
15-819: Resource Aware Programming Language

Lecture 19-20: AARA with Multivariate Polynomial
Potential

Jan Hoffmann

November 5, 2019

1 Introduction

This lecture introduces AARA with multivariate polynomial potential [HAH11, HDW17]. There
are two motivations for extending univariate AARA. First, many algorithms have bounds like n·m,
which cannot be expressed with univariate AARA. Second, even for algorithms that have univari-
ate bounds like n2, more complex mixed potential like n ·m is often needed for intermediate
potential in the program.

Multivariate AARA is an extension of univariate AARA. It preserves the principles of the
univariate system while expanding the set of potential functions so as to express a wide range
of dependencies between different data structures. Section 3 introduces resource polynomials,
the multivariate potential functions that I use in this lecture. In Section 4, we see how types can
be annotated with resource polynomials. Other than in univariate, potential annotations are
now global and there is exactly one annotation per type. Section 6 contains multivariate shift
operations as well as type rules that are used to derive annotated type judgments. In Section 7,
we state the soundness theorem.

2 Motivating Example

The univariate polynomial potential that we introduced is not as compositional as we might
expect, even for programs that only have a single input.

Consider for example the function quad_inner.

fun id1 l =
match l with
| [] → []
| x::xs →

let _ = tick 1.0 in
let xs’ = id1 xs in
x::xs’

fun map f l =
match l with
| [] → []
| x::xs →

let x’ = f x in
let xs’ = map f xs in
x’::xs’

fun append (l1,l2) =
match l1 with
| [] → l2
| x::xs →

1

let r = append (xs,l2) in
x::r

fun quad l =
match l with
| [] → []
| x::xs →

share xs as xs1, xs2 in
let xs’ = quad xs1 in
append (xs2, xs’)

fun quad_inner xs =
let xs’ = quad xs in
map id1 xs’

The only cost in the code originates from the function id1, which can be assigned the following
typing.

id1 : 〈L(1,0)(1),0〉→ 〈L(0,0)(1),0〉
The function map is used with argument id1 and applied to lists of lists. It has the following type.

map : (〈L(1,0)(1),0〉→ 〈L(0,0)(1),0〉) →〈L(0,0)(L(1,0)(1)),0〉→ 〈L(0,0)(L(0,0)(1)),0〉

Now consider the function quad l that computes a list of size
(|l |

2

)
that contains the i th

element of l i −1 times. Finally, the function quad_inner takes a lists of lists of units, applies the
function quad to the argument and then applies id1 to each inner list of the result.

Let us now analyze the resource consumption of quad_inner(l), where l = [v1, . . . , vn]. Since
we apply id1 to each inner list we need potential |vi | for each inner list vi , that is, the type of xs’
should be L(0,0)(L(1,0)(1)). Given that quad copies the i -th element of the argument i −1 times,
we would need a potential like (i −1)|vi | for every inner list vi . However, we cannot express such
a type in univariate AARA.

In with univariate potential, there seems a mismatch in the way the outer potential and
the inner potential is handled during pattern matching. In multivariate AARA, inner and outer
potential is treated uniformly and we can derive the aforementioned types.

3 Resource Polynomials

A resource polynomial maps a value of a some type to a non-negative rational number. Potential
functions in this section are given by such resource polynomials. The types we consider in this
lecture are given as follows.

τ ::= unit 1
arr(A;B) A → B
prod(τ1;τ2) τ1 ×τ2

L(τ) L(τ)

A,B ::= pot(τ;Q) 〈τ,Q〉
In contrast to univariate AARA there is a global potential annotation Q = (qi)i∈I that is a family
of non-negative rational numbers qi ∈Q≥0. We are constructing Q step-by-step and start with
the potential functions that we want to represent.

An analysis of typical polynomial computations operating on a list v = [a1, . . . , an] shows that
it consists of operations that are executed for every k-tuple (ai1 , . . . , aik) with 1 ≤ i1 < ·· · < ik ≤ n.
The simplest examples are linear map operations that perform some operation for every ai .
Other examples are common sorting algorithms that perform comparisons for every pair (ai , a j)
with 1 ≤ i < j ≤ n in the worst case.

The expressions of the language are defined later. We define values with the following
grammar as before. Function values are function closures that consist of an environment and

2

a (recursive) lambda abstraction. The definition is mutually recursive with the definition of
environments.

v ::= 〈〉
[]
v1 :: v2

〈v1, v2〉
clo(V ; f , x.e)

V ::= ·
V , x 7→ v

We can define the set of values for each type as follows.

