
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Towards Automatic Resource Bound Analysis for OCaml

Jan Hoffmann Ankush Das
Carnegie Mellon University

{jhoffmann, ankushd}@cs.cmu.edu

Shu-Chun Weng
Yale University

scweng@gmail.com

Abstract
This article presents a resource analysis system for OCaml programs.
The system automatically derives worst-case resource bounds for
higher-order polymorphic programs with user-defined inductive
types. The technique is parametric in the resource and can derive
bounds for time, memory allocations and energy usage. The derived
bounds are multivariate resource polynomials which are functions
of different size parameters that depend on the standard OCaml
types. Bound inference is fully automatic and reduced to a linear
optimization problem that is passed to an off-the-shelf LP solver.
Technically, the analysis system is based on a novel multivariate
automatic amortized resource analysis (AARA). It builds on existing
work on linear AARA for higher-order programs with user-defined
inductive types and on multivariate AARA for first-order programs
with built-in lists and binary trees. This is the first amortized
analysis, that automatically derives polynomial bounds for higher-
order functions and polynomial bounds that depend on user-defined
inductive types. Moreover, the analysis handles a limited form of
side effects and even outperforms the linear bound inference of
previous systems. At the same time, it preserves the expressivity
and efficiency of existing AARA techniques. The practicality of
the analysis system is demonstrated with an implementation and
integration with Inria’s OCaml compiler. The implementation is
used to automatically derive resource bounds for 411 functions and
6018 lines of code derived from OCaml libraries, the CompCert
compiler, and implementations of textbook algorithms. In a case
study, the system infers bounds on the number of queries that are
sent by OCaml programs to DynamoDB, a commercial NoSQL
cloud database service.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability

Keywords Resource Bound Analysis, Static Analysis, Type Sys-
tems, Amortized Analysis, LP Solving, Type Inference

1. Introduction
The quality of software crucially depends on the amount of resources
—such as time, memory, and energy—that are required for its exe-
cution. Statically understanding and controlling the resource usage

of software continues to be a pressing issue in software develop-
ment. Performance bugs are very common and are among the bugs
that are most difficult to detect [40, 51]. Moreover, many security
vulnerabilities exploit the space and time usage of software [21, 42].

Developers would greatly profit from high-level resource-usage
information in the specifications of software libraries and other
interfaces, and from automatic warnings about potentially high-
resource usage during code review. Such information is particularly
relevant in contexts of mobile applications and cloud services, where
resources are limited or resource usage is a major cost factor.

Recent years have seen fast progress in developing frameworks
for statically reasoning about the resource usage of programs. Many
advanced techniques for imperative integer programs apply abstract
interpretation to generate numerical invariants. The obtained size-
change information forms the basis for the computation of actual
bounds on loop iterations and recursion depths; using counter
instrumentation [27], ranking functions [2, 6, 15, 53], recurrence
relations [3, 4], and abstract interpretation itself [18, 60]. Automatic
resource analysis techniques for functional programs are based on
sized types [56], recurrence relations [23], term-rewriting [10], and
amortized resource analysis [31, 34, 41, 52].

Despite major steps forward, there are still many obstacles to
overcome to make resource analysis available to developers. On the
one hand, typed functional programs are particularly well-suited for
automatic resource-bound analysis since the use of pattern matching
and recursion often results in a relatively regular code structure.
Moreover, types provide detailed information about the shape of
data structures. On the other hand, existing automatic techniques for
higher-order programs can only infer linear bounds [41, 56] or rely
on defunctionalization [10]. Furthermore, techniques that can derive
polynomial bounds are limited to bounds that depend on predefined
lists and binary trees [29, 31], or integers [15, 53]. Finally, resource
analyses for functional programs have been implemented for custom
languages that are not supported by mature tools for compilation
and development [10, 31, 34, 41, 52, 56].

The goal of a long term research effort is to overcome these
obstacles by developing Resource Aware ML (RAML), a resource-
aware version of the functional programming language OCaml.
RAML is based on an automatic amortized resource analysis
(AARA) that derives multivariate polynomials that are functions of
the sizes of the inputs. In this paper, we report three research results
that are part of this effort.

1. We present the first implementation of an AARA that is inte-
grated with an industrial-strength compiler.

2. We develop the first automatic resource analysis that infers
multivariate polynomial bounds that depend on size parameters
of user-defined tree-like data structures.

3. We present the first AARA that infers polynomial bounds for
higher-order functions.

The techniques we develop are not tied to a particular resource but
are parametric in the resource of interest. RAML infers tight bounds

for many complex example programs such as sorting algorithms with
complex comparison functions, Dijkstra’s shortest-path algorithm,
and the most common higher-order functions such as sequences of
nested maps, and folds. The technique is naturally compositional,
tracks size changes of data across function boundaries, and can deal
with amortization effects that arise, for instance, from the use of a
functional queue. Local inference rules generate linear constraints
and reduce bound inference to off-the-shelf linear program (LP)
solving, despite deriving polynomial bounds.

To ensure compatibility with OCaml’s syntax, we reuse the parser
and type inference engine from Inria’s OCaml compiler [48]. We
extract a type-annotated syntax tree to perform (resource preserving)
code transformations and the actual resource-bound analysis. To
precisely model the evaluation of OCaml, we introduce a novel
operational semantics that makes the efficient handling of function
closures in Inria’s compiler explicit. It can be seen as a big-step
formulation of the ZINC abstract machine [45]. The semantics is
complemented by a new type system that refines function types.

To express a wide range of bounds, we introduce a novel class of
multivariate resource polynomials that map data of a given type to a
non-negative number. The set of multivariate resource polynomials
that is available for bound inference depends on the types of input
data. It can be parametric in (non-negative) integers, lengths of lists,
or the number of particular nodes in an inductive data structure.
As a special case, a resource polynomial can contain conditional
additive factors. These novel multivariate resource polynomials are a
generalization of the resource polynomials that have been previously
defined for lists and binary trees [31].

To deal with realistic OCaml code, we develop a novel multivari-
ate AARA that handles higher-order functions. To this end, we draw
inspirations from multivariate AARA for first-order programs [31]
and linear AARA for higher-order programs [41]. However, our new
solution is more than the combination of existing techniques. For
instance, we infer linear bounds for the curried append function for
lists, which was not previously possible [41]. Moreover, we address
specifics of Inria’s OCaml compiler such as efficiently avoiding
function-closure creation.

OCaml is a complex language and resource bound analysis is an
undecidable problem. As a result, there are many programs for which
RAML cannot derive bounds. We currently do not support several
OCaml features such as modules, object-oriented features, records,
calls to native libraries, nested patterns, and optional arguments.
The resource analysis is limited to polynomial bounds that depend
on the sizes of inductive data structures that have nodes with fixed
branching factors. RAML can derive bounds for programs with
exceptions, references, and arrays. However, we do not support
exception handlers and cannot derive bounds that depend on the
sizes of data structures that are stored in arrays or references.

We performed experiments on more than 6018 lines of OCaml
code. Since RAML does not support some language features of
OCaml, it is not straightforward to automatically analyze complete
existing applications. However, the automatic analysis performs well
on code that only uses supported language features. For instance,
we applied RAML to OCaml’s standard list library list.ml: RAML
automatically derives evaluation-step bounds for 47 of the 51 top-
level functions. All derived bounds are asymptotically tight.

It is also easy to develop and analyze real OCaml applications if
we keep the current capabilities of the system in mind. In Section 9,
we present a case study in which we automatically bound the number
of queries that an OCaml program issues to Amazon’s DynamoDB
NoSQL cloud database service. Such bounds are interesting since
Amazon charges DynamoDB users based on the number of queries
made to the database.

Our experiments are easily reproducible: The source code of
RAML, the OCaml code for the experiments, and an easy-to-use

type (’a,’b) ablist = Acons of ’a * (’a,’b) ablist
| Bcons of ’b * (’a,’b) ablist
| Nil

let rec abmap f g abs = match abs with
| Acons (a,abs’) → Acons(f a, abmap f g abs’)
| Bcons (b,abs’) → Bcons(g b, abmap f g abs’)
| Nil → Nil

let asort gt abs =
abmap (quicksort gt) (fun x → x) abs

let asort’ gt abs =
abmap (quicksort gt) (fun _ → raise Inv_arg) abs

let btick =
abmap (fun a → a) (fun b → Raml.tick 2.5; b)

Excerpt of the RAML output for analyzing evaluation steps:

Simplified bound for abmap:
3 + 12*L + 12*N

Simplified bound for asort:
11 + 22*K*N + 13*K^2*N + 13*L + 15*N

Simplified bound asort’:
13 + 22*K*N + 13*K^2*N + 15*N

Figure 1. Example bound analysis with RAML (0.23s run time).
When reporting the linear bound for abmap to the user, we assume
that the higher-order arguments f and g have no resource consump-
tion. L is the number of B-nodes, N is the number of A-nodes, and
K is the maximal length of the lists in the A-nodes in the function’s
arguments.

interactive web interface are available online [28]. The reviewers
of the POPL’17 Artifact Evaluation found that RAML exceeded
or greatly exceeded their expectations. All technical details of the
theoretical development and an extensive description of the results of
the experiments are available in a companion technical report [33].

2. Overview
Before we describe the technical development, we give an overview
of the challenges and achievements of our work.

Example Bound Analysis. To demonstrate user interaction with
RAML, Figure 1 contains an example bound analysis. The OCaml
code in Figure 1 will serve as a running example in this article. The
function abmap is a polymorphic map function for a user-defined
list that contains Acons and Bcons nodes. It takes two functions f
and g as arguments and applies f to data stored in the A-nodes and g
to data stored in the B-nodes. The function asort takes a comparison
function and an A-B-list in which the A-nodes contain lists. It then
uses quicksort (the code of quicksort is also automatically analyzed
and available online [28]) to sort the lists in the A-nodes. The B-
nodes are left unchanged. The function asort’ is a variation of asort
that raises an exception if it encounters a B-node in the list.

To derive a worst-case resource bound with RAML, the user
needs to pick a maximal degree of the search space of polynomials
and a resource metric. In the example analysis in Figure 1 we picked
degree 4 and the steps metric which counts the number of evaluation
steps in the big-step semantics. RAML reports a bound for all top-
level functions in 0.23 seconds. The shown output is only an excerpt.
In this case, all derived bounds are tight in the sense that there are
inputs for every size that exactly result in the reported number of
evaluation steps.

In the derived bound for abmap, RAML assumes that the
resource cost of f and g is 0. So we get a linear bound. In the
case of asort we derive a bound which is quadratic in the maximal
length of the lists that are stored in the A-nodes (22K + 13K2) for
every A-node in the list ((22K+13K2)N) plus an additional linear

factor that also depends on the number of B-nodes that are simply
traversed (13L+ 15N). For asort’ this linear factor only depends
on the number of A-nodes: RAML automatically deduces that the
traversal is aborted in case we encounter a B-node.

The tick metric can be used to derive bounds on user defined
metrics. An instructive example is the function btick. With the tick
metric, RAML derives the bound 2.5L where L is the number of
B-nodes in the argument list. This is a tight bound on the sum of
“ticks” that are executed in an evaluation of btick. Ticks can also be
negative to express that resources become available.

Automatic Amortized Resource Analysis. The automatic resource
analysis system of RAML is based on the potential method of
amortized analysis [54]. The idea is to introduce potential functions
that depend on data structures. At every point in the program, the
available potential needs to be sufficient to pay for the cost of the
next evaluation step and the potential at the next program point.

To be able to automate the analysis, we fix a set of possible
potential functions for every data type. In RAML, potential functions
are non-negative linear combinations of a set of base polynomials.
We integrate the coefficients of these linear combinations into a
type system for OCaml. To this end, we use annotated types (A,Q)
in which A is a standard type1 and Q is a family of non-negative
coefficients; one for every base polynomial. Given a value a of
type A, we define the potential Φ(a:(A,Q)) as a sum

∑
i qi·pi(a)

where qi ranges over the coefficients in Q and pi ranges over
the base polynomials for type A. The type rules of RAML’s type
system manipulate the coefficients Q to ensure correct accounting
as potential is assigned to new data structures or used to pay for
resource usage. The advantage of this setup is that we can express
the relationships between different type annotations with linear
constraints. They can be collected during type inference and solved
by linear programming in a similar way as ordinary type constraints
are collected to be solved by unification.

