsing more usable, we
can abstract from the specific web technologies and underlying
methods for detecting content changes, and treat both dynamic
and static content universally. As a result, we can now design an
integrated interface that will allow users to browse the web more
efficiently and not have to worry whether they are browsing
dynamic or static web pages. We next describe an
implementation of this idea built in the HearSay web browser.

4. HEARSAY-DYNAMO

We now describe Hearsay-Dynamo (HD) embodying Dynamo
within in the framework of the Hearsay non-Visual Web Browser.

4.1 System Architecture

HD is built on the existing Hearsay non-visual web browser.
HearSay uses a Firefox-extension to communicate with a Java
backend. The HD backend processes all events sent to it by the
Firefox extension, pushes new web content through the pipeline of
various analytic algorithms, generates VoiceXML? dialogs, and
manages the user interface through the vxmlSurfer - a custom
VoiceXML interpreter. The vxmlSurfer maintains a separate
dialog thread for each tab opened in the web browser. Although
HD users work directly with the regular browser (e.g.: while
tabbing or filling web forms), the HD backend also sends
messages to the HD extension, for example to simulate click-
events on non-focusable content.

All dynamic updates in any given page can, in principle, be
implemented using AJAX, as well as a whole web site, or even
the entire Web! Therefore, we decided to handle all page changes
within one browser tab uniformly and extended the AJAX model
to VoiceXML dialogs. This approach allows us to keep
VoiceXML dialogs running uninterrupted and only refresh the
content of the dialogs with new web page content or dynamic

2 W3C Standard for creating interactive dialogs.

148

updates. This also allows us to unify the treatment of both static
and dynamic pages, handling all cases uniformly by injecting the
new content into VoiceXML dialogs in much the same fashion as
AJAX updates web page content.

Not all dynamic updates result in content changes, for example
GMail refreshes the entire inbox just to add one email, and the
New York Times front page reloads every 5 minutes, often
resulting in no content changes at all. To handle these situations
and filter out unchanged content, we implemented a custom
HTML DOM Diff algorithm to verify if the content has changed,
and then group the changes in packets. Only the changed content
then makes it to the user interface. We next describe HD’s Diff
algorithm in more detail and present the HD user interface for
accessing dynamic content.

4.2 Dynamo-Diff Algorithm

We designed the Dynamo-Diff algorithm to filter out content that
does not change as a result of web page updates. The algorithm
uses a top-down approach with max-flow bipartite matching of
two HTML DOM Trees.

Algorithm DynamoDiff

Input: DOM1 & DOM2: the DOM Trees for two web pages
Output: S: list with tuples if nodes matching in the two DOMs
Output: D: list of nodes which are different in the two DOMs

1. M1 « BuildMap(DOM1)
M2 « BuildMap(DOM2)
M «— (M1 U M2) // Combine Maps
MS « [] // Initialize Matching List
For each (S:{L1, L2}) in M,
Do For every node N1 in L1
Do For every node N2 in L2
Do If hasSameContent(N1,N2) = true

9. Then MS.add((N1,N2))
10. For each (N1, N2) in MS
11. Do If (N1 L1 and N2 £ L2)

12. Then S.add((N1, N2))
13. Ll.remove(N1)
14. L2.remove(N2)
15. For each node N in L1 or L2
16. Do D.add(N)

17. Return (S, D)

PN R WD

Algorithm: BuildMap
Input: HTML Dom Tree T
Output: Map M

M {}
DoDFSonT
For eachnode Nin T
Do If N.isImportant = True
Then If N.isLeaf = True
Do M.add(N.signature: N)
Else
For each attribute A of N
Do M.add(A.signature:A)

—_

S0P N U R W

0. Return H

Dynamo-Diff first does a DFS on each of the trees to construct
two maps (DynamoDiff:Lines 1-2), which have two sets of
vertices for the bipartite graph. The algorithm only considers the
nodes that are “Important” or have “Important” child nodes,



which may affect content or visual presentation of the content
(BuildMap:4). The maps have node signatures as keys and the
corresponding nodes as values. A node signature is composed of
the “/NodeName/NodeType” combinations of all nodes on the
path from the root of the tree to the node under consideration,
where NodeType is 1 for Element, 2 for Attribute, and 3 for
#Text. For example, “/html/1/body/1/div/1/div/1/#text/3” is the
signature of the #text node with the “Southern California...”
under the DIV node in Figure 5, which illustrates the two HTML
DOM Trees of the L.A. Times web page before and after refresh
in Figure 2.