�τ� = {v | v : τ}

We do not give the rules for the judgment v : τ. They are similar to the ones for linear AARA.

Base Polynomials For each type τ, we define a set B(τ) of functions p : �τ� → N that map
values of type τ to a natural number. The resource polynomials for type τ are then given as
non-negative linear combinations of these base polynomials. We define B(τ) as follows.

B(unit) = {λ(v)1}

B(A → B) = {λ(v)1}

B(τ1 ×τ2) = {λ(〈v1, v2〉) p1(v1)·p2(v2) | pi ∈B(τi)}

B(L(τ)) = {
λ([v1, . . . , vn])

∑
1≤ j1<···< jk≤n

∏
1≤i≤k

pi (v ji) | k ∈N, pi ∈B(τ)
}

For every τ, the set B(τ) contains the constant function λ(v)1. In the case of L(τ) this arises for
k = 0 (one element sum, empty product).

For example, the function λ(`)
(|`|

k

)
is in B(L(τ)) for every k ∈N; simply take p1 = . . . = pk = 1

in the definition of B(L(τ)). The function λ(〈`1,`2〉)
(|`1|

k1

) · (|`2|
k2

)
is in B(L(τ1),L(τ2)) for every

k1,k2 ∈N, and the function λ([`1, . . . ,`n])
∑

1≤i< j≤n
(|`i |

k1

)·(|` j |
k2

)
is in B(L(L(τ))) for every k1,k2 ∈N.

Example 1. The resource bound for the function quad_inner can be given by the base polynomial

λ([`1, . . . ,`n])
∑

1≤i< j≤n
(|` j |

2

)
.

Resource Polynomials A resource polynomial p : �τ�→Q≥0 is a non-negative linear combina-
tion of base polynomials, that is,

p(v) = ∑
i=1,...,m

qi ·pi (v)

for qi ∈Q≥0 and pi ∈B(τ). We write R(τ) for the set of resource polynomials for type τ.
An instructive, but not exhaustive, example is given by Rn =R(L(unit)×·· ·×L(unit)). The

set Rn is the set of linear combinations of products of binomial coefficients over variables
x1, . . . , xn , that is,

Rn = {
m∑

i=1
qi

n∏
j=1

(
x j

ki j

)
| qi ∈Q≥0,m ∈N,ki j ∈N} .

These expressions generalize the univariate polynomials of univariate polynomial AARA and
meet two conditions that are important to efficiently manipulate polynomials during the
analysis. Firstly, the polynomials are non-negative, and secondly, they are closed under the
discrete difference operators ∆i for every i . The discrete derivative ∆i p is defined through
∆i p(x1, . . . , xn) = p(x1, . . . , xi +1, . . . , xn)−p(x1, . . . , xn).

It can be shown that Rn is the largest set of polynomials enjoying these closure properties.
It would be interesting to have a similar characterisation of R(A) for arbitrary A. So far, we
know that R(A) is closed under sum and product (see Lemma 1) and are compatible with the

3

construction of elements of data structures in a very natural way (see Lemmas 2 and 3). This
provides some justification for their choice and canonicity. An abstract characterization would
have to take into account the fact that our resource polynomials depend on an unbounded
number of variables, e.g., sizes of inner data structures, and are not invariant under permutation
of these variables.

4 Annotated Types

The resource polynomials described in Section 3 are non-negative linear combinations of base
polynomials. The rational coefficients of the linear combination are present as type annotations
in our type system. To relate type annotations to resource polynomials we systematically name
base polynomials and resource polynomials for data of a given type.

If one considers only univariate polynomials then their description is straightforward. Every
list of size n has a potential of the form

∑
1≤i≤k qi

(n
i

)
. So we can describe the potential function

with a vector ~q = (q1, . . . , qk) in the corresponding list type L~q (τ). Since each annotation refers to
one size parameter only, univariate annotated types can be directly composed. For example, an
annotated type for a pair of lists has the form (L~q (τ1),L~p (τ2)).