Multivariate Resource Polynomials. Existing AARA systems are
either limited to linear bounds [34, 41] or to polynomial bounds that
are functions of the sizes of simple predefined lists and binary-tree
data structures [31]. In contrast, this work presents the first analysis
that can derive polynomial bounds that depend on size parameters
of complex user-defined data structures.

Consider for example the function btick of type (α∗β) ablist→
(α ∗ β) ablist in Figure 1. The base polynomials for the argument
include

(
m
i

)
·
(
n
j

)
where m denotes the number of A-nodes and n

denotes the number of B-nodes in the argument abs.2 The derived
bound 2.5n is represented by

∑
i,j q(i,j)

(
m
i

)(
n
j

)
where q(0,1) = 2.5

and q(i,j) = 0 otherwise. The corresponding function type is

btick : ((α ∗ β) ablist, Q)→ ((α ∗ β) ablist, P)

where Q contains the coefficients q(i,j), P contains coefficients
p(i,j), and p(i,j) = 0 for all (i, j). This reflects the fact that the
initial potential 2.5n is used up after the evaluation of btick.

Depending on the call side of btick, we might need different
potential annotations P and Q. Usually, we pass on some potential
from the argument to the result of a function so that it can be
consumed in the remainder of the evaluation. Consider for example
the inner call to btick in an expression like btick(btick abs). Here, we
need to cover the cost of the inner call (2.5n) and pass potential on
to the resulting list (2.5n). This is reflected by a potential annotation
in which q(0,1) = 5 and p(0,1) = 2.5.

In general, the bounds we derive are multivariate resource
polynomials that can take into account individual sizes of inner data

1 This is not true in general since A can contain annotated function types but
it is a good approximation to get a first impression.
2 To be precise, these functions are sums of base polynomials.

structures. While it is possible to simplify the resource polynomials
in the user output, it is essential to have this more precise information
for intermediate results to derive tight whole-program bounds. In
general, the resource bounds are built of functions that count the
number of specific tuples that one can form from the nodes in a tree-
like data structure. In their simplest form (i.e., without considering
the data stored inside the nodes), they have the form

λa.|{~a | ai is an Aki -node in a and if i < j then ai <apre aj}|

where a is an inductive data structure with constructorsA1, . . . , Am,
~a = (a1, . . . , an), and <apre denotes the pre-order (tree traversal)
on the tree a. For example, consider the aforementioned polynomial
n·m for values of type ablist where m and n are the number A-
and B-nodes, respectively. This is in fact the sum of the two base
polynomials λ`.|{(a, b) | a <`pre b}| and λ`.|{(b, a) | b <`pre a}|
for A-B-lists (a ranges over A-nodes and b ranges over B-nodes).

We are able to keep track of changes of these quantities in pattern
matches and data construction fully automatically by generating
linear constraints. At the same time, they allow us to accurately
describe the resource usage of many common functions in the
same way it has been done previously for simple types [31]. As
an interesting special case, we can also derive bounds that describe
the resource usage as a conditional statement. For instance, for an
expression such as

match x with | true → quicksort y | false → y

we derive a bound that is quadratic in the length of y if x is True and
constant if x is False.

Currying and Function Closures. Currying and function closures
pose a challenge to automatic resource analysis systems that has
not been addressed in the past. To see why, assume that we want
to design a type system to verify resource usage. Now consider for
example the curried append function which has the type append :
α list → α list → α list in OCaml. At first glance, we might say
that the time complexity of append is O(n) if n is the length of the
first argument. But a closer inspection of the definition of append
reveals that this is a gross simplification. In fact, the complexity of
the partial function call app_par = append ` is constant. Moreover,
the complexity of the function app_par is linear—not in the length
of the argument but in the length of the list ` that is captured in the
function closure. We are not aware of any existing approach that can
automatically derive a worst-case time bound for the curried append
function. For example, previous AARA systems would fail without
deriving a bound [31, 41].

In general, we have to describe the resource consumption of a
curried function f : A1 → · · · → An → A with n expressions
ci(a1, . . . , ai) such that ci describes the complexity of the compu-
tation that takes place after f is applied to i arguments a1, . . . , ai.
In Inria’s OCaml implementation, the situation is even more com-
plex since the resource usage (time and space) depends on how a
function is used at its call sites. If append is partially applied to one
argument then a function closure is created as expected. However,
if append is applied to both of its arguments at the same time then
the intermediate closure is not created and the performance of the
function is even better than that of the uncurried version since we
do not have to create a pair before the application.

To model the resource usage of curried functions accurately,
we refine function types to capture how functions are used at
their call sites. For example, append can have both of the types
α list → α list → α list and [α list, α list] → α list. The first
type implies that the function is partially applied and the second
type implies that the function is applied to both arguments at the
same time. Of course, it is possible that the function has both types
(technically we achieve this using let polymorphism). For the second
type, our system automatically derives tight time and space bounds

that are linear in the first argument. However, our system fails to
derive a bound for the first type. The reason is that we made the
design decision not to derive bounds that asymptotically depend
on data captured in function closures to keep the complexity of
the system at a manageable level. Analyzing such functions would
require us to significantly extend the type system; for example by
introducing dependent types [43, 44].

Fortunately, append belongs to a large set of OCaml functions in
the standard library that are defined in the form let rec f x y z = e. If
such a function is partially applied, the only computation that hap-
pens is the creation of a closure. As a result, eta expansion does not
change the resource behavior of programs. This means for example
that we can safely replace the expression let app_par = append ` in e
with the expression let app_par x = append ` x in e prior to the anal-
ysis. Consequently, we can always successfully analyze append by
using the type [α list, α list]→ α list.

The conditions under which a function can be analyzed can
boiled down to a simple principle:

The worst-case resource usage of a function must be express-
ible as a function of the sizes of its arguments.

Higher-Order Arguments. The other main challenge with higher-
order resource analysis is functions with higher-order arguments. To
a large extent, this problem has been successfully solved for linear
resource bounds in previous work [41]. Basically, the higher-order
case is reduced to the first-order case if the higher-order arguments
are available. It is not necessary to reanalyze such higher-order
functions for every call site since we can abstract the resource
usage with a constraint system that has holes for the constraints
of the function arguments. However, a presentation of the system
in such a way mixes type checking with the constraint-based type
inference. Therefore, we chose to present the analysis system in a
more declarative way in which the bound of a function with higher-
order arguments is derived with respect to a given set of resource
behaviors of the argument functions.

A concrete advantage of our declarative view is that we can
derive a meaningful type for a function like map for lists even when
the higher-order argument is not available. The function map can
have the types (α → β) → α list → β list and [α → β, α list] →
β list. Unlike append, the resource usage of map does not depend
on the size of the first argument. So both types are equivalent in our
system except for the cost of creating an intermediate closure. If the
higher-order argument is not available then previous systems [41]
produce a constraint system that is not meaningful to a user. An
innovation in this work is that we are also able to report a meaningful
resource bound for map if the arguments are not available. To
this end, we assume that the argument function does not consume
resources. For example, we report in the case of map that the number
of evaluation steps needed is 11n+ 3 and the number of heap cells
needed is 4n+2 where n is the length of the input list. Such bounds
are useful for two purposes. First, a developer can see the cost that
map itself contributes to the total cost of a program. Second, the
time bound for map proves that map is guaranteed to terminate if
the higher-order argument terminates for every input.

In contrast, consider the function rec_scheme : (α list →
α list)→ α list→ β list that is defined as follows.

let rec rec_scheme f l =
match l with | [] → []

| x::xs → rec_scheme f (f l)
let g = rec_scheme tail

Here, RAML is not able to derive an evaluation-step bound for
rec_scheme since the number of evaluation steps (and even termina-
tion) depends on the argument f . However, RAML derives the tight
evaluation-step bound 12n+ 7 for the function g.

Effects. Our analysis handles references and arrays by ensuring
that the resource cost of the program does not depend on the sizes
of values that have been stored in mutable cells. While it has been
shown that it is possible to extend AARA to assign potential to
mutable state [8, 17], we decided not to add the feature in the current
system to focus on the presentation of the main contributions. There
are still a lot of interactions of the analysis with mutable state, such
as deriving bounds for functions in references.

Assume for example A-B-list was an abstract type and the only
function in the signature was abmap. How can we compute the
length of the longest prefix that only consists of A-nodes? Since we
are not allowed to modify the A-B-list module, we use references to
compute the length as a side effect of the higher-order arguments of
abmap. The basic idea of max_a_prefix is that the function f, which
is executed for every A-node, increments a counter c whenever it is
called. However, if we encounter a B-node then the function g will
change f to have no effect by updating the reference inc.

let max_a_prefix l =
let c = ref 0 in
let inc_c = fun () → Raml.tick(1.0); c := !c+1 in
let inc = ref inc_c in
let f () = !inc () in
let g () = inc := fun () → () in
let _ = abmap f g l in !c

We added a call to the tick function in the increment function inc_c
to count the number of additions evaluated by max_a_prefix. RAML
automatically computes the tight boundmwherem is the number of
A-nodes in the input list `. To derive the bound, the analysis performs
a basic alias analysis to statically approximate that a function stored
in the reference inc performs 1 tick in the worst-case. In the type
system, this is expressed by fixing a (set of) potential annotations
for function types in mutable structures.

As we see in Figure 1 (function asort’), RAML can accurately
analyze programs that raise exceptions. It is natural to handle excep-
tions in AARA by simply allowing arbitrary potential annotations
in the result type of the exception.

3. Setting the Stage
We describe and formalize the new resource analysis using Core
RAML, a subset of the intermediate language that we use to perform
the analysis. Expressions in Core RAML are in share-let-normal
form [32], which means that syntactic forms allow only variables
instead of arbitrary terms whenever possible without restricting ex-
pressivity. We automatically transform user-level OCaml programs
to Core RAML without changing their resource behavior before the
analysis.

Syntax. The syntax of a subset of the Core RAML expressions is
given by the following grammar. The implementation also contains
constants and operators for primitive data types such as integers,
floats and booleans, arrays and built-in operations for arrays, condi-
tionals, and free versions of syntactic forms. These free versions are
semantically identical to the standard versions but do not contribute
to the resource cost. This is needed for the resource preserving
translation of user-level code to share-let-normal form.

e ::= x | x x1 · · ·xn | C x | λx.e | ref x | !x | x1 := x2 | fail
| tick (q) | match x with C y → e1 | e2

| (x1, . . . , xn) | match x with (x1, . . . , xn)→ e

| share x as (x1, x2) in e | let x = e1 in e2 | let rec F in e

F ::= f = λx.e | F1 and F2

In the function application we allow the application of several
arguments at once. This is useful to statically determine the cost of
closure creation but also introduces ambiguity. The type system will

S 6= · H(`) = (λx.e, V ′) V (x1):: · · · ::V (xn), V,HM`x ⇓ ` | (q, q′) S, V ′, HM`λx.e ⇓ w | (p, p′)
S, V,HM`x x1 · · ·xn ⇓ w |Mapp

n ·(q, q′)·(p, p′)
(E:APPAPP)

V (x1):: · · · ::V (xn), V,HM`x ⇓ w | (q, q′)
·, V,HM`x x1 · · ·xn ⇓ w |Mapp

n ·(q, q′)
(E:APP)

S 6= · H(V (x)) = (λx.e, V ′) S, V ′, HM`λx.e ⇓ w | (q, q′)
S, V,HM`x ⇓ w |Mvar·(q, q′)

(E:VARAPP)

V (x) = `

·, V,HM`x ⇓ (`,H) |Mvar (E:VAR)
S, V [x 7→ `], HM` e ⇓ w | (q, q′)

`::S, V,HM`λx.e ⇓ w |Mbind·(q, q′)
(E:ABSBIND)

H′ = H, ` 7→ (λx.e, V)

·, V,HM`λx.e ⇓ (`,H′) |Mabs
(E:ABSCLOS)

Figure 2. Selected rules of the operational big-step semantics.

determine if an expression like f x1 x2 is parsed as (f x1 x2) or
(f x1) x2. The sharing expressions share x as (x1, x2) in e is not
standard and used to explicitly introduce multiple occurrences of a
variable. It binds the free variables x1 and x2 in e. The expression
fail is used to raise exceptions. The expression tick(q) contains a
floating point constant q. It can be used with the tick metric to
specify a constant cost. A negative floating point number q means
that resources become available.