= HTML = HTML
# HEAD + HEAD
=-BODY =-BODY
=DV = DIV

I +-DIV  Southern California... }—P' +-DIV Southern California...

a) Before b) After

Figure 5 — Dom snapshots of L.A. Times refreshing front page

DynamoDiff combines the maps (Line 3) and then performs
bipartite matching of the nodes. Every pair of nodes, that have the
same content and same presentation style, are added to the
Matching List (MS) as a tuple (N1, N2) in Line 9. Thus, each
tuple (N1, N2) corresponds to an edge in the bipartite graph.
Continuing the example in Figure 5, the MS will contain the
matching nodes marked with green solid boxes. Now, we apply
the max flow routine to find the maximum number of matches by
including the maximum number of edges (tuples) in the list S.
Thus, the nodes that did not change are added to list S (line 12) —
the same nodes in Figure 5; and the different nodes are added to
list D (Line 16) — marked with red dashed boxes. It may happen
that 1 node in DOM1 would be a candidate for matching with 2 or
more nodes in DOM2, i.e. MS may contain the tuples { (Na, Nb),
(Na, Nc), (Na, Nd) }, in that case, our max flow would take care
of it by considering the 1st matching pair present in MS (Na,
Nb) and adding the rest (Nc, Nd) to the list D.

HD then uses the content in D list to remove from or add to the
VoiceXML dialogs and updated groups the content by proximity.
Some more details about the Dynamo-Diff algorithm and the
comparison with other diff algorithms are given in Section 7.2.

4.3 Interface for Accessing Content Updates
HD converts web page content to VoiceXML dialogs and then
uses vxmlSurfer, a customized voiceXML interpreter, to manage
and interpret the dialogs.

Hidden content is generally filtered out, however hidden links
used for accessibility purposes should remain accessible. When a
new page loads or a dynamic update arrives, HD compares the
actual content and its attributes to the previous page state, groups
the updates, and then dynamically updates the corresponding
VoiceXML dialog. HD provides a menu to consistently access
the changes and has several notification modes to control the level
of update notification and, thus, distraction. Users have an option
of either using keyboard shortcuts or using voice commands.

149

When a VoiceXML dialog is updated, the changed content is
grouped and flagged as "new". Only the newly added or changed
content is accessible to users; deleted content is removed from the
dialogs transparently. At any time, users can access the updated
content by pressing a shortcut that jump to the next or previous
group of updates. There is also an option to return to the original
location after reviewing the updates. Another way to examine the
changes is to turn on the filter for updates, which makes all
unchanged content disappear and allows using regular navigation
shortcuts to browse only the changes. At any moment, the filter
can be turned off, and the users can continue browsing the page
from their current location. They can also clear the reviewed
changes, so that it is easier to find new changes that may happen
due to dynamic updates. This interface helps review differences
between pages and the changes that occur as a result of dynamic
updates. In the future, it may prove useful to provide a way to
order the dynamic updates by time of arrival or some other
importance criteria.

HD has several modes of notification. By default, the system will
play an earcon - a short sound clip to notify users of content
changes. The notification earcon can also be suppressed to
remove any distraction. In some cases, where dynamic updates
are minimal, the user may prefer to have the updated content
spoken out as it arrives, for example in form filling with
JavaScript form validation. In the future it may also prove useful
to control the frequency of update notification, so that users are
notified as soon as the content changes, but the following
notification is held back for a certain time interval.

HD can also handle page refreshes. Using the results of content
comparison algorithm, HD repositions its cursor to minimize the
distraction caused by the refresh and help the users stay focused
on their current actions. For example, 16 out of 33 major news
websites in our review automatically refreshed their front pages,
making it easy for users to lose focus if a screen-reader was to
start reading from the beginning of the page every time the page
refreshed. In other scenarios, users may choose to refresh the
page manually, for example if they want to quickly check for any
new messages in some static web email.