In this lecture, we use multivariate potential functions, that is, functions that depend on the
sizes of different parts of the input. For a pair of lists of lengths n and m we have, for instance, a
potential function of the form

∑
0≤i+ j≤k qi j

(n
i

)(m
j

)
, which can be described by the coefficients

qi j . Potential functions can also refer to the sizes of different lists inside a list of lists, etc. That is
why we need to develop a set of indexes I(τ) that enumerate the basic resource polynomials pi

and the corresponding coefficients qi for a type τ.

Names For Base Polynomials To assign a unique name to each base polynomial I define the
index set I(τ) to denote resource polynomials for a given type τ. Interestingly, but maybe
coincidentally, I(τ) is essentially the semantics of τ with arrow types replaced by unit.

I(unit) = {∗}

I(A → B) = {∗}

I(τ1 ×τ2) = {(i1, i2) | i1 ∈ I(τ1) and i2 ∈ I(τ2)}

I(L(τ)) = {[i1, . . . , ik] | k ≥ 0, i j ∈ I(τ)}

The degree deg(i) of an index i ∈ I(τ) is defined as follows.

deg(∗) = 0

deg(i1, i2) = deg(i1)+deg(i2)

deg([i1, . . . , ik]) = k +deg(i1)+·· ·+deg(ik)

Define Ik (τ) = {i ∈ I(τ) | deg(i) ≤ k}. The indexes i ∈ Ik (τ) are an enumeration of the base
polyonomials pi ∈ B(τ) of degree at most k. For each i ∈ I(τ), we define a base polynomial
pi ∈B(τ) as follows: If τ= unit or τ= A → B for some A,B then

p∗(v) = 1.

If τ= τ1 ×τ2 is a product type and v = 〈v1, v2〉 then

p(i1,i2)(〈v1, v2〉) = pi1 (v1) ·pi2 (v2) .

If τ= L(τ′)is a list v = [v1, . . . , vn] then

p[i1,...,ik](v) = ∑
1≤ j1<···< jk≤n

pi1 (v j1) · · ·pik (v jk) .

I use the notation 0τ (or just 0) for the index in I(τ) such that p0A (v) = 1 for all v . We have 0unit =
∗ and 0τ1×τ2 = (0τ1 ,0τ2) and 0L(τ) = []. If τ= L(τ′) for τ′ a type then the index [0, . . . ,0] ∈ I(τ) of
length n is denoted by just n. We identify the index (i1, i2, i3, i4) with the index (i1, (i2, (i3, i4))).

4

For a list i = [i1, . . . , ik] I write i0 :: i to denote the list [i0, i1, . . . , ik]. Furthermore, I write i i ′ for
the concatenation of two lists i and i ′.

Recall that R(τ) denotes the set of nonnegative rational linear combinations of the base
polynomials.

Lemma 1. Let p, p ′ ∈R(τ) be resource polynomials. Then we have p +p ′ ∈R(τ), p ·p ′ ∈R(τ).
Moreover, deg(p +p ′) = max(deg(p),deg(p ′)), and deg(p ·p ′) = deg(p)+deg(p ′).

Proof. By linearity it suffices to show this lemma for base polynomials. For them, the claim
follows by structural induction.

Corollary 1. For every p ∈R(τ, A) there exists p ′ ∈R(τ) with deg(p ′) = deg(p) and p ′(a) = p(a, a)
for all a ∈ �τ�.

Proof. The proof follows directly from Lemma 1 noticing that base polynomials p ∈B(τ, A) take
the form pi ·pi ′ .

Lemma 2. Let v ∈ �τ� and ` ∈ �L(τ)� be a list. Let furthermore k ≥ 0 and let i0, . . . , ik ∈ I(τ) indexes
for type τ. Then we have

p[i0,i1,...,ik]([]) = 0

p[i0,i1,...,ik](v ::`) = p(i0,[i1,...,ik])(〈v,`〉)+p(0τ,[i1,...,ik])(〈v,`〉) .

Proof. Let `= [v1, . . . , vn]. Writing v0 for v we compute as follows.

p[i0,i1,...,ik](v ::`) = ∑
0≤ j0< j1<···< jk≤n

pi0 (v j0) ·pi1 (v j1) · · ·pik (v jk)

= ∑
1≤ j1<···< jk≤n

pi0 (v0) ·pi1 (v j1) · · ·pik (v jk)

+ ∑
1≤ j0< j1<···< jk≤n

pi0 (v j0) ·pi1 (v j1) · · ·pik (v jk)

= pi0 (v) · ∑
1≤ j1<···< jk≤n

pi1 (v j1) · · ·pik (v jk)

+ ∑
1≤ j0< j1<···< jk≤n

pi0 (v j0) ·pi1 (v j1) · · ·pik (v jk)

= pi0 (v) ·p[i1,...,ik](`)+p0(v) ·p[i0,i1,...,ik](`)

The statement p[i0,i1,...,ik]([]) = 0 is obvious as the sum in the definition of the corresponding
base polinomial is over the empty index set.