Big-Step Operational Cost Semantics. The resource usage of
RAML programs is defined by a big-step operational cost semantics.
The semantics has three interesting non-standard features. First, it
measures (or defines) the resource consumption of the evaluation
of a RAML expression by using a resource metric that defines a
constant cost for each evaluation step. If this cost is negative then
resources are returned. Second, it models terminating and diverging
executions by inductively describing finite subtrees of infinite
execution trees. Third, it models OCaml’s stack-based mechanism
for function application, which avoids creation of intermediate
function closure, similar to the ZINC abstract machine (ZAM) [45].

Since we also consider resources like memory that can become
available during an evaluation, we have to track the high-water mark
of the resource usage, that is, the maximal number of resource units
that are simultaneously used during an evaluation. To derive a high-
water mark of a sequence of evaluations from the high-water marks
of the sub evaluations one has to also take into account the number
of resource units that are available after each sub evaluation.

Figure 2 contains selected big-step operational evaluation rules.
They define an evaluation judgment of the form

S, V,H M` e ⇓ (`,H ′) | (q, q′) .

It expresses the following. If the resource metric M , the argument
stack S, the environment V , and the initial heap H are given then
the expression e evaluates to the location ` and the new heap H ′.
The evaluation of e needs q ∈ Q+

0 resource units (high-water mark)
and after the evaluation there are q′ ∈ Q+

0 resource units available.
The actual resource consumption is then δ = q − q′. The quantity δ
is negative if resources become available during the execution of e.

There are two other behaviors that we have to express in the
semantics: failure (i.e., array access outside array bounds) and
divergence. To this end, our semantic judgement not only evaluates
expressions to values but also to an error ⊥ and to incomplete
computations expressed by ◦. The judgement has the general form

S, V,H M` e ⇓ w | (q, q′) where w ::= (`,H) | ⊥ | ◦ .

Intuitively, this evaluation statement expresses that the high-water
mark of the resource consumption after some number of evaluation
steps is q and there are currently q′ resource units left. A resource
metric M : K × N → Q defines the resource consumption in
each evaluation step of the big-step semantics where K is the set of
syntactic forms. We write Mk

n for M(k, n) and Mk for M(k, 0).

The parameter n can be used to express the cost for steps that have
different costs for different types (e.g., creating an n-tuple).

It is handy to view the pairs (q, q′) in the evaluation judgments
as elements of a monoidQ = (Q+

0 ×Q+
0 , ·). The neutral element

is (0, 0), which means that resources are neither needed before
the evaluation nor returned after the evaluation. The operation
(q, q′) · (p, p′) defines how to account for an evaluation consisting
of evaluations whose resource consumptions are defined by (q, q′)
and (p, p′), respectively. We define

(q, q′) · (p, p′) =

{
(q + p− q′, p′) if q′ ≤ p
(q, p′ + q′ − p) if q′ > p

If resources are never returned (as with time) then we only have
elements of the form (q, 0) and (q, 0) · (p, 0) is just (q + p, 0). We
identify a rational number q with an element ofQ as follows: q ≥ 0
denotes (q, 0) and q < 0 denotes (0,−q). This notation avoids
case distinctions in the evaluation rules since the constants MK that
appear in the rules can be negative.

For efficiency reasons, Inria’s OCaml compiler evaluates func-
tion applications e e1 · · · en from right to left, that is, it starts with
evaluating en. In this way, one can avoid the expensive creation
of intermediate function closures. A naive implementation would
create n function closures when evaluating the aforementioned ex-
pression: one for e, one for the application to the first argument, etc.
By starting with the last argument, we are able to put the results
of the evaluation on an argument stack and access them when we
encounter a function abstraction during the evaluation. In this case,
we do not create a closure but simply bind the value on the stack to
the name in the abstraction.

In the rules in Figure 2, we use a stack S on which we store the
locations of function arguments. The only rules that push locations
to S are E:APP and E:APPAPP. To pop locations from the stack
we modify the leaf rules that can return a function closure, namely,
the rules E:VAR and E:ABS for variables and lambda abstractions:
Whenever we would return a function closure (λx.e, V) we inspect
the argument stack S. If S contains a location ` then we pop it from
the stack S, bind it to the argument x, and evaluate the function
body e in the new environment V [x 7→ `]. This is defined by the
rule E:ABSBIND and indirectly by the rule E:VARAPP.

As mentioned, these evaluation rules are a big-step version of
ZAM. The benefit of using a big-step semantics is that the rules are
closer to the resource-aware type rules in Section 6 and simplify
the soundness proof of the type system (Theorem 1). Details such
as differences between eval-apply and push-enter or ZAM and
ZAM2 [46] are not modeled in the cost semantics. However, they
can be accounted for by using different cost metrics. The stack-
based type system we present in Section 4 performs the analysis
needed for implementing eval-apply, which is also implemented
by the OCaml compiler. This enables us to statically account for
the cost of eval-apply in the resource-annotated type system. So
our built-in cost metric for evaluation steps also models eval-apply
despite the semantics being closer to push-enter.

·;x : [T1, . . . , Tn]→T, x1:T1, . . . , xn:Tn ` xx1 · · ·xn : T
(T:APP)

Σ; Γ ` λx.e : T

·; Γ ` λx.e : Σ→ T
(T:ABSPOP)

Σ; Γ, x:T1 ` e : T2

T1::Σ; Γ ` λx.e : T2
(T:ABSPUSH)

Σ;x : [T1, . . . , Tn]→Σ→T, x1:T1, . . . , xn:Tn ` xx1 · · ·xn : T
(T:APPPUSH)

·;x : T ` x : T
(T:VAR)

Σ;x : Σ→ T ` x : T
(T:VARPUSH)

Figure 3. Selected rules of the affine stack-based type system.

All evaluation rules and more details about the semantics can be
found the companion technical report [33].

Example Evaluation. We use the running example defined in
Figure 1 to illustrate how the operational cost semantics works.
We use the metric steps which assigns cost 1 to every evaluation
step and the metric tick which assigns cost 0 to every evaluation step
except Raml.tick(q).

Let abs ≡ Acons ([1;2],Bcons (3, Bcons (4, Nil))) is a A-B-list
and let e1 the expression that arises by concatenating the expression
asort (>) abs to the code in Figure 1. Then for every H and V
there existsH ′ and ` such that ·, V,H tick` e1 ⇓ (`,H ′) | (0, 0) and
·, V,H steps` e1 ⇓ (`,H ′) | (186, 0). Moreover, ·, V,H steps` e1 ⇓
◦ | (n, 0) for every n < 186. Let e2 be the expression that results
from appending btick abs to the code in Figure 1. Then for every
H and V there exists H ′ and ` such that ·, V,H tick` e2 ⇓ (`,H ′) |
(5, 0) and ·, V,H tick` e2 ⇓ ◦ | (n, 0) for every n ∈ {2.5, 0}.

4. Stack-Based Type System
In this section, we introduce a type system that is a refinement
of OCaml’s type system and mirrors the argument stack in the
semantics. We define simple types as

T ::= unit | X | T ref | T1 ∗ · · · ∗ Tn | [T1, . . . , Tn]→ T

| µX. 〈C1 : T1∗Xn1 , . . . , Ck : Tk∗Xnk 〉

Bracket function types [T1, . . . , Tn] → T correspond to the stan-
dard function type T1 → · · · → Tn → T . The meaning of
[T1, . . . , Tn]→ T is that the function is applied to its first n argu-
ments at the same time. The type T1 → · · · → Tn → T indicates
that the function is applied to its first n arguments one after another.
These two uses of a function can result in a very different resource
behavior. For instance, in the latter case we have to create n−1 func-
tion closures. Also we have n different costs to account for: the eval-
uation cost after the first argument is present, the cost of the closure
when the second argument is present, etc. Of course, it is possible
that a function is used in different ways in a program. We account
for that with let polymorphism. Also note that [T1, . . . , Tn] → T
still describes a curried function while T1 ∗ · · · ∗ Tn → T describes
an uncurried function with n arguments.

For inductive types µX. 〈C1 : U1, . . . , Ck : Uk〉 we require that
every constructor has a type Ui = Ti∗Xni such that Ti does not
contain type variables, including X . The type Xn is simply the
n-element product type X ∗ · · · ∗X . This makes it possible to track
costs that depend on size parameters of values of such types. It is of
course possible to allow arbitrary inductive types and not to track
cost that depends on the size of data structures of other types. For
a constructor type C : T∗Xn we sometimes write C : (T, n). We
say that T is the node type and n is the branching number of the
constructor C.

Let Polymorphism and Sharing. Following the design of the
resource-aware type system, our simple type system is affine. That
means that a variable in a context can be used at most once in an
expression. However, we enable multiple uses of a variable with the
sharing expression share x as (x1, x2) in e that denotes that x can
be used twice in e using the (different) names x1 and x2. For input
programs we allow multiple uses of a variable x in an expression e

in RAML. We then add sharing terms and remove multiple uses of
variables before the analysis.

Interestingly, this mechanism is closely related to let polymor-
phism. To see this relation, first note that our type system is poly-
morphic but that a value can only be used with a single type in an
expression. In practice, that would mean for instance that we have
to define a different map function for every list type. A simple and
well-known solution to this problem that is often applied in prac-
tice is let polymorphism. In principle, let polymorphism replaces
variables with their definitions before type checking. For our map
function, we would type the expression [map 7→ emap]e instead of
typing the expression let map = emap in e.

It would be possible to treat sharing of variables in a similar
way as let polymorphism. But if we start from an expression
let x = e1 in e2 and replace the occurrences of x in the expression
e2 with e1 then we also change the resource consumption of the
evaluation of e2 because we evaluate e1 multiple times. Interestingly,
this problem coincides with the treatment of let polymorphism for
expressions with side effects (the so called value restriction).

In RAML, we support let polymorphism for function closures
only. Assume we have a function definition let f = λx.ef in e that
is used twice in e. Then the usual approach to enable the analysis in
our system would be to use sharing

let f = λx.ef in share f as (f1, f2) in e′ .

To enable let polymorphism, we will however define f twice and
ensure that we only pay once for the creation of the closure and the
let binding:

let f1 = λx.ef in let f2 = λx.ef in e′

The functions f1 and f2 can now have different types.

Type Judgements. Type judgements have the form Σ; Γ ` e : T
where Σ = T1, . . . , Tn is a list of types, Γ : Var ⇀ T is a type
context that maps variables to types, e is an expression, and T is
a (simple) type. The intuitive meaning (which is formalized in the
TR) is as follows. Given an evaluation environment that matches the
type context Γ and an argument stack that matches the type stack Σ
then e evaluates to a value of type T (or does not terminate).

Even though function types can have multiple forms, a well-
typed expression often has a unique type (in a given type context).
This type is derived from the way a function is used. For instance,
we have λf.λx.λy.f x y : ([T1, T2]→ T)→ T1 → T2 → T and
λf.λx.λy.(f x) y : (T1 → T2 → T) → T1 → T2 → T , and the
types of the higher-order arguments are both unique.

A type T of an expression e has a unique type derivation that
produces a type judgement ·,Γ ` e : T with an empty type stack.
We call this a closed type judgement for e. If T is a function type
Σ → T ′ then there is a second type derivation for e that we
call an open type derivation. It derives the open type judgement
Σ; Γ ` e : T ′ where |Σ| > 0.

Open and closed type judgements are not interchangeable. An
open type judgement Σ; Γ ` e : T can only appear in a derivation
with an open root of the form Σ′,Σ; Γ ` e : T , or in a subtree
of a derivation whose root is a closed judgement of the form
·; Γ ` e : Σ′′,Σ → T where |Σ′′| > 0. In other words, in an
open derivation Σ; Γ ` e : T , the expression e is a function that has
to be applied to n > |Σ| arguments at the same time. In a given type

context and for a fixed function type, a well-typed expression has at
most one open type derivation.