5. HEARSAY-DYNAMO USER STUDY

In this section we present an evaluation of Hearsay-Dynamo with
8 blind web users over 3 categories of content updates.

5.1 Participants

Eight blind web users participated in our study (1 female) ranging
in age from 18 to 56. Participants were recruited from email lists
and local centers for the blind. For purposes of this study, blind
users will refer to participants who were self-described as
primarily using a screen reader to browse the web. Participants
varied in their screen reader proficiency from relatively
inexperienced to expert.

5.2 Experimental Setup

The following two versions of HearSay were used in our
evaluation: (i) HearSay-Basic (HB) providing only the basic
JAWS navigation shortcuts but including the capability to update
its VoiceXML dialogs with new content; and (ii) HearSay-
Dynamo (HD), notifying users of updates and providing update-
navigation shortcuts. We considered evaluating HD using a
popular screen reader to which our participants would have
already been familiar, such as the JAWS screen reader, but could



not easily integrate the Dynamo approach into these proprietary
software programs. We also considered evaluating HD against
JAWS, however, some variations in shortcuts, text-to-speech
engines, and interface familiarity could have introduced
uncontrolled random variables and biased our evaluation. In
addition, JAWS does not provide even basic access to all of the
dynamic content used in the evaluation, making access impossible
using it.

Participants completed 3 tasks using both HB and HD. To avoid
learning effects as participants complete each task twice, we chose
two sites that we believed were approximately similar in structure
for each category. Although the chosen sites were specific
instances of each category, we believe the characteristics of each
are representative of the types of updates in each category. Tasks
were drawn from the three categories explained in detail next.

5.2.1 Responding to a Dynamic Message

Tasks in this category required that subjects find and then click on
a link that is dynamically introduced into a web page. Such
dynamic messages are often used to convey updated information
or to respond to a user-initiated action. For this task, users first
deleted a specified email in a GMail email inbox or document in a
Google Docs document selector view. In response to that action,
both pages inserted a DIV clement at the top of the page,
confirming the delete action and providing a link labeled “Undo”
for undoing the action. The task was to find and click the “Undo”
link. Task time was measured from the time the participant hit the
delete button to when they clicked “Undo”.

HD alerted the participants that content had changed on the page
with an earcon, and provided an interface for reviewing the
changes. HB only alerted participants of updated content;
however, they had to use standard shortcuts to find it. In contrast,
JAWS did not detect the inserted content and did not update its
buffer, the “Undo” link was not accessible.

5.2.2 Form-filling with Error Recovery

For the next task, the evaluators completed a web form
reproduced from either the BestBuy order form or Delta SkyMiles
registration page. The form asked users for their name, address,
phone number and email address. Upon submission, the form
programmatically introduced an error into either the phone
number or zip code field (a digit was removed). The user was
then returned to the form with an error message inserted above the
form and the field with the error highlighted in red. The task was
to find the error and fix it. To ensure that users were able to
complete the task in the allotted time, the participants were
informed that there was an error once they had submitted the
form.

HD automatically detected that the page was updated with error
messages, alerted the user of the changes with an earcon, and
provided the interface for reviewing the errors. HB provided no
alerts; and the users had to find the errors using the standard
interface.

5.2.3 Maintaining Context on Page Refresh

The final task was to find the author of a specified article on the
New York Times and Los Angeles Times home pages. These
web pages periodically refresh their content as news stories are
added. On page refresh, popular screen readers either begin
reading at the top of the page or keep reading the old version of
the page. For this task, a page refresh was triggered when the user

150

read the title of the target article. HD detected the page refresh
and automatically found the previous reading position and
restarted participants at the element where they had previously
been reading. HB restarted at the beginning of the page.

5.3 Procedure

Each participant completed 1 task from each of the 3 task
categories with both HB and HD for a total of 3 x 2 = 6 trials.
The 3 tasks performed with a particular version of HearSay (either
HB or HD) were conducted sequentially. Both system order and
the ordering of the task groups were counter-balanced across
participants using a 4-cell design.

Before beginning the study, the participants practiced for 5-10
minutes to familiarize themselves with the shortcut keys used by
HearSay. Participants practiced for an additional 5 minutes before
the HD session, during which they were introduced to the earcon
indicating that indicates a web page update and the two keyboard
shortcuts used to navigate between the update groups.