Lemma 3 characterizes concatenations of lists (written as juxtaposition) as they could occur
in the construction of tree-like data.

Lemma 3. Let `1,`2 ∈ �L(τ)� be lists of type τ. Then we have `1`2 ∈ �L(τ)� and p[i1,...,ik](`1`2) =∑k
t=0 p[i1,...,it](`1) ·p[it+1,...,ik](`2) for all indexes i j ∈ I(τ).

This can be proved by induction on the length of `1 using Lemma 2 or else by a decompo-
sition of the defining sum according to which indices hit the first list and which ones hit the
second.

Annotated Types and Potential Functions A type annotation for a type τ is defined to be a
family

Qτ = (qi)i∈I(τ) with qi ∈Q≥0 .

We say that Qτ is of degree (at most) k if qi = 0 for every i ∈ I(τ) with deg (i) > k. An annotated
type is a pair 〈τ,Qτ〉 of a type τ and a type annotation Qτ.

Let v : τ be a value of type τ. Then the type annotation Qτ defines the potential

Φ(v :〈τ,Qτ〉) =
∑

i∈I(τ)

qi ·pi (v) .

5

I usually define type annotations Qτ by only stating the values of the non-zero coefficients qi .
However, it is sometimes handy to write annotations (q0, . . . , qn) for a list of atomic types just as
a vector. Similarly, I write annotations (q0, q(1,0), q(0,1), q(1,1), . . .) for pairs of lists of atomic types
sometimes as a triangular matrix.

Examples

Unit The simplest annotated types are those for atomic types like unit. The indexes for unit
are I(unit) = {∗} and thus each type annotation has the form (unit, q0) for a q0 ∈Q≥0. It
defines the constant potential function Φ(v :〈unit, q0〉) = q0.

Simple Products Similarly, tuples of atomic types feature a single index of the form (∗, . . . ,∗)
and a constant potential function defined by some q(∗,...,∗) ∈Q≥0.

Unit Lists More interesting examples are lists of atomic types like, that is, L(unit). The set of
indexes of degree k is then

Ik (L(unit)) = {[], [∗], [∗,∗], . . . , [∗, ...,∗]}

where the last list contains k unit elements. Since we identify a list of i unit elements with
the integer i we have Ik (L(unit)) = {0,1, . . . ,k}. Consequently, annotated types have the
form (L(unit), (q0, . . . , qk)) for qi ∈Q≥0. The defined potential function is

Φ([v1, . . . , vn]:〈L(unit), (q0, . . . , qk)〉 = ∑
0≤i≤k

qi

(
n

i

)
.

Pairs of Unit Lists The next example is the type pr odT L(unit)l i unit of pairs of unit lists. The
set of indexes of degree k is

Ik (L(unit)×L(unit)) = {(i , j) | i + j ≤ k}

if we identify lists of unit indexes with their lengths i and j as usual. Annotated types are
then of the from (L(unit)×L(unit),Q) for a triangular k ×k matrix Q with non-negative
rational entries. If`1 = [a1, . . . , an], `2 = [b1, . . . ,bm] are two lists then the potential function
is

Φ(〈`1,`2〉),〈L(unit)×L(unit), (q(i , j))〉) =
∑

0≤i+ j≤k
q(i , j)

(
n

i

)(
m

j

)
.

Lists of Lists Finally, consider the type τ= L(L(unit)) of lists of lists of units. The set of indexes
of degree k is then

Ik (L(L(unit))) = {
[i1, . . . , im] | m ≤ k, i j ∈N,

∑
j=1,...,m

i j ≤ k −m
}

.

Thus we have Ik (L(L(unit))) = {0, . . . ,k}∪ {[1], . . . , [k −1]}∪ {[0,1], . . .}∪·· · . Let for instance
`= [[a11, . . . , a1m1], . . . , [an1, . . . , anmn]] be a list of lists and Q = (qi)i∈Ik (L(L(unit))) be a corre-
sponding type annotation. The defined potential function is then

Φ(`,〈L(L(unit)),Q〉) = ∑
[i1,...,il]∈Ik (τ)

∑
1≤ j1<···< jl≤n

q[i1,...,il]

(
m j1

i1

)
· · ·

(
m jl

il

)
.