Type Rules. Figure 3 presents some type rules that modify the type
stack. There is a close correspondence between the evaluation rules
and the type rules in the sense that every evaluation rule corresponds
to exactly one type rule. For every leaf rule that can return a function
type (e.g., T:APP), we add a second rule that derives the equivalent
open type (e.g., T:APPPUSH). The rules that directly control the
shape of the function types are T:ABSPUSH and T:ABSPOP for
lambda abstraction. While the other rules are (deterministically)
syntax driven, the rules for lambda abstraction introduce a choice
that shapes function types.

All type rules, lemmas, and additional details about the stack-
based type system can be found the TR [33].

5. Multivariate Resource Polynomials
We now define the set of resource polynomials which is the search
space of our automatic resource bound analysis. A resource poly-
nomial p : JT K→ Q+

0 maps a semantic value of some simple type
T to a non-negative rational number. The definition of the set of re-
source polynomials for each type T is one of our main contributions.
The right choice of resource polynomials is the basis for obtaining
an analysis system that is simple, expressive, and allows for type
inference via LP solving.

A key insight that we use is that the static type information we
have gives us important hints on how values of a given type can be
used in a program. An analysis of typical polynomial computations
operating on a list [a1, . . . , an] shows that they often consist of
operations that are executed for every k-tuple (ai1 , . . . , aik) with
1 ≤ i1 < · · · < ik ≤ n. Simple examples are linear map operations
that perform some operation for every ai or sorting algorithms that
perform comparisons for every pair (ai, aj) with 1 ≤ i < j ≤ n in
the worst case.

In this article, we generalize this observation to user-defined tree-
like data structures. In lists of different node types with constructors
C1, C2 and C3, a linear computation is for instance often carried
out for all C1-nodes, all C2-nodes, or all C1 and C3 nodes. In
general, a typical polynomial computation is carried out for all
tuples (a1, . . . , ak) such that ai is a list element with constructor
Cj for some j and ai appears in the list before ai+1 for all i.

Semantics of Types and Well-Formed Environments. For each
simple type T we inductively define a set JT K of values of type T .
Inductive types are interpreted as trees, numbers as numbers, and
other types as leaves (we are not interested in their domain).

JXK = Loc
JunitK = {()}

JT refK = {R(a) | a ∈ JT K}
JΣ→ T K = {(λx.e, V) | ∃Γ . H � V :Γ ∧ ·; Γ ` λx.e : Σ→T}

JT1 ∗· · ·∗ TnK = JT1K× · · · × JTnK
JBK = Tr(B) if B = 〈C1:(T1, n1), . . . , Cn:(Tk, nk)〉

Here, T = Tr(〈C1:(T1, n1), . . . , Cn:(Tk, nk)〉) is the set of
trees τ with node labels C1, . . . , Ck which are inductively defined
as follows. If i ∈ {1, . . . , k}, ai ∈ JTiK, and τj ∈ T for all
1 ≤ j ≤ ni then Ci(ai, τ1, . . . , τni) ∈ T .

If H is a heap, ` is a location, A is a type, and a ∈ JAK then
we write H � ` 7→ a :A to mean that ` defines the semantic
value a ∈ JAK when pointers are followed in H in the obvious
way. We write H � ` :A to indicate that there exists a, necessarily
unique, semantic value a ∈ JAK so that H � ` 7→ a :A . We
pointwise extend this to argument stacks and environments and
writeH � V : Γ andH � S : Σ. The concepts are formally defined
in the TR [33].

Base Polynomials and Indices. The two key notions of this sec-
tion are base polynomials and indices. They formalize the in-

λa. 1 ∈ P(T)

∀i : pi ∈ P(Ti)

λ~a.
∏

i=1,...,k

pi(ai) ∈ P(T1 ∗ · · · ∗ Tk)

B = 〈C1 : (T1, n1), . . . , Cm : (Tm, nm)〉
C = [Cj1 , . . . , Cjk] ∀i : pi ∈ P(Tji)

λ b.
∑

~a∈τB(C,b)

∏
i=1,...,k

pi(ai) ∈ P(B)

Figure 4. Defining the set P(T) of base polynomials for T .

? ∈ I(T)

∀j : Ij ∈ I(Tj)

(I1, . . . , Ik) ∈ I(T1 ∗ · · · ∗ Tk)

B = 〈C1 : (T1, n1), . . . , Cm : (Tm, nm)〉 ∀i : Iji ∈ I(Tji)

[〈I1, Cj1 〉 , . . . ,
〈
Ik, Cjk

〉
] ∈ I(B)

Figure 5. Defining the set I(T) of indices for type T .

tuition that has been described at the beginning of this section.
While the definitions are succinct and simple, they define a very
rich structure that has important closure properties. First, base
polynomials are non-negative. Second, they are closed under the
discrete difference operators ∆i where ∆i p is defined through
∆i p(x1, . . . , xn) = p(x1, . . . , xi + 1, . . . , xn)− p(x1, . . . , xn).

In Figure 4, we define for each simple type T a set P(T) of
functions p : JT K→ N that map values of type T to natural numbers.
The resource polynomials for type T are then given as non-negative
rational linear combinations of these base polynomials.

Let B = 〈C1 : (T1, n1), . . . , Cm : (Tm, nm)〉 be an inductive
type. Let C = [Cj1 , . . . , Cjk] and b ∈ JBK. We define a set
τB(C, b) of k-tuples as follow: τB(C, b) is the set of k-tuples
(a1, . . . , ak) such that Cj1(a1,~b1), . . . , Cjk (ak,~bk) are nodes in
the tree b ∈ JBK and Cj1(a1,~b1) <pre · · · <pre Cjk (ak,~bk) for the
pre-order<pre on b. Like in the lambda calculus, we use the notation
λa. e(a) for the anonymous function that maps an argument a to
the natural number that is defined by the expression e(a). Every
set P(T) contains the constant function λa. 1. In the case of an
inductive data type B this constant function arises also for C = []
(one element sum, empty product).

To refer to the base polynomials in a systematic way we use
indices to enumerate them. In Figure 5, we inductively define for
each simple type T a set of indices I(T). For tuple types T1∗· · ·∗Tk
we identify the index ? with the index (?, . . . , ?). Similarly, we
identify the index ? with the index [] for inductive types.

Let T be a base type. For each index i ∈ I(T), we define a base
polynomial pi : JT K→ N as follows.

p?(a) = 1

p(I1,...,Ik)(a1, . . . , ak) =
∏

j=1,...,k

pIj (aj)

p[〈I1,C1〉,...,〈Ik,Ck〉](b) =
∑

~a∈τB([C1,...,Ck],b)

∏
j=1,...,k

pIj (aj)

Examples. To illustrate the definitions, we construct the set of
base polynomials for different data types.

(a) We first consider the inductive type singleton that has only
one constructor without arguments.

singleton = µX 〈Nil : unit〉

Then we have

JsingletonK = {Nil (())} and P(singleton) = {λa. 1, λ a. 0} .

To see why, consider the set T (C) = τsingleton(C, Nil (())) for dif-
ferent list of tuples of constructors C. If |C| > 1 then T (C) = ∅
because the tree Nil (()) does not contain any tuples of size 2.
Thus we have p[〈I1,C1〉,...,〈Ik,Ck〉](Nil (())) = 0 in this case
(empty sum). The only remaining constructor lists C are [] and
[Nil]. As always p[](Nil (())) = 1 (singleton sum). Further-
more p[〈?,Nil 〉](Nil (())) = 1 because τsingleton([Nil], Nil (())) =
{Nil (())} and P (unit) = {λa. 1}.

(b) Let us now consider the usual sum type

sum(T1, T2) = µX 〈 Left : T1, Right : T2〉 .
Then Jsum(T1, T2)K = { Left (a) | a ∈ JT1K} ∪ {Right (b) | b ∈
JT2K}. If we define

σC(p)(C′(a))

{
p(a) if C = C′

0 otherwise

then P(sum(T1, T2)) = {λx.1, λx.0}∪{σ Left (p) | p ∈ P(T1)}∪
{σ Right (p) | p ∈ P(T2)}.

(c) The next example is the list type

list(T) = µX 〈Cons : T∗X, Nil : unit〉 .
Then Jlist(T)K = {Nil (()), Cons (a1, Nil (())), . . .} and we write

Jlist(T)K = {[], [a1], [a1, a2], . . . | ai ∈ JT K} .
We then have τlist([Cons], [a1, . . . , an]) = {a1, . . . , an} and
τlist([Cons , Cons], [a1, . . . , an]) = {(ai, aj) | 1≤ i< j≤n}.
Let now C = [Cons , . . . , Cons] or C = [Cons , . . . , Cons , Nil]
for lists of length k and k + 1, respectively. Then we have
τlist(C, [a1, . . . , an]) = {(ai1 , . . . , aik) | 1≤ i1 < · · ·<ik ≤n}.
On the other hand, τlist(D, [a1, . . . , an]) = ∅ if D = Nil ::D′

for some D′ 6= []. Since
∑
~a∈τlist(C,[a1,...,an]) 1 =

(
n
k

)
and

λa. 1 ∈ P(T), we have {λ b.
(|b|
n

)
| n ∈ N} ⊆ P(list(T)) .

(d) Consider a list type with two different Cons -nodes (as in the
running example in Figure 1):

list2(T1, T2) = µX 〈C1 : T1∗X, C2 : T2 ∗X, Nil : unit〉
Then we write Jlist2(T1, T2)K = {[], [a1], [a1, a2], . . . | ai ∈
({C1} × JT1K) ∪ ({C2} × JT2K)} . Let b = [b1, . . . , bn]. We have
for example τlist2([C1], b) = {b1, . . . , bn | ∀i∃a : bi = (C1 , a)}
and τlist2([C1 , C2], [b1, . . . , bn]) = {(bi, bj) | ∀i, j ∃a, a′ : bi =
(C1 , a) ∧ bj = (C2 , a

′) ∧ 1 ≤ i < j ≤ n}.
If C = [C1 , . . . , C1] and |C| = k then

∑
~a∈τlist2(C,b) 1 =(|b| C1

k

)
where |b| C1 denotes the number of C1 -nodes in the list

b. Therefore we have {λ b.
(|b|C1

n

)
| n ∈ N} ⊆ P(list2(T))

and {λ b.
(|b|C2

n

)
| n ∈ N} ⊆ P(list2(T)). Now consider the

set D of constructor lists D such that D contains exactly k1

constructors C1 and k2 constructors C2 . If S =
⋃
D∈D τlist2(D, b)

then
∑
~a∈S 1 =

(|b| C1
k1

)(|b| C2
k2

)
. This means that such products of

binomial coefficients are sums of base polynomials.
(e) Coinductive types like stream(T) = µX 〈 St : T∗X〉 are

not inhabited in our language since we interpret them inductively.
A data structure of such a type cannot be created since we allow
recursive definitions only for functions.

Spurious Indices. The previous examples illustrate that for some
inductive data structures, different indices encode the same re-
source polynomial. For example, for the type list(T) we have
p[〈?,Nil 〉](a) = p[](a) = 1 for all lists a. Additionally, some in-
dices encode a polynomial that is constantly zero. For the type

list(T) this is for example the case for p〈?,Nil 〉 ::C if |C| > 0. We
call such indices spurious.

In practice, it is not beneficial to have spurious indices in the in-
dex sets since they slow down the analysis without being useful com-
ponents of bounds. It is straightforward to identify spurious indices
from the data type definition. The index [〈I1, C1〉 , . . . , 〈Ik, Ck〉] is
for example spurious if k > 1 and the branching number of Ci is 0
for an i ∈ {1, . . . , k − 1}.

Resource Polynomials. A resource polynomial p : JT K → Q+
0

for a simple type T is a non-negative linear combination of base
polynomials, i.e., p =

∑
i=1,...,m qi · pi for m ∈ N, qi ∈ Q+

0 and
pi ∈ P(T). We write R(T) for the set of resource polynomials for
the base type T .