The experiment was a 2 x 3 within-subjects factorial design with
factors and levels as follows:

System {HearSay-Basic, HearSay-Dynamo}

Task Category {Dynamic Message, Form-Filling w/ Error
Recovery, Page Refresh}

The dependent variable of interest was task completion time. An
upper limit of 5 minutes was set per task, which applied to 2 out
of the 48 total trials completed by all of our participants. Time
was analyzed using repeated-measures ANOVA.

5.4 Results
5.4.1 Speed of Task Completion

Overall, HearSay decreased the time required for users to
complete the 3 tasks (Figure 6). For the Dynamic Message task,
participants spent a mean of 94.5 seconds (std. dev.=100.8) using
HB and a mean of 36.5 seconds (27.4) using HD. This
represented a significant effect of System on task completion time
(F17=3.67, p<.01), indicating that HD improved this task.
Although participants varied greatly in time to complete this task,
7 out of 8 completed it more quickly using HD. P8 completed it
more slowly because he forgot the shortcut key used to review
web page updates and spent >30 seconds trying to remember it.

For the Form-Filling with Error Recovery task, participants spent
a mean of 192.5 seconds (94.9) using HB and a mean of 52.8
seconds (18.3) using HD. 7 out of 8 users completed this task
more quickly with HD. P6 completed it more slowly because,
although HD enabled him to quickly reach the form label more
quickly, he did not recognize the error as being an incorrect value.
There was a significant effect of System on task completion time
(F17=15.07, p <.01), indicating that HD improves this task.

For the page refresh task, participants required a mean of 34.9
seconds (16.9) with HB compared to a mean of 18.5 seconds
(13.1) with HD. This represented a marginally significant effect
of System on task completion time (F,,=4.87, p=.06). Because
participants could use heading shortcuts keys to quickly skip
between headline stories, task time was relatively short across
both conditions.



250
g 200 T
|§ 150
;§ 100 |
a
§ 50

0
Dynamic Form-Filling Page Refresh
O Dynamo B Basic

Figure 6 — Average time required to complete each task
(seconds). Error bars +-1 Standard Error.

5.4.2 Subjective Feedback

Following each task, participants rated the difficulty of
completing each task on a 5-point Likert scale (1=Easy to
5=Hard). (See Table 1) Participants rated the dynamic message
and form filling tasks completed with HD to be easier than those
completed with HB on average, but these differences were not
significant according to analysis with the Wilcoxon test.
Participants nearly uniformly rated the Page Refresh task to be
Easy (1). The user who didn’t become confused when the page
began to refresh, pressed shortcuts that skipped past the article
before HD began reading again, and had difficult returning to the
prior location.

Task Category HD HB

Dynamic Message 2.00 (0.38) 3.14 (0.59)
Form Filling 2.14 (0.51) 3.57 (0.48)
Page Refresh 1.43 (0.43) 1.14 (0.14)
Average 1.86 (0.29) 2.62 (0.33)

Table 1: Average 5-Point Likert scale values by participants
(scale from 1=Easy to 5 =Difficult) with SE.

Following the study we asked participants to what extent they
agreed with several statements on a 5-point Likert scale from
(1=Strongly Disagree) to (5=Strongly Agree). (See Table 2)
Overall, participants agreed that many different kinds of web page
updates made it web browsing more difficult using a screen
reader, they thought that HD could improve access to web page
updates, and wanted to use these features of the system in the
future.

6. Discussion

Participants generally found that dynamic content made browsing
difficult for them. They found HB particularly frustrating because
it required them to search for content using an inefficient linear
search through the page. Many participants mentioned how useful
it was to be able to skip to the parts of the page that had updated.
Although other screen readers may provide more shortcuts than
HB, none currently provide a shortcut to directly skip between
updated content.