In practice the potential functions are usually not very complex since most of the qi are zero.

6

The Potential of a Context For use in the type system, we have to extend the definition of
resource polynomials to typing contexts. We treat a context like a product type.

Let Γ = x1:τ1, . . . , xn :τn be a typing context and let k ∈ N. The index set I(Γ) is defined
through

Ik (Γ) = {
(i1, . . . , in) | i j ∈ Im j (τ j)

}
.

The index set Ik (Γ) is defined through

Ik (Γ) = {
(i1, . . . , in) | i j ∈ Im j (τ j),

∑
j=1,...,n

m j ≤ k
}

.

A type annotation Q of degree k for Γ is a family

Q = (qi)i∈Ik (Γ) with qi ∈Q≥0 .

We denote a resource-annotated context with Γ;Q. Let V : Γ be a well-formed environment with
respect to Γ. The potential of V under Γ;Q is

ΦV (Γ;Q) = ∑
(i1,...,in)∈Ik (Γ)

q~ı
n∏

j=1
pi j (V (x j))

In particular, if Γ=; then Ik (Γ) = {()} and ΦV (Γ; q()) = q(). I sometimes also write q0 for q().

5 Syntax and Cost Semantics

The expressions we consider are defined as follows.

e ::= x x
triv 〈〉
app(x1; x2) x1(x2)
fun(f , x.e) fun f x = e
nil []
cons(x1; x2) x1 :: x2

matL{e0; x1, x2.e1}(x) case x {nil ,→ e0 | cons (x1, x2) ,→ e1}
tick{q} tick q
let(e1; x.e2) let x = e1 in e2

share(x; x1, x2.e) share x as x1, x2 in e
pair(x1; x2) 〈x1, x2〉
letp(x; x1, x2.e) letp〈x1, x2〉 = x in e

The cost dynamics with the judgment

V ` e ⇓ v | (q, q ′)

can be defined in the same way as before.

6 Static Semantics

Type Judgments The declarative type rules define a multivariate resource-annotated typing
judgment of the form

Γ;Q ` e :〈τ,Q ′〉
where e is an expression, Γ;Q is a resource-annotated context, and 〈τ,Q ′〉 is a resource-annotated
type. The intended meaning of this judgment is that if there are more than Φ(Γ;Q) resource
units available then this is sufficient to pay for the cost of the evaluation e. In addition, there are
more than Φ(v :(τ,Q ′)) resource units left if e evaluates to a value v .

The type rules are given in Figure 1.

7

x:τ;Q ` x : 〈τ,Q〉 (M:VAR) ·;Q ` triv : 〈unit,Q〉 (M:UNIT)

A = 〈τ,P〉 P =πx2:τ
0 (Q)

x1 : A → B , x2 : τ;Q ` app(x1; x2) : B
(M:APP)

A = 〈τ,P〉 πx:τ
~0

(Q) = P ∀i 6=~0 : πx:τ
i (Q) = 0 Γ, f : A → B , x : τ;Q ` e : B

Γ;0 ` fun(f , x.e) : 〈A → B ,0〉 (M:FUN)

Γ, x1:τ1, x2:τ2;Q ` e : B

Γ, x:τ1 ×τ2;Q ` letp(x; x1, x2.e) : B
(M:LETP)

x1:τ1, x2:τ2;Q ` pair(x1; x2) : 〈τ1 ×τ2,Q〉 (M:PAIR)
q0 = q ′

~0

;;Q ` nil : (L(τ),Q ′)
(M:NIL)

Q =CL(Q ′)
x1:τ, x2:L(τ);Q ` cons(x1; x2) : (L(τ),Q ′)

(M:CONS)

R =πΓ0 (Q) Γ;R ` e1 : B P =CL(Q) Γ, x1:τ, x2:L(τ);P ` e2 : B

Γ, x:L(τ);Q ` matL{e1; x1, x2.e2}(x) : B
(M:MATL)

P =πΓ1
~0

(Q) Γ1;P ` e1 : (τ,P ′) Γ2, x:τ;R ` e2 : B P ′ =πx:τ
~0

(R)