Example. Consider again our running example from Figure 1.
For the function abmap, we derived the evaluation-step bound
3 + 12L + 12N . It corresponds to the following resource poly-
nomial. 12p(?,?,[〈?, Acons 〉]) + 12p(?,?,[〈?, Bcons 〉]) + 3p(?,?,[]) . For
the function asort’, we derived the evaluation-step bound 13 +
22KN + 13K2N + 15N , which corresponds to the resource
polynomial 26p(?,[〈[〈?,::〉,〈?,::〉], Acons 〉]) + 35p(?,[〈[〈?,::〉], Acons 〉]) +
15p(?,[〈[], Acons 〉]) + 13p(?,[]) .

Selecting a Finite Index Set. Every resource polynomial is de-
fined by a finite number of base polynomials. In an implementation,
we also have to fix a finite set of indices to make possible an effec-
tive analysis. The selection of the indices to track can be customized
for each inductive data type and for every program. However, we
currently allow the user only to select a maximal degree of the
bounds.

6. Resource-Aware Type System
In the following, we give an overview of the resource-aware type
system. All type rules—with detailed descriptions, details of the
soundness proof, and additional explanations—have been included
in the companion technical report [33].

Type Annotations. We use the indices and base polynomials to
define type annotations and resource polynomials.

A type annotation for a simple type T is a family

QT = (qI)I∈I(T) with qI ∈ Q+
0

We writeQ(T) for the set of type annotations for type T .
An annotated type is a pair (A,Q) where Q is a type annotation

for the simple type |A| where A and |A| are defined as follows.

A ::= X | A ref | A1 ∗ · · · ∗An | 〈[A1, . . . , An]→ B,Θ〉
| unit | µX. 〈C1 : A1∗Xn1 , . . . , Ck : Ak∗Xnk 〉

|A| is the simple type that can be obtained from A by remov-
ing all type annotations from function types. A function type
〈[A1, . . . , An]→ B,Θ〉 is annotated with a set

Θ ⊆ {(QA, QB) | QA ∈ Q(|A1 ∗ · · · ∗An|) ∧QB ∈ Q(|B|)} .

The set Θ can contain multiple valid resource annotations for
arguments and the result of the function.

Potential of Annotated Types and Contexts. Let (A,Q) be an
annotated type. Let H be a heap and let v be a value with H � ` 7→
a : |A|. Then the annotation Q defines the potential

ΦH(v : (A,Q)) =
∑

I∈I(T)

qI · pI(a)

where only finitely many qI are non-zero. For use in the type
system we need to extend the definition of resource polynomials
to type contexts and stacks. We treat them like tuple types. Let

Γ = x1:A1, . . . , xn:An be a type context and let Σ = B1, . . . , Bm
be a list of types. The index set I(Σ; Γ) is defined through
I(Σ; Γ)={(I1, . . . , Im, J1, . . . , Jn) | Ij∈I(|Bj |), Ji∈I(|Ai|} .

A type annotation Q for Σ; Γ is a family Q = (qI)I∈I(Σ;Γ) with
qI ∈ Q+

0 . We denote a resource-annotated context with Σ; Γ;Q.
Let H be a heap and V be an environment with H � V : Γ where
H � V (xj) 7→ axj : |Γ(xj)| . Let furthermore S = `1, . . . , `m be
an argument stack with H � S : Σ where H � `i 7→ bi : |Bi| for
all i. The potential of Σ; Γ;Q with respect to H and V is

ΦS,V,H(Σ; Γ;Q) =
∑

~I∈I(Σ;Γ)

q~I

m∏
j=1

pIj (bj)

m+n∏
j=m+1

pIj (axj)

Here, ~I = (I1, · · · , Im+n). In particular, if Σ = Γ = · then
I(Σ; Γ) = {()} and ΦV,H(Σ; Γ; q()) = q().

Folding of Potential Annotations. A key notion in the type system
is the folding for potential annotations that is used to assign potential
to typing contexts that result from a pattern match (unfolding) or
from the application of a constructor of an inductive data type
(folding). Folding of potential annotations is conceptually similar to
folding and unfolding of inductive data types in type theory.

Let B = µX. 〈. . . , C : A∗Xn, . . .〉 be an inductive data
type. Let Σ be a type stack, Γ, b:B be a context and let Q =
(qI)I∈I(Σ;Γ,y:B) be a context annotation. The C-unfolding CCB(Q)

of Q with respect to B is an annotation CCB(Q) = (q′I)I∈I(Σ;Γ′)

for a context Γ′ = Γ, x:A∗Bn that is defined by

q′(I,(J,L1,...,Ln)) =

{
q(I,〈J,C〉 ::L1···Ln) + q(I,L1···Ln) J = 0
q(I,〈J,C〉 ::L1···Ln) J 6= 0

Here, L1 · · ·Ln is the concatenation of the lists L1, . . . , Ln.
The C-unfolding CCB(Q) of Q is used in construction and

destruction of inductive data types to pass the potential from the
context to the resulting data structures without loss. It can be
encoded with simple linear constraints.

Lemma 1. Let B = µX. 〈. . . , C : A∗Xn, . . .〉 be an inductive
data type. Let Σ; Γ, x:B;Q be an annotated context, H � V :
Γ, x:B, H � S : Σ, H(V (x)) = (C, `), and V ′ = V [y 7→
`]. Then H � V ′ : Γ, y:A∗Bn and ΦS,V,H(Σ; Γ, x:B;Q) =
ΦS,V ′,H(Σ; Γ, y:A∗Bn;CCB(Q)).

Sharing. Let Σ; Γ, x1:A, x2:A;Q be an annotated context. The
sharing operation . Q defines an annotation for a context of
the form Σ; Γ, x:A. It is used when the potential is split between
multiple occurrences of a variable. Lemma 2 shows that sharing is a
linear operation that does not lead to any loss of potential.

Lemma 2. Let A be a data type. Then there are natural numbers
c
(i,j)
k for i, j, k ∈ I(|A|) such that the following holds. For

every context Σ; Γ, x1:A, x2:A;Q and every H,V with H � V :
Γ, x:A and H � S : Σ it holds that ΦS,V,H(Σ,Γ, x:A;Q′) =
ΦS,V ′,H(Σ; Γ, x1:A, x2:A;Q) where V ′ = V [x1, x2 7→ V (x)]

and q′(`,k) =
∑
i,j∈I(A) c

(i,j)
k q(`,i,j).

The coefficients c(i,j)k can be computed effectively. We were
however not able to derive a closed formula for the coefficients.
The proof is similar as in previous work [32]. For a context
Σ; Γ, x1:A, x2:A;Q we define .Q to be Q′ from Lemma 2.

Type Judgements. A resource-aware type judgement has the form

Σ; Γ;QM` e : (A,Q′)
where Σ; Γ;Q is an annotated context, M is a resource metric, A is
an annotated type, and Q′ is a type annotation for |A|. The intended
meaning of this judgment is that if there are more than Φ(Σ; Γ;Q)
resource units available then this is sufficient to cover the evaluation
cost of e under metricM . In addition, there are at least Φ(v:(A,Q′))
resource units left if e evaluates to a value v.

Notations. For K ∈ Q we write Q = Q′ + K to state that
q? = q′? +K ≥ 0 and qI = q′I for I 6= ? ∈ I. Let Γ = Γ1,Γ2 be
a context, let I = (I1, . . . , Ik) ∈ I(Γ1) and J = (J1, . . . , J`) ∈
I(Γ2) . We write (I, J) for the index (I1, . . . , Ik, J1, . . . , J`) ∈
I(Γ). Let Q be an annotation for a context Σ; Γ1,Γ2. For J ∈
I(Γ2) we define the projection πΓ1

(J,J′)(Q) of Q to Γ1 to be the
annotation Q′ for ·; Γ1 with q′I = q(J,I,J′). In the same way, we
define the annotations πΣ

J (Q) for Σ; · and πΣ;Γ1
J (Q) for Σ; Γ1.

Cost Free Types. We write Σ; Γ;Q cf` e : (A,Q′) to refer to cost-
free type judgments where cf is the cost-free metric with cf(K) = 0
for constants K. We use it to assign potential to an extended context
in the let rule. More info is available in previous work [30].

Subtyping. As usual, subtyping is defined inductively so that types
have to be structurally identical. The most interesting rule is the one
for function types:

Θ′ ⊆ Θ ∀i : A′i <: Ai B <: B′

〈[A1, . . . , An]→ B,Θ〉 <:
〈
[A′1, . . . , A

′
n]→ B′,Θ′

〉 (S:FUN)

A function type is a subtype of another function type if it allows
more resource behaviors (Θ′ ⊆ Θ). Result types are treated
covariant and arguments are treated contravariant.

Type Rules. Figure 6 shows selected type rules for annotated types.
All rules can be found in the TR.

The rule A:VAR can only be applied if the type stack Σ is empty.
It then simply accounts for the cost M var and passes the potential
that is assigned to the variable by the type context to the result type.
If the type stack is not empty then the rule A:VARPUSH has to
be applied. In this case, the variable x must have a function type.
We then look up a possible type annotation for the arguments and
the result (P, P ′) ∈ Θ in the type context, account for the cost of
variable look-up (M var) and behave as specified by (P, P ′). We do
not account for the cost of the “function application” because is cost
is handled in the rules A:APP and A:APPPUSH.

The rules A:APP and A:APPPUSH correspond to the simple type
rules T:APP and T:APPPUSH. In A:APP we assume that the type
stack is empty. We account for the cost M app

n of applying a function
to n arguments and look up valid potential annotations (P, P ′) for
the function body in the function annotation Θ. We then require that
we have the potential specified by P available and return potential
as specified by P ′. In the rule A:APPPUSH we account for two
applications: We first account for the function application as in the
rule A:APP. We then assume that the return type is a function type
and apply the arguments that are stored on the type stack Σ as we
do in the rule A:VARPUSH.

The rules A:ABSPUSH and A:ABSPOP for lambda abstraction
correspond the rules T:ABSPUSH and T:ABSPOP. As in the simple
type system we can use them to non-deterministically pop the type
stack Σ. When we do so in the rule A:ABSPOP, we create the
function annotation Θ by essentially deriving Σ; Γ;P M`λx.e :
(B,P ′) for every (P, P ′) ∈ Θ. However, we throw away all
potential that depends on the context Γ and only use the potential
that is assigned the arguments Σ (annotation R).

The rule A:CONS assigns potential to a new node of an induc-
tive data structure. The The C-unfolding CCB(Q′) transforms the
annotation Q′ to an annotation Q for the context ·;x:A∗Bn. In
A:MAT, the initial potential defined by the annotation Q of the
context Σ; Γ, x:B has to be sufficient to pay the costs of the evalu-
ation of e1 or e2 and the potential defined by the annotation Q′ of
the result type. To type the expression e2 we basically just use the
annotationQ. To type the expression e1, we rely on the C-unfolding
CCB(Q) that results in an annotation for the context Σ; Γ, y:A∗Bn.
In both rules, there is no loss of potential (see Lemma 1).