General Statements Response
Dynamic content makes web pages difficult to use. 4.1 (0.6)
Pages that refresh automatically are difficult to use. 3.9(0.3)
It is often difficult to find errors when I make an

. 4.0(0.2)
error filling out a web form.
HearSay-Dynamo Response
Hea}rSay made interaction with dynamic content 4.0 (0.4)
easier.
HearSay improved the tasks that I used it on. 4.3 (0.5)
I want to use the features of HearSay that handle 44(0.8)
dynamic content in the future. T

151

Table 2: Average 5-Point Likert scale values by participants
(scale from 1=Strong Disagree, to S=Strongly Agree) with SE.

Several participants had suggestions on how the system could
better convey the updated content to them. For instance, some
wanted the system to automatically jump to the portions of the
page that had updated. Although we developed the capability in
HD to automatically jump to updated content, we did not evaluate
it because we believed that overriding user intent would be too
disorienting in general. In the tasks explored here, our handling
of updated content was consistently useful, which may have
caused users to believe that the system was more knowledgeable
than it was. One user mentioned that he would have preferred that
the system announce the semantic purposes of the changes that
had occurred. For instance, during form-filling the system could
have specifically announced “Errors were detected in your
submission - please correct the form phone field”. Such an
announcement would have required semantic knowledge of the
updates that had occurred, which is difficult to surmise
automatically. Optimizing the interface to updated web content to
best fit the requirements of users in different situations is
important future work.

Because headings were provided by the news web pages in the
"Page refresh" task, participants were quickly able to find the
appropriate article and then its author. All but one participant was
able to complete this task more quickly using HD; the participant
became disoriented when the page refreshed and pressed the “next
heading” shortcut twice quickly in succession, causing him to
inadvertently skip past the correct article. After he had gone past
the article, he became disoriented and finding the correct article
required backtracking.

Participants generally saw a need for better handling of dynamic
content and, when asked, most did not realize the technical
differences between the tasks in our evaluation. Our unified
approach to web page updates does not require users to be aware
of technical details of different kinds of web page updates, and
seemed to be preferred by participants in our evaluation.

7. RELATED WORK
7.1 Screen Reading Technology

A number of projects for making the web accessible have been
reported (e.g. [7, 8, 9, 13, 14]). But the focus of these efforts is
not on dynamic content in its full generality as addressed in this
paper. aiBrowser transcodes content but only helps improve the
usability of Flash movies [7]. Traditional screen readers, such as



JAWS [4] and Window-Eyes [12] have a mixed and evolving
history of approaches to handling dynamic content.  Until
recently, screen readers did not update their view of a web page
except when a new page loaded. With the advent and increased
prevalence of JavaScript and DHTML, users have been given the
option to explicitly instruct screen readers to refresh their view of
the DOM. With the arrival of Web 2.0, and the trend toward web
pages that behave more like applications, the W3C WAI has
developed ARIA [10], which enables screen readers to convey
dynamic changes to users through its “live regions” specification.
Although this standard enables screen readers to convey changes
to users in a usable way, it requires developers to provide this
annotation. The Google AxsJAX [3] project enables any
programmer to add this ARIA markup to any page, eliminating
the requirement that the creator of the content provide the markup,
but still requiring manual effort. Both of these techniques will
provide the best experience for the content to which they apply,
but neither will be implemented in every web application in the
near future. Dynamo can enable access to web page updates that
are not annotated according to ARIA. Web page updates
occurring as a result of different methods (static page refreshes,
navigation to another page with a similar template, or dynamic
Javascript) have each required the user to know different skills to
make proper use of them. The technical means of facilitating a
web page update, and not the function of the update, determined
the features of the relevant interfaces. Dynamo brings
functionally equivalent web page updates under control of the
same interface features, providing a more consistent view to users.

7.2 Diff Algorithms

The development of text editors and the need to compare text
versions were the original motivation for diff utilities for finding
differences between text files. Most diff algorithms are based on
the Longest Common Subsequence (LCS) approach. Among the
first diff algorithms described in the literature was the O(ND)
algorithm [6], which builds an edit graph (grid) between two
documents and, then, looks for an optimal path with the least
number of differences.  The complexity of the dynamic
programming implementation is O(N*D), where D is the number
of differences, and N is size of combined trees. The LCS
algorithms, however, do not guarantee 100% accuracy. Since
most web pages are not all plain text, Htm/Diff [1] improves the
accuracy of the O(ND) algorithm by treating two HTML pages as
sequences of tokens (sentence-breaking markups or sentences).
HtmIDiff then uses a weighted LCS algorithm to find the best
match between the two sequences.