∀~0 6= j ∈ I(Γ2): Γ1;P j
cf e1 : (τ,P ′

j) P j =πΓ1
j (Q) P ′

j =πx:τ
j (R)

Γ1,Γ2;Q ` let(e1; x.e2) : B
(M:LET)

Γ, x1 : τ1, x2 : τ2;P ` e : B Q =.(P)

Γ, x : τ;Q ` share(x; x1, x2.e) : B
(M:SHARE)

Γ;πΓ~0 (Q) ` e : B

Γ, x:τ;Q ` e : B
(M:WEAK)

Γ;P ` e : 〈τ,P ′〉 Q ≥ P Q ′ ≤ P ′

Γ;Q ` e : 〈τ,Q ′〉 (M:RELAX)

Γ;P ` e : 〈τ,P ′〉 Q = P + c Q ′ = P ′+ c

Γ;Q ` e : 〈τ,Q ′〉 (M:OFFSET)

Figure 1: Type rules for annotated types.

8

Notations Families that describe type and context annotations are denoted with upper case
letters Q,P,R, . . . with optional superscripts. I use the convention that the elements of the families
are the corresponding lower case letters with corresponding superscripts, that is, Q = (qi)i∈I ,
Q ′ = (q ′

i)i∈I , and Qx = (q x
i)i∈I .

Let Q,Q ′ be two annotations with the same index set I . I write Q ≤Q ′ if qi ≤ q ′
i for every i ∈ I .

For K ∈Q I write Q =Q ′+K to state that q~0 = q ′
~0
+K ≥ 0 and qi = q ′

i for i 6=~0 ∈ I . Let Γ= Γ1,Γ2 be

a context, let i = (i1, . . . , ik) ∈ I(Γ1) and j = (j1, . . . , jl) ∈ I(Γ2) . I write (i , j) to denote the index
(i1, . . . , ik , j1, . . . , jl) ∈ I(Γ).

Let Q be an annotation for a context Γ1,Γ2. For j ∈ I(Γ2) I define the projection π
Γ1
j (Q) of

Q to Γ1 to be the annotation Q ′ with q ′
i = q(i , j). The essential properties of the projections are

stated by Proposition 1. It shows how the analysis of juxtaposed functions can be broken down
to individual components.

Proposition 1. Let Γ, x:τ;Q be an annotated context and V : Γ, x:τ. Then

ΦV (Γ, x:τ;Q) = ∑
j∈I(τ)

ΦV (Γ;πΓj (Q)) ·p j (V (x)) .

Additive Shift A key notion in the type system is the multivariate additive shift that is used to
assign potential to typing contexts that result from a pattern match on lists.

Let Γ, y :L(τ) be a context and let Q = (qi)i∈I(Γ,y :L(τ)) be a context annotation of degree k. The
additive shift for lists CL(Q) of Q is an annotation CL(Q) = (q ′

i)i∈I(Γ,x1:τ,x2:L(τ)) of degree k for a
context Γ, x1:τ, x2:L(τ) that is defined through

q ′
(i , j ,`) =

{
q(i , j ::`) +q(i ,`) j = 0
q(i , j ::`) j 6= 0

Let us first look that the additive shift for some examples.

• Consider for instance a context `:L(unit) with a single integer list that features an an-
notation Q = (q0, . . . , qk) = (q[], . . . , q[0,...,0]). The shift operation CL for lists produces an
annotation for a context of the form x1:unit, x2:L(unit), namely

CL(Q) =Q ′ = (q ′
(0,0), . . . , q ′

(0,k)) such that q ′
(0,i) = qi +qi+1 for all i < k and q(0,k) = qk .

This is exactly the additive shift that used in univariate AARA. Like in the univariate system,
we use it in a context where ` points to a list of length n+1 and x2 is the tail of `. It reflects
the fact that

∑
i=0,...,k qi

(n+1
i

)=∑
i=0,...,k−1 qi+1

(n
i

)+∑
i=0,...,k qi

(n
i

)
.

• Now consider a context `1:L(unit),`2:L(unit);Q where Q = (q(i , j))i+ j≤k , `1 is a list of length
m, and `2 is a list of length n +1. The additive shift results in an annotation for a context
of the form `1:L(unit), x:unit,xs:L(unit) and the intention is that xs is the tail of `2, that is,
a list of length n. From the definition it follows that CL(Q) = (q ′

(i ,0, j))i+ j≤k where

q(i ,0, j) = q(i , j) +q(i , j+1) if i + j < k and q(i ,0, j) = q(i , j) if i + j = k.