Q = Q′ +Mvar

·;x:B;QM`x : (B,Q′)
(A:VAR)

Γ = x1:A1, . . . , xn:An (P, P ′) ∈ Θ πΓ
? (Q) = P +Mapp

n Q′ = P ′

·;x : 〈[A1, . . . , An]→B,Θ〉 ,Γ;QM`xx1 · · ·xn : (B,Q′)
(A:APP)

(P, P ′) ∈ Θ P ′ = Q′

πΣ;·
? (Q) = P +Mvar

Σ;x : 〈Σ→ B,Θ〉 ;QM`x : (B,Q′)
(A:VARPUSH)

Γ = x1:A1, . . . , xn:An (P, P ′) ∈ Θ (R,R′) ∈ Θ′

πΓ
? (Q) = P +Mapp

n πΣ
? (Q)− q? + p′? = R R′ = Q′

Σ;x :
〈
[A1, . . . , An]→

〈
Σ→B,Θ′

〉
,Θ
〉
,Γ;QM`xx1 · · ·xn : (B,Q′)

(A:APPPUSH)

Σ; Γ, x:A;P M` e : (B,Q′)

Q = R+Mbind ∀ I, ~J : r
(I, ~J)

= p
(~J,I)

A::Σ; Γ;QM`λx.e : (B,Q′)
(A:ABSPUSH)

Q = Q′ +Mabs

∀(P, P ′) ∈ Θ : Σ; Γ;RM`λx.e : (B,P ′) ∧ r
(~I, ~J)

=

{
p~I if ~J = ~?
0 otherwise

·; Γ;QM`λx.e : (〈Σ→ B,Θ〉 , Q′)
(A:ABSPOP)

B = µX. 〈. . . C : A∗Xn . . .〉
Q = CCB(Q′)+M cons

·;x:A∗Bn;QM`C x : (B,Q′)
(A:CONS)

B = µX. 〈. . . C : A∗Xn . . .〉 Σ; Γ, y:A∗Bn;P M` e1 : (A′, P ′) P ′ = Q′

Σ; Γ, x:B;RM` e2 : (A′, R′) CCB(Q) = P+Mmat
1 Q = R+Mmat

2 R′ = Q′

Σ; Γ, x:B;QM` match x with C y → e1 | e2 : (A′, Q′)
(A:MAT)

Q = M share+ .(P)
Σ; Γ, x1:A, x2:A;P M` e : (B,Q′)

Σ; Γ, x:A;QM` share x as (x1, x2) in e : (B,Q′)
(A:SHARE)

Σ; Γ2,Γ1;P M` e1 Σ; Γ2, x:A;P ′ Q = P +M let
1

Σ; Γ2, x:A;RM` e2 : (B,Q′) P ′ = R+M let
2

Σ; Γ2,Γ1;QM` let x = e1 in e2 : (B,Q′)
(A:LET)

F , f1 = λx1.e1 and · · · and fn = λxn.en ∆ = f1:A1, . . . , fn:An
∀i : ·; Γi,∆;Pi M`λxi.ei : (Ai, P

′
i) πΣ;Γ0

~?
(Q) = πΣ;Γ0

~?
(P) +M rec + n·Mabs Σ; Γ0,∆;P M` e : (B,Q′)

Σ; Γ0, . . . ,Γn;QM` let rec F in e : (B,Q′)
(A:LETREC)

� � �
∀j ∈ I(Σ; ∆): j=~? =⇒ ·; Γ;πΓ

j (Q)M` e : (A, πx:A
j (Q′)) j 6=~? =⇒ ·; Γ;πΓ

j (Q) cf` e : (A, πx:A
j (Q′))

Σ; ∆,Γ;QM` e Σ; ∆, x:A;Q′
(B:BIND)

Figure 6. Selected type rules of the resource-aware type system.

The rule A:SHARE uses the sharing operation . P to related
the potentials defined by Σ; Γ, x:A;Q and Σ; Γ, x1:A, x2:A;P . As
with matching, there is no loss of potential (see Lemma 2).

In the rule A:LET the result of the evaluation of an expression e1

is bound to a variable x. The problem that arises is that the resulting
annotated context Σ; Γ2, x:A;R features potential functions whose
domain consists of data that is referenced by x as well as data that
is referenced in the type context Γ2. This potential has to be related
to data that is referenced by Γ2 and the free variables in e1 (i.e., the
variables in the type context Γ1).

To express the relations between mixed potentials before and af-
ter the evaluation of e1, we introduce an auxiliary binding judgement
of the from

Σ; ∆,Γ;QM` e Σ; ∆, x:A;Q′

in the rule B:BIND. The intuitive meaning of the judgement is
the following. Assume that e is evaluated in the context ∆,Γ,
FV(e) ∈ dom(Γ), and that e evaluates to a value that is bound
to the variable x. Then the initial potential Φ(Σ; ∆,Γ;Q) is larger
than the cost of evaluating e in the metric M plus the potential of
the resulting context Φ(Σ,∆, x:A;Q′).

Soundness. Our goal is to prove the following soundness state-
ment for type judgements. Intuitively, it says that the initial potential
is an upper bound on the high-water mark of the resource usage, no
matter how long we execute the program.

If Σ; Γ;QM` e : (A,Q′) and S, V,H M` e ⇓ w | (p, p′)
then p ≤ ΦS,V,H(Σ; Γ;Q).

To prove this statement by induction, we need to prove a stronger
statement that takes into account the return value and the annotated
type (A,Q′) of e. Moreover, the previous statement is only true
if the values in S, V and H respect the types required by Σ and
Γ. In addition to the aforementioned soundness, Theorem 1 states

a stronger property for terminating evaluations. If an expression e
evaluates to a value v then the difference between initial and final
potential is an upper bound on the resource usage of the evaluation.

Theorem 1 (Soundness). Let H � V : Γ, H � S : Σ, and
Σ; Γ;QM` e : (B,Q′).

1. If S, V,H M` e ⇓ (`,H ′) | (p, p′) then p ≤ ΦS,V,H(Σ; Γ;Q),
p− p′ ≤ ΦS,V,H(Σ; Γ;Q)− ΦH′(`:(B,Q′)), and H � ` : B.

2. If S, V,H M` e ⇓ ◦ | (p, p′) then p ≤ ΦS,V,H(Σ; Γ;Q).

Theorem 1 is proved by a nested induction on the derivation of
the evaluation judgment and the type judgment Σ; Γ;Q ` e:(B,Q′).
The inner induction on the type judgment is needed because of the
structural rules.

7. Implementation and Bound Inference
Figure 7 shows an overview of the implementation of RAML. It
consists of about 12000 lines of OCaml code, excluding the parts that
we reused from Inria’s OCaml implementation. The development
took around 8 person months. We found it very helpful to develop
the implementation and the theory in parallel, and many theoretical
ideas have been inspired by implementation challenges.

We reuse the parser and type inference algorithm from OCaml
4.01 to derive a typed OCaml syntax tree from the source program.
We then analyze the function applications to introduce bracket
function types. To this end, we copy a lambda abstraction for every
call site. We still have to implement a unification algorithm since
functions, such as let g = f x, that are defined by partial application
may be used at different call sites. Moreover, we have to deal with
functions that are stored in references.

In the next step, we convert the typed OCaml syntax tree
into a typed RAML syntax tree. Furthermore, we transform the
program into share-let-normal form without changing the resource

Parser

Type Inference

Source
Code

Typed
OCaml
Syntax
Tree

OCaml
Bytecode

RAML Compiler

Bracket-Type
Inference

Stack-Based
Type Checking

Explicit Let
Polymorphism

Typed
RAML
Syntax
Tree

OCaml-C
Bindings

RAML Analyzer

Resource Type
Interpretation

LP Solver
Frontend

Multivariate
AARA

CLP

Resource
Metrics

Resource
Bounds

Share-Let
Normal Form

Figure 7. Implementation of RAML.

behavior. For this purpose, each syntactic form has a free flag
that specifies whether it contributes to the cost of the original
program. For example, all share expressions that are introduced in
the transformation are free. We also insert eta expansions whenever
they do not influence resource usage.

After this compilation phase, we perform the actual multivariate
AARA on the program in share-let-normal form. Resource metrics
can be easily specified by a user. We include a metric for heap
cells, evaluation steps, and ticks. Ticks allows the user to flexibly
specify the resource cost of programs by inserting tick commands
Raml.tick(q) where q is a (possibly negative) floating-point number.
In principle, the bound inference works similarly as in previous
AARA systems [31, 34]: First, we fix a maximal degree of the
bounds and annotate all types in the derivation of the simple types
with variables that correspond to type annotations for resource
polynomials of that degree. Second, we generate a set of linear
inequalities, which express the relationships between the added
annotation variables as specified by the type rules. Third, we
solve the inequalities with Coin-Or’s LP solver CLP. A solution
of the linear program corresponds to a type derivation in which
the variables in the type annotations are instantiated according
to the solution. The objective function contains the coefficients
of the resource annotation of the program inputs to minimize the
initial potential. Modern LP solvers provide support for iterative
solving that allows us to prioritize minimization of higher-degree
annotations.

The type system we use in the implementation significantly
differs from the declarative version we describe in this article. For
one thing, we have to use algorithmic versions of the type rules in
the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [32]. For another thing, we annotate
function types not with a set of type annotations but with a function
that returns an annotation for the result type if presented with an
annotation of the argument type. These annotations are symbolic and
the actual numbers are yet to be determined. So function annotations
have the side effect of sending constraints to the LP solver.

To make the resource analysis more expressive, we also allow
resource-polymorphic recursion. This means that the type annotation
in the recursive call differs from the annotations in the argument
and result types of the function. To infer such types we successively
infer type annotations of higher degree [30, 32].

Most of the generated constraints have the form of a so-called
network-flow problem [55]. LP solvers can handle network problems
very efficiently and in practice CLP solves the constraints RAML
generates in linear time.

Apart from the analysis itself, we also implemented the con-
version of the derived resource polynomials into easily-understood
polynomial bounds and a pretty printer for RAML types and expres-
sions. Additionally, we implemented an efficient RAML interpreter
that we use for debugging and to determine the quality of the bounds.

8. Experimental Evaluation
The development of RAML has been driven by an ongoing experi-
mental evaluation with OCaml code. Our goal has been to ensure

let comp f x g = fun z → f x (g z)

let rec walk f xs =
match xs with | [] → (fun z → z)
| x::ys → match x with

| Left _ →
fun y → comp (walk f) ys (fun z → x::z) y

| Right l →
let x’ = Right (quicksort f l) in
fun y → comp (walk f) ys (fun z → x’::z) y

let rev_sort f l = walk f l []

RAML output for rev_sort (0.68s run time; steps metric):

10 + 23*K’ + 32*L’ + 20*L’*Y + 13*L’*Y^2

Figure 8. Modified challenge example from Avanzini et al. [10]
and shortened output of the automatic bound analysis. We assume
0 cost of the higher-order argument f. The derived bound on the
number of steps is tight. L′ is the number of Right-nodes in the
input list,K′ is the number Left-nodes, and Y is the maximal length
of the lists in the Right-nodes.

that the derived bounds are precise, that different programming
styles are supported, that the analysis is efficient, and that existing
code can be analyzed. During the evaluation, we applied our auto-
matic resource bound analysis to 411 functions and 6018 lines of
code. The experiments have been performed with a 2.6 GHz Intel
Core i5 MacBook Pro with 16GB RAM. The source code of RAML
as well as all OCaml files used in the experiments are available
online [28]. The website also provides an easy-to-use web interface
that can be used to experiment with RAML.

Analyzed Code and Limitations. The experiments have been per-
formed with code from four sources: extracted OCaml code from
Coq specifications in CompCert [47], code from an OCaml tuto-
rial [49], the OCaml standard library, and code written by us. For
the handwritten code, we mostly implemented classical textbook
algorithms and use cases inspired from real-word applications. The
textbook algorithms include algorithms for matrices, graph algo-
rithms, search algorithms, and classic examples from amortized
analysis such as functional queues and binary counters. The use
cases include energy management in an autonomous mobile device
and calling Amazon’s Dynamo DB from OCaml (see Section 9).

OCaml is a complex programming language and RAML does
not yet support all language features of OCaml. This includes
modules, object-oriented features, record types, built-in equality,
strings, nested patterns, and calls to native C functions. If RAML
can be applied to existing code then the results are often satisfactory.
For instance, we applied RAML to OCaml’s standard list library
list.ml: In 3.2 seconds RAML automatically derives evaluation-step
bounds for 47 of the 51 top-level functions. All derived bounds are
asymptotically tight. The 4 functions that cannot be bounded by
RAML all rely on functions whose termination (and thus resource
usage) depends on an arithmetic integer operations, which are
currently unsupported. The file list.ml consists of 428 LOC.

RAML fails if the resource usage can only be bounded by a
measure that depends on a semantic property of the program or
a measure that depends on the difference of the sizes of two data
structures. Loose bounds are often the result of inter-procedural
dependencies. For instance, the worst-case behaviors of two func-
tions f and g might be triggered by different inputs. However, the
analysis would add up the worst-case behaviors of both functions in
a program such as f(a);g(a). Another reason for loose bounds is that
a tight bound cannot be represented by our resource polynomials.

Example Experiment. To give an impression of the experiments
we performed, Figure 8 contains the output of an analysis of a
challenging function in RAML. The code is an adoption of an
example that has been recently presented by Avanzini et al. [10] as
a function that can not be handled by existing tools. To illustrate the
challenges of resource analysis for higher-order programs, Avanzini
et al. implemented a (somewhat contrived) reverse function rev for
lists using higher-order functions. RAML automatically derives a
tight linear bound on the number of steps used by rev.