Both the accuracy and complexity of diff algorithms can be
improved if the hierarchical structure of HTML documents was
taken into account. After a web browser parses HTML into a
DOM Tree, an XML diff algorithm can be used to compare web
pages. For example, X-Diff [11] generates a minimum cost edit
script to convert one XML document into another. X-Diff uses
the notion of edit-distance which is calculated using max-flow
matching of nodes in the tree. The algorithm uses XHash, a
special hash function, to compare the nodes — two nodes are
considered to be similar if they have the same XHash value. X-
Diff uses the location of a node as the node’s signature (similar to
XPath). X-Diff uses a dynamic programming bottom-up approach
and is capable of matching whole sub-trees at once. It runs in
O(n**d*log(d)), where d is the maximum degree of any node in
the tree. While the X-Diff algorithm works well for XML
documents, it does not consider HTML-specific features.

152

Dynamo-Diff algorithm also uses max-flow approach to matching
the trees, but adapts to the needs of Hearsay-Dynamo (HD). The
algorithm takes top-down DFS approach (O(n?) worst case)
instead of dynamic programming bottom-up matching used by X-
Diff. In contrast, our algorithm only looks for visual differences;
it therefore does not consider all nodes of the tree, but only the
nodes that affect the content and visual appearance of the page.

8. CONCLUSION AND FUTURE WORK

We proposed and implemented the Dynamo approach to making
dynamic web content accessible and web page updates usable, a
problem whose importance, spurred by the advent of Web 2.0, is
growing. User studies with the HearSay-Dynamo system indicated
that using the system improved their access to web page updates.
This initial work has opened up several avenues for improving
HD implementation and conducting additional research. First, the
participants suggested several improvements to HD's user
interface that can be explored to optimize the user experience.
Second, although HD can detect web page updates, many
participants wanted to know the semantic roles of those updates.
A collaborative approach could leverage a community of users to
label content and share the labels among themselves. We believe
these goals can build on the foundation outlined here and make
dynamic content efficiently accessible to blind web users.

9. ACKNOWLEDGEMENTS

We would like to thank NSF (Award 1IS-0534419) and Sigma Xi
(Award G20071013028487872) for supporting this research, and
Cepstral.com for donating their realistic synthetic voices.

10. REFERENCES
[1] E. Berk, "HtmlIDiff: A Differencing Tool for HTML
Documents", Student Project, Princeton University

[2] Bigham,J. P, et. al., WebinSitu: A Comparative Analysis of

Blind and Sighted Browsing Behavior. ACM SIGACCESS 07
Tempe, Arizona, USA, 2007

Google-AXSJAX’08 http://code.google.com/p/google-axsjax
JAWS 9.0 http://www.freedomscientific.com May’08
Mahmud et al. CSurf: A Context-Driven Non-Visual Web-
Browser. WWW 2007.

Myers, E. W. "An O(ND) difference algorithm and its
variations, " Algorithmica 1, 251-266. 1986

Miyashita, H., et al. Sato, D., Takagi, H. and Asakawa, C.
Aibrowser for multimedia: introducing multimedia content
accessibility for visually impaired users. SIGACCESS’07.

E. Pontelli, e al. Navigation of html tables, frames, and xml
fragments. In ACM ASSETS 2002.

J. T. Richards and V. L. Hanson. Web accessibility: a
broader view. In WWW '04, NY, USA, 2004.

[10] WAI ARIA http://www.w3.org/WAl/intro/aria 2008

[11] Yuan Wang, David J. DeWitt & Jin-Yi Cai X-Diff: An
Effective Change Detection Algorithm for XML Documents

[12] WindowEyes http://www.gwmicro.com/Window-Eyes/ 2008

[13] Yeliz Yesilada, Robert Stevens, Simon Harper, Carole A.
Goble: Evaluating DANTE:Semantic transcoding for
visually disabled users. ACM Trans. Comp.-Hum. Inter’07

[14] M. Zajicek, et al. Web search and orientation with
brookestalk. Tech. and Persons with Disabilities Conf., 1999.

(]