The soundness follows from the fact that for i ≤ k, we have

k−i∑
j=1

q(i , j)

(
m

i

)(
n +1

j

)
=

(
m

i

)(k−i−1∑
j=0

(q(i , j) +q(i , j+1))

(
n

i

)
+q(i ,k−i)

(
n

k

))
.

Lemma 4 states the soundness of the shift operations.

Lemma 4. Let Γ, x:L(τ);Q be an annotated context, V , x 7→ v1 :: v2 : Γ, x:L(τ), and let V ′ =V , x1 7→
v1, x2 7→ v2. Then S′ : Γ, x1:τ, x2:L(τ) and ΦV (Γ, x:L(τ);Q) =ΦV ′ (Γ, x1:τ, x2:L(τ);CL(Q)).

Lemma 4 is a consequence of Lemma 2. One takes the linear combination of instances of its
second equation and regroups the right hand side according to the base polynomials for the
resulting context.

9

Lists The rule M:CONS assigns potential to a extended list. The additive shiftCL(Q ′) transforms
the annotation Q ′ for a list type into an annotation for the context x1:A, x2:L(τ). Lemma 4 shows
that potential is neither gained nor lost by this operation.

The rule M:MATL types pattern matching of lists. The initial potential defined by the anno-
tation Q of the context Γ, x:L(τ) has to be sufficient to pay the costs of the evaluation of e1 or
e2 (depending on whether the matched list is empty or not) and the potential defined by the
annotation Q ′ of the result type. To type the expression e1 of the nil case we use the projection
πΓ0 (Q) that results in an annotation for the context Γ. Since the matched list is empty in this
case no potential is lost by the discount of the annotations q(i , j) of Q where j 6= 0. To type the
expression e2 of the cons case we rely on the shift operation CL(Q) for lists that results in an
annotation for the context Γ, x1:τ, x2:L(τ). Again there is no loss of potential (see Lemma 4).

Sharing Let Γ, x1:τ, x2:τ;Q be an annotated context. The sharing operation .(Q) defines an
annotation for the context Γ, x:τ. It is used when the potential is split between multiple occur-
rences of a variable. The following lemma shows that sharing is a linear operation that does not
lead to any loss of potential.

Lemma 5. Let τ be a type. Then there are non-negative rational numbers c(i , j)
k for i , j ,k ∈ I(A)

and deg(k) ≤ deg(i , j) such that the following holds. For every context Γ, x1:τ, x2:τ;Q and V , x 7→
v : Γ, x:τ we have V , x1 7→ v, x2 7→ v : Γ, x1:τ, x2:τ and ΦV (Γ, x:τ;Q ′) =ΦV ′ (Γ, x1:τ, x2:τ;Q) where

q ′
(`,k) =

∑
i , j∈I(τ) c(i , j)

k q(`,i , j).

Lemma 5 is a direct consequence of Corollary 1. In fact, inspection of the argument of the

underlying Lemma 1 shows that the coefficients c(i , j)
k , are indeed natural numbers and can be

computed effectively.
For a context Γ, x1:τ, x2:τ;Q we define .(Q) to be the Q ′ from Lemma 5.

Proof. The task is to show that for every resource polynomial p(i , j)((v, v)) = pi (v) · pi (v) can
be written as a sum (possibly with repetitions) of pi ′ (v)’s. We argue by induction on τ. If τ is
an atomic type bool, int, or unit, we can simply write 1 ·1 as 1. If τ is a pair τ = (τ1,τ2) then
we have p(i , j)((v, w)) ·p(i ′, j ′)((v, w)) = pi (v)p j (w)pi ′ (v)p j ′ (w) = (pi (v)pi ′ (v))(p j (w)p j ′ (w)). By
induction hypothesis, (pi (v)pi ′ (v)) and (p j (w)p j ′ (w)) both are sums of elemtary resource poly-
nomials for τ1 or τ2, respectively. So the expression is a sum of terms of the form pi ′′ (v)p j ′′ (w),
which is p(i ′′, j ′′)((v, w)). If τ is a list τ= L(τ)′ we have to consider

p[i1,...,ik]([v1, . . . , vn]) ·p[i ′1,...,i ′
k′]

([v1, . . . , vn])