To use more features of our analysis, we modified Avanzini
et al.’s rev in Figure 8 by adding an additional argument f and a
pattern match to the definition of the function walk. The resulting
type of walk is α → α → bool) → [(β ∗ α list) either list; (β ∗
α list) either list]→ (β∗α list) either list . Like before the modifica-
tion, walk is essentially the rev_append function for lists. However,
we assume that the input lists contain nodes of the form Left a or
Right b so that b is a list. During the reverse process of the first
list in the argument, we sort each list that is contained in a Right-
node using the standard implementation of quick sort (not given
here). RAML derives the tight evaluation-step bound that is shown
in Figure 8. Since the comparison function for quicksort (argument
f) is not available, RAML assumes that it does not consume any
resources. If rev_sort is applied to a concrete argument f then the
analysis is repeated to derive a bound for this instance.

CompCert Evaluation. We also performed an evaluation with the
OCaml code that is created by Coq’s code extraction mechanism
during the compilation of the verified CompCert compilers [47]. We
sorted the files topologically from their dependency requirements,
and analyzed 13 files from the top. We could not process the files
further down the dependency graph because they heavily relied on
modules which we do not currently support. Using the evaluation-
step metric, we analyzed 164 functions, 2740 LOC in 1300 seconds.

Figure 9 shows example functions from the CompCert code
base. As an artifact from the Coq code extraction, CompCert uses
two implementations of the reverse function for lists. The function
rev is a naive quadratic implementation that uses append and the
function rev’ is an efficient tail-recursive linear implementation.
RAML automatically derives precise evaluation step bounds for
both functions. As a result, a Coq user who is inspecting the derived
bounds for the extracted OCaml code is likely to spot performance
problems resulting from the use of rev.

Summary of Results. Table 1 contains a compilation of the ex-
perimental results. The first 3 rows show the results for OCaml
libraries, handwritten code, and the OCaml tutorial [49]. The last
row shows the results for CompCert [47]. The column LOC contains
the total number of lines of OCaml code that has been analyzed with
the respective metric. Similarly, the column Time contains the total
time of all analyses with this metric. The column #Poly contains
the number of functions for which RAML automatically derived a
bound. The columns #Const, #Lin, #Quad, and #Cubic show the
number of derived bounds that are constant, linear, quadratic, and
cubic. Finally, columns #Failed and Asym.Tight contain the number
of examples for which RAML is unable to derive a bound and the
number of bounds that are asymptotically tight, respectively. We
also experimented with example inputs to determine the precision
of the constant factors in the bounds. In general, the bounds are very
precise and often match the actual worse-case behavior.

The reported numbers result from the analysis of 411 non-trivial
functions that are (with a few exceptions) recursive and higher order.
The TR contains a short description of every function that is part of
the evaluation, along with its type, the run time of the analysis, and
the derived bounds. The functions have been automatically analyzed
using the steps metric that counts the number of evaluation steps
and the heap metric that counts the number of allocated heap cells.

let rec app l m = match l with | [] → m
| a :: l1 → a :: (app l1 m)

let rec rev = function | [] → []
| x :: l’ → app (rev l’) (x :: [])

let rec rev_append l l’ = match l with | [] → l’
| a :: l0 → rev_append l0 (a :: l’)

let rev’ l = rev_append l []

RAML output for rev (0.1s run time; steps metric):
3 + 9.5*M + 4.5*M^2

RAML output for rev’ (0.05s run time; steps metric):
7 + 9*M

Figure 9. Two implementations of list reverse that are used in the
CompCert C compiler [47]; one is linear and the other is quadratic.

Moreover, we have used the tick metric to add custom cost measures
to some of the functions. These measures vary from program to
program and include number of function calls, energy consumption,
and amount of data sent to the cloud. Details can be found in the
source code [28].

There are two main reasons for the difference between the
runtime of the analysis per function for the CompCert code (7.9s)
and the other evaluated code (0.29s). First, the CompCert code
contains more complex data structures and we thus track more
coefficients. Second, there is a larger percentage of functions for
which we cannot derive a bound (15.8% vs. 1.6%). As a result,
RAML looks for bounds of higher degree before giving up. Both
leads to a larger number of constraints to solve for the LP solver.
Finally, there are a few outlier functions that cause an unusually
long analysis time. This is possibly due to a performance bug.

In general, the analysis is efficient in practice. However, RAML
is slowing down if the analyzed program contains many variables or
functions with many arguments. Another source of complexity is the
maximal degree of polynomials in the search space. Depending on
the complexity of the program, the analysis becomes unusable when
searching for bounds with maximal degree 7 − 9. The efficiency
could be improved by combining amortized resource analysis with
data-flow analyses and heuristics that predict the parts of the input
that cause higher-degree resource usage.

9. Case Study: Bounds for DynamoDB Queries
Having integrated the analysis with Inria’s OCaml compiler enables
us to analyze and compile real programs. An interesting use case
of our resource bound analysis is to infer worst-case bounds on
DynamoDB queries. DynamoDB is a commercial NoSQL cloud
database service, which is part of Amazon Web Services (AWS).
Amazon charges DynamoDB users on a combination of number
of queries, transmitted fields, and throughput. Since DynamoDB
is a NoSQL service, it is often only possible to retrieve the whole
table—which can be expensive for large data sets—or single entries
that are identified by a key value. The DynamoDB API is available
through the Opam package aws. We make the API available to the
analysis by using tick functions that specify resource usage. Since
the query cost for different tables can be different, we provide one
function per action and table.

let db_query student_id course_id =
Raml.tick(1.0); Awslib.get_item ...

In the following, we describe the analysis of a specific OCaml
application that uses a database that contains a large table that stores

Metric #Funs LOC Time #Const #Lin #Quad #Cubic #Poly #Failed Asym.Tight
steps 243 3218 72.10s 16 130 60 28 239 4 225
heap 243 3218 70.36s 41 112 60 22 239 4 225

tick 174 2144 64.68s 19 79 53 19 174 0 160
CompCert steps 164 2740 1300.91s 32 99 7 0 138 26 137

Table 1. Overview of experimental results.

grades of students for different courses. Our first function computes
the average grade of a student for a given list of courses.

let avge_grade student_id course_ids =
let f acc cid =

let (length,sum) = acc in
let grade = match db_query student_id cid with

| Some q → q
| None → raise (Not_found (student_id,cid))

in (length +. 1.0, sum +. grade)
in
let (length,sum) = foldl f (0.0,0.0) course_ids in
sum /. length

In 0.03s RAML computes the tight bound 1 · m where m is the
length of the argument course_ids. We omit the standard definitions
of functions like foldl and map. However, they are not built-in into
our systems but the bounds are derived form first principles.

Next, we sort a given list of students based on the average grades
in a given list of classes using quick sort. As a first approximation
we use a comparison function that is based on average_grade.

let geq sid1 sid2 cour_ids =
avge_grade sid1 cour_ids >= avge_grade sid2 cour_ids

This results in O(n2m) database queries where n is the number of
students andm is the number of courses. The reason is that there are
O(n2) comparisons during a run of quick sort. Since the resource
usage of quick sort depends on the number of courses, we have to
make the list of courses an explicit argument and cannot store it in
the closure of the comparison function.

let rec partition gt acc l =
match l with

| [] → let (cs,bs,_) = acc in (cs,bs)
| x::xs → let (cs,bs,aux) = acc in

let acc’ = if gt x aux then (cs,x::bs,aux)
else (x::cs,bs,aux)

in partition gt acc’ xs

let rec qsort gt aux l = match l with | [] → []
| x::xs →

let ys,zs = partition (gt x) ([],[],aux) xs in
append (qsort gt aux ys) (x::(qsort gt aux zs))

let sort_students s_ids c_ids = qsort geq c_ids s_ids

In 0.31s RAML computes the tight bound n2m − nm for
sort_students where n is the length of the argument s_ids and
m is the length of the argument c_ids. The negative factor arises
from the translation of the resource polynomials to the standard
basis.

Given the alarming cubic bound, we reimplement our sorting
function using memoization. To this end we create a table that
looks up and stores for each student and course the grade in
the DynamoDB. We then replace the function db_query with the
function lookup.

let lookup sid cid table =
let cid_map = find (fun id → id = sid) table in
find (fun id → id = cid) cid_map

For the resulting sorting function, RAML computes the tight bound
nm in 0.87s.

10. Related Work
Our work builds on past research on automatic amortized resource
analysis (AARA). AARA has been introduced by Hofmann and
Jost for a strict first-order functional language with built-in data
types [34]. The technique has been applied to higher-order func-
tional programs and user defined types [41], to derive stack-space
bounds [16], to programs with lazy evaluation [52, 58], to object-
oriented programs [35, 38], to imperative integer programs [17] and
to heap-manipulating programs by integrating it with separation
logic [8]. All the aforementioned amortized-analysis–based systems
are limited to linear bounds. Hoffmann et al. [29, 31, 32] presented
a multivariate AARA for a first-order language with built-in lists
and binary trees. Hofmann and Moser [37] have proposed a gener-
alization of this system in the context of (first-order) term rewrite
systems. However, it is unclear how to automate this system. In this
article, we introduce the first AARA that is able to automatically
derive (multivariate) polynomial bounds that depend on user-defined
inductive data structures. Our system is the only one that can de-
rive polynomial bounds for higher-order functions. Even for linear
bounds, our analysis is more expressive than existing systems for
strict languages [41]. For instance, we can for the first time derive
an evaluation-step bound for the curried append function for lists.
Moreover, we integrated AARA for the first time with an existing
industrial-strength compiler.

Type systems for inferring and verifying resource bounds have
been extensively studied. Vasconcelos et al. [56, 57] described an
automatic analysis system that is based on sized-types [39] and
derives linear bounds for higher-order functional programs. Here
we derive polynomial bounds.

Dal Lago et al. [43, 44] introduced linear dependent types to
obtain a complete analysis system for the time complexity of the call-
by-name and call-by-value lambda calculus. Crary and Weirich [20]
presented a type system for specifying and certifying resource
consumption. Danielsson [22] developed a library for complexity
analyses of lazy functional programs that is based on dependent
types and manual cost annotations. The advantage of our technique
is that it is fully automatic.

Classically, cost analyses are often based on deriving and solving
recurrence relations. This approach was pioneered by Wegbreit [59]
and is actively studied for imperative languages [1, 5, 7, 25]. These
works are not concerned with higher-order functions and bounds
do not depend on user-defined data structures. Benzinger [11] has
applied Wegbreit’s method in an automatic complexity analysis
for Nuprl terms. However, complexity information for higher-order
functions has to be provided explicitly. Grobauer [26] reported a
mechanism to automatically derive cost recurrences from DML
programs using dependent types. Danner et al. [23, 24] propose a
technique to derive higher-order recurrence relations from higher-
order programs. Solving the recurrences is not discussed in these
works and in contrast to our work they are not able to automatically
infer closed-form bounds.

In an active area of research, techniques from term rewriting
are applied to complexity analysis [9, 15, 50]; sometimes in combi-
nation with amortized analysis [36]. These techniques are usually
restricted to first-order programs and time complexity. Avanzini et
al. [10] proposed a complexity preserving defunctionalization to

deal with higher-order programs. While the transformation is asymp-
totically complexity preserving, it is unclear whether this technique
can derive bounds with precise constant factors. The implementation
of the defunctionalization is combined with an existing first-order
bound analysis based on term rewriting. In contrast to RAML, the
resulting analysis tool can derive bounds for functions whose cost
depends on the sizes of data captured in closures. Advantages of
RAML include more precise (non-asymptotic) bounds, amortized
analysis, and efficient bound inference using LP solving.

Abstract interpretation based approaches to resource analysis [12,
18, 27, 53, 60] focus on first-order integer programs with loops.
Çiçek et al. [19] study a type system for incremental complexity. A
similar approach can be used to reason about the difference of the
resource usage of two programs [61]. An advantage of our approach
is that it is automatic.