=
(∑

1≤ j1<...< jk≤n
pi1 (v j1) . . . pik (v jk)

)(∑
1≤ j ′1<...< j ′

k′≤n

pi ′1 (v j ′1) . . . pi ′
k′

(v j ′
k′

)
)

Using the distributive law, this can be considered as the sum over all possible ways to arrange
the j1, . . . , jk and j ′1, . . . , j ′k ′ relative to each other respecting their respective orders, including the
case that some ji coincide with some j ′i ′ . Each of term in this sum of fixed length (independent
of the lists) has the shape ∑

1≤ j ′′1 <...< j ′′
`
≤n

q1(v j ′′1) . . . q`(v j ′′
`

)

where each qr (v jr) is either a pis (v jr), a pi ′
s′

(v jr) or a product pir (v jr)pi ′
s′

(v jr). The latter can, by

induction hypothesis, be written as sum of pi ′′ (v jr)’s. Again, this presentation is independent of
the actual value of v jr . Using distributivity again, we obtain a sum of expressions of the form∑

1≤ j ′′1 <...< j ′′
`
≤n

pi ′′1 (v j ′′1) . . . pi ′′
`

(v j ′′
`

) = p[i ′′1 ,...,i ′′
`

]

10

Sequential Composition The rule M:LET uses cost-free type judgments

Γ;Q cf e : (τ,Q ′)

in which all expressions tick{q} are treated as tick{0} (so that the cost is zero). We use cost-free
judgments to assign potential to an extended context in the let rule.

M:LET can be explained in two steps. The first starts with the derivation of the judgment
Γ1;P ` e1 : (τ,P ′) for the sub-expression e1. The annotation P corresponds to the potential that is
exclusively attached to Γ1 by the annotation Q, namely P =πΓ1

~0
(Q). Now we derive the judgment

Γ2, x:τ;R ` e2 : B . The potential that is assigned by R to x:τ is the potential that resulted from
the judgment for e1, namely P ′ =πx:τ

~0
(R). The potential that is assigned by R to Γ2 is essentially

the potential that is assigned by to Γ2 by Q, namely πΓ2
~0

(Q) =πΓ2
0 (R).

The second step of the derivation is to relate the annotations in R that refer to mixed potential
between x:τ and Γ2 to the annotations in Q that refer to potential that is mixed between Γ1

and Γ2. To this end we remember that we can derive from a judgment Γ1;S ` e1 : 〈τ,S′〉 that
Φ(Γ1;S) ≥ Φ(v :〈τ,S′〉) if e1 evaluates to v . This inequality remains valid if multiplied with a
potential for φΓ2 =Φ(Γ2;T), that is, Φ(Γ1;S) ·φΓ2 ≥Φ(v :(τ,S′)) ·φΓ2 . To relate the mixed potential
annotations we thus derive a cost-free judgment Γ1;P j

cf e1 : (τ,P ′
j) for every~0 6= j ∈ I(Γ2). (We

use cost-free judgments to avoid paying multiple times for the evaluation of e1.) Then we equate
P j to the corresponding annotations in Q and equate P ′

j to the corresponding annotations in R ,

that is, P j =πΓ1
j (Q) and P ′

j =πx:τ
j (R). The intuition is that j corresponds to φΓ2 .

Note that things are a bit more complex than described here. The problem is that the function
types in Γ1 that are used in the judgments Γ1;P j

cf e1 : (τ,P ′
j) describe bounds on the cost of

the function bodies. However, we really want cost-free function types. So we should in fact again
use a set of function types for each function like we did for resource polymorphic recursion.
However, we would have cost-free and “normal” function types in the set then can be picked in
the respective typing modes.

7 Soundness

We can prove the usual soundness theorem for AARA. The prove follows the same structure as
for linear AARA. The additional complexity is largely handled lemmas by the previous lemmas.

Theorem 1 (Soundness of AARA). Let Γ;Q ` e : A and V : Γ. If V ` e ⇓ v | (p, p ′) for some v and
(p, p ′) then ΦV (Γ;Q) ≥ p and ΦV (Γ;Q)−Φ(v : A) ≥ p −p ′.

References

[HAH11] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource
Analysis. In 38th Symposium on Principles of Programming Languages (POPL’11),
2011.

[HDW17] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards Automatic Resource
Bound Analysis for OCaml. In 44th Symposium on Principles of Programming Lan-
guages (POPL’17), 2017.

11