Finally, there exists research that studies cost models to formally
analyze parallel programs. Blelloch and Greiner [13] pioneered
the cost measures work and depth. There are more advanced cost
models that take into account caches and IO (see, e.g., Blelloch and
Harper [14]), However, these works do not provide machine support
for deriving static cost bounds.

11. Conclusion
We have presented important steps towards a practical automatic
resource bound analysis for OCaml. Our three main contributions
are (1) a novel automatic resource analysis system that infers multi-
variate polynomial bounds that depend on size parameters of user-
defined data structures, (2) the first AARA that infers polynomial
bounds for higher-order functions, and (3) the integration of AARA
with the OCaml compiler.

As the title of this article indicates, there are many open problems
left on the way to a resource analysis system for OCaml that can be
used in every-day development. In the future, we plan to improve
the bound analysis for programs with side effects and exceptions
by adding potential to exceptions and mutable heap cells. We will
also work on mechanisms that allow user interaction for manually
deriving bounds if the automation fails. Another future research
topic is modules and generating efficient function summaries. We
are also working on generalization of our resource polynomials to
enable the inference of non-polynomial bounds and bounds that
depend on records, heights of data structures, and integers [17].

To make the system more practical, we will work on taking into
account garbage collection and the runtime system when deriving
time and space bounds. Finally, we will investigate techniques to
link the high-level bounds with hardware and the low-level code
that is produced by the compiler. These open questions are certainly
challenging but we are now in a good position to further push the
boundaries of resource bound analysis.

Acknowledgments
We thank Zhong Shao, Quentin Carbonneaux, and the members of
the PoP Group at Carnegie Mellon for discussions, comments, and
suggestions that improved this article and RAML. A special thanks
goes to Martin Hofmann, whose suggestion to integrate RAML with
OCaml at POPL’14 in San Diego started this work. Finally, we thank
the anonymous reviewers for their helpful feedback.

This article is based on research that has been supported, in part,
by AFRL under DARPA STAC award FA8750-15-C-0082, by NSF
under grant 1319671 (VeriQ), and by a Google Research Award.
Any opinions, findings, and conclusions contained in this document
are those of the authors and do not necessarily reflect the views of
the sponsoring organizations.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

Analysis of Java Bytecode. In 16th European Symposium on Program-
ming (ESOP’07), pages 157–172, 2007.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper
Bounds in Static Cost Analysis. Journal of Automated Reasoning,
pages 161–203, 2011.

[3] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and G. Puebla.
Automatic Inference of Resource Consumption Bounds. In Logic for
Programming, Artificial Intelligence, and Reasoning, 18th Conference
(LPAR’12), pages 1–11, 2012.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
Analysis of Object-Oriented Bytecode Programs. Theoretical Computer
Science, 413(1):142 – 159, 2012.

[5] E. Albert, J. C. Fernández, and G. Román-Díez. Non-cumulative
Resource Analysis. In Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, (TACAS’15), pages
85–100, 2015.

[6] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart
Programs. In 17th International Static Analysis Symposium (SAS’10),
pages 117–133, 2010.

[7] D. E. Alonso-Blas and S. Genaim. On the limits of the classical
approach to cost analysis. In 19th International Static Analysis
Symposium (SAS’12), pages 405–421, 2012.

[8] R. Atkey. Amortised Resource Analysis with Separation Logic. In
19th European Symposium on Programming (ESOP’10), pages 85–103,
2010.

[9] M. Avanzini and G. Moser. A Combination Framework for Complex-
ity. In 24th International Conference on Rewriting Techniques and
Applications (RTA’13), pages 55–70, 2013.

[10] M. Avanzini, U. D. Lago, and G. Moser. Analysing the Complexity
of Functional Programs: Higher-Order Meets First-Order. In 29th
International Conference on Functional Programming (ICFP’15),
pages 152–164, 2012.

[11] R. Benzinger. Automated Higher-Order Complexity Analysis. Theoret-
ical Computer Science, 318(1-2):79–103, 2004.

[12] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic
Bound Computation for Loops. In Logic for Programming, Artificial
Intelligence, and Reasoning - 16th International Conference (LPAR’10),
pages 103–118, 2010.

[13] G. E. Blelloch and J. Greiner. A Provable Time and Space Efficient
Implementation of NESL. In First International Conference on
Functional Programming (ICFP’96), pages 213–225, 1996.

[14] G. E. Blelloch and R. Harper. Cache and I/O Efficent Functional Algo-
rithms. In 40th Symposium on Principles of Programming Languages
(POPL’13), pages 39–50, 2013.

[15] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternat-
ing Runtime and Size Complexity Analysis of Integer Programs. In
Tools and Algorithms for the Construction and Analysis of Systems:
20th International Conference (TACAS’14), pages 140–155, 2014.

[16] B. Campbell. Amortised Memory Analysis using the Depth of Data
Structures. In 18th European Symposium on Programming (ESOP’09),
pages 190–204, 2009.

[17] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional Certified
Resource Bounds. In 36th Conference on Programming Language
Design and Implementation (PLDI’15), pages 467–478, 2015.

[18] P. Cerný, T. A. Henzinger, L. Kovács, A. Radhakrishna, and J. Zwirch-
mayr. Segment Abstraction for Worst-Case Execution Time Analysis.
In 24th European Symposium on Programming (ESOP’15), pages 105–
131, 2015.

[19] E. Çiçek, D. Garg, and U. A. Acar. Refinement Types for Incremental
Computational Complexity. In 24th European Symposium on Program-
ming (ESOP’15), pages 406–431, 2015.

[20] K. Crary and S. Weirich. Resource Bound Certification. In 27th
Symposium on Principles of Programming Languages (POPL’00),
pages 184–198, 2000.

[21] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic
complexity attacks. In 12th USENIX Security Symposium (USENIX’12),
pages 3–3, 2003.

[22] N. A. Danielsson. Lightweight Semiformal Time Complexity Analysis
for Purely Functional Data Structures. In 35th Symposium on Principles
of Programming Languauges (POPL’08), pages 133–144, 2008.

[23] N. Danner, D. R. Licata, and R. Ramyaa. Denotational Cost Semantics
for Functional Languages with Inductive Types. In 29th International
Conference on Functional Programming (ICFP’15), pages 140–151,
2012.

[24] N. Danner, J. Paykin, and J. S. Royer. A Static Cost Analysis for a
Higher-Order Language. In 7th Workshop on Programming Languages
Meets Program Verification (PLPV’13), pages 25–34, 2013.

[25] A. Flores-Montoya and R. Hähnle. Resource Analysis of Complex
Programs with Cost Equations. In Programming Languages and
Systems - 12th Asian Symposium (APLAS’14), pages 275–295, 2014.

[26] B. Grobauer. Cost Recurrences for DML Programs. In 6th International
Conference on Functional Programming (ICFP’01), pages 253–264,
2001.

[27] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and Effi-
cient Static Estimation of Program Computational Complexity. In 36th
Symposium on Principles of Programming Languauges (POPL’09),
pages 127–139, 2009.

[28] J. Hoffmann. RAML Web Site. http://raml.co, 2016.
[29] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with

Polynomial Potential. In 19th European Symposium on Programming
(ESOP’10), pages 287–306, 2010.

[30] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polymorphic Recursion and Partial Big-Step Operational Semantics.
In Programming Languages and Systems - 8th Asian Symposium
(APLAS’10), pages 172–187, 2010.

[31] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized
Resource Analysis. In 38th Symposium on Principles of Programming
Languages (POPL’11), pages 357–370, 2011.

[32] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized
Resource Analysis. ACM Transactions on Programming Languages
and Systems, 34:14:1–14:62, 2012.

[33] J. Hoffmann, A. Das, and S.-C. Weng. Towards Automatic Resource
Bound Analysis for OCaml. ArXiv e-prints, 2016.

[34] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for
First-Order Functional Programs. In 30th Symposium on Principles of
Programming Languages (POPL’03), pages 185–197, 2003.

[35] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis.
In 15th European Symposium on Programming (ESOP’06), pages 22–
37, 2006.

[36] M. Hofmann and G. Moser. Amortised Resource Analysis and Typed
Polynomial Interpretations. In Rewriting and Typed Lambda Calculi
(RTA-TLCA;14), pages 272–286, 2014.

[37] M. Hofmann and G. Moser. Multivariate Amortised Resource Analysis
for Term Rewrite Systems. In 13th International Conference on Typed
Lambda Calculi and Applications (TLCA’15), pages 241–256, 2015.

[38] M. Hofmann and D. Rodriguez. Automatic Type Inference for Amor-
tised Heap-Space Analysis. In 22nd European Symposium on Program-
ming (ESOP’13), pages 593–613, 2013.

[39] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive
Systems Using Sized Types. In 23rd Symposium on Principles of
Programming Languages (POPL’96), pages 410–423, 1996.

[40] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
Detecting Real-World Performance Bugs. In 33rd Conference on
Programming Language Design and Implementation PLDI’12, pages
77–88, 2012.

[41] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. Static Determi-
nation of Quantitative Resource Usage for Higher-Order Programs. In

37th Symposium on Principles of Programming Languages (POPL’10),
pages 223–236, 2010.

[42] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - 16th
Annual International Cryptology Conference (CRYPTO’96), pages 104–
113, 1996.

[43] U. D. Lago and M. Gaboardi. Linear Dependent Types and Relative
Completeness. In 26th IEEE Symposium on Logic in Computer Science
(LICS’11), pages 133–142, 2011.

[44] U. D. Lago and B. Petit. The Geometry of Types. In 40th Symposium
on Principles of Programming Languages (POPL’13), pages 167–178,
2013.

[45] X. Leroy. The ZINC Experiment: An Economical Implementation of
the ML Language. Technical report 117, INRIA, 1990.

[46] X. Leroy. From Krivine’s Machine to the Caml Implementation. http:
//pauillac.inria.fr/~xleroy/talks/zam-kazam05.pdf,
2005. Invited talk, May 17, Workshop on the Krivine and ZINC
Abstract Machines.

[47] X. Leroy. Formal Verification of a Realistic Compiler. Communications
of the ACM, 52(7):107–115, 2009.

[48] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon.
The OCaml system release 4.02. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2014.

[49] V. Nicollet. 99 problems (solved) in ocaml. https://ocaml.org/
learn/tutorials/99problems.html, 2016.

[50] L. Noschinski, F. Emmes, and J. Giesl. Analyzing Innermost Runtime
Complexity of Term Rewriting by Dependency Pairs. Journal of
Automated Reasoning, 51(1):27–56, 2013.

[51] O. Olivo, I. Dillig, and C. Lin. Static Detection of Asymptotic Per-
formance Bugs in Collection Traversals. In Conference on Program-
ming Language Design and Implementation (PLDI’15), pages 369–378,
2015.

[52] H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and K. Hammond.
Automatic Amortised Analysis of Dynamic Memory Allocation for
Lazy Functional Programs. In 17th International Conference on
Functional Programming (ICFP’12), pages 165–176, 2012.

[53] M. Sinn, F. Zuleger, and H. Veith. A Simple and Scalable Approach
to Bound Analysis and Amortized Complexity Analysis. In Computer
Aided Verification - 26th International Conference (CAV’14), page
743–759, 2014.

[54] R. E. Tarjan. Amortized Computational Complexity. SIAM J. Algebraic
Discrete Methods, 6(2):306–318, 1985.

[55] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer US, 2001.

[56] P. Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis,
School of Computer Science, University of St Andrews, 2008.

[57] P. B. Vasconcelos and K. Hammond. Inferring Costs for Recursive,
Polymorphic and Higher-Order Functional Programs. In 15th In-
ternational Conference on Implementation of Functional Languages
(IFL’03), pages 86–101, 2003.

[58] P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond. Type-Based
Allocation Analysis for Co-recursion in Lazy Functional Languages.
In 24th European Symposium on Programming (ESOP’15), pages 787–
811, 2015.

[59] B. Wegbreit. Mechanical Program Analysis. Communications of the
ACM, 18(9):528–539, 1975.

[60] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. Bound Analysis
of Imperative Programs with the Size-change Abstraction. In 18th
International Static Analysis Symposium (SAS’11), pages 280–297,
2011.

[61] E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann. Relational
Cost Analysis. In 44th Symposium on Principles of Programming
Languages (POPL’17), 2017. Forthcoming.

