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1 Introduction

In the type systems we have studied so far, we have taken so-called structural properties for
granted. For example, consider the typing rule for variables.

Γ, x : τ` x : τ

In the rule, we view the context Γ′ ≡ Γ, x : τ as a function from variables to types, and are not
interested in the position at which x appears in Γ′ if we view it as a list. So we just assume that it
appears in the right-most position in the rule. Moreover, we are not interested in the domain
of Γ. Of course, Γ′ would be malformed if the variable x would appear in Γ or if other variables
would appear twice. However, we allow arbitrary other variables in Γ in the variable rule.

In substructural type systems we are more precise about such structural properties to control
the use of variables. They correspond to substructural logics (such as linear logic). Substructural
type systems find applications in memory management, access control, concurrent program-
ming, and (of course) resource analysis.

2 Structural Properties

Before we discuss substructural type systems, we define some structural properties that we are
interested in. To this end, we are very precise about type contexts. We define, as before

Γ ::= · | Γ, x : τ .

However, we now take the definition literally and view Γ as list x1 : τ1, . . . , xn : τn instead of a
function from variables to types. In particular, we do not identify lists with the same variables
and type assignments. The only requirement, we still have is that variables appear at most once
in a given context. For example, we have

x : τ, y : τ′ 6= y : τ′, x : τ

for well-formed contexts since x 6= y .

Exchange We say that a type system allows for exchange if the following rule is admissible.

Γ1, x : τ1, y : τ2,Γ2 ` e : τ

Γ1, y : τ2, x : τ1,Γ2 ` e : τ
(EXCH)

Intuitively, the rule states that the order of variables in type contexts does not matter in type
derivations. Type systems in which the exchange rule is not admissible are called ordered. In this
course, we will only study type systems that enjoy exchange.
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Type system Intuition Weakening Contraction
structural no restriction on variable use yes yes
affine variables are used at most once yes no
relevant variables are used at least once no yes
linear variables are used exactly once no no

Table 1: Substructural Type Systems

Weakening We say that a type system allows for weakening if the following rule is admissible.

Γ` e : τ

Γ, x : τ′ ` e : τ
( WEAK)

From the conclusion of the rule, we know that the variable x does not appear in Γ. And since
Γ ` e : τ, x is not free in e. So the rule states that we can always add an unused variable to a
context in a type derivation. Type systems without weakening are called relevant.

Contraction We say that a type systems allows for contraction if the following rule is admissible.

Γ, x1 : τ, x2 : τ` e : τ′

Γ, x : τ` [x, x/x1, x2]e : τ′
(CNTR)

A difference in the rule CNTR in comparison with the rules WEAK and EXCH is that the ex-
pression in the conclusion is different from the expression in the premise. In the expression
e ′ ≡ [x, x/x1, x2]e, we rename the occurrences of both x1 and x2 to x. So if x1 and x2 appear free
in e then x appears multiple times (free) in e ′. In this case, we also say that x is used multiple
times. Intuitively, the contraction rule states that it does not affect type judgments if a variable is
used more often. A type system that does not enjoy contraction is called affine. A type system
that does not enjoy contraction and weakening is called linear.

3 Substructural Type Systems

The type systems we have studied so far in the course enjoy exchange, weakening, and con-
traction. Consider a context Γ= x : τ1, y : τ2 in a typing such as Γ` e : τ. In the previous type
judgments, we have been able to

• use x once as in x : τ1, y : τ2 ` 〈x,〈〉〉
• use x multiple times as in x : τ1, y : τ2 ` 〈x, x〉
• use x not at all as in x : τ1, y : τ2 ` 〈y,〈〉〉

In a substructural type system, we view variables as resources and control how these resources
are used. We focus on three types of substructural type systems: linear type systems, affine type
systems, and relevant type systems. Another important class of substructural type systems are
ordered type systems. In ordered type systems, the order in which variables are introduced and
used is important. Linear, affine, and relevant type systems can be characterized by weakening
and contraction as in Table 1.

To study substructural type systems, we use the expressions and types of the simply-typed
lambda calculus with the unit type 1 as a base type. Expressions are variables, function applica-
tions, function abstractions, or the unit value.

e ::= x x
app(e1;e2) e1(e2)
lam{τ}(x.e) λ(x : τ)e
triv 〈〉
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Γ`` e : τ “expression e has type τ in context Γ”

x : τ`` x : τ
(L:VAR)

· `` triv : unit
(L:UNIT )

Γ, x:τ′ `` e : τ

Γ`` lam{τ′}(x.e) : τ′ → τ
(L:ABS)

Γ1 `` e1 : τ′ → τ Γ2 `` e2 : τ′

Γ1,Γ2 `` app(e1;e2) : τ
(L:APP)

Γ1, x : τ1, y : τ2,Γ2 `` e : τ

Γ1, y : τ2, x : τ1,Γ2 `` e : τ
(L:EXCH)

Figure 1: Linear type rules.

A type is either an arrow type τ1 → τ2 or the unit type 1.

τ ::= arr(τ1;τ2) τ1 → τ2

unit 1

3.1 Linear Type Systems

Our goal is to design a linear type system, that is, a type system that ensures that every variable
is used exactly once. To this end, we define the rules in Figure 1, which define the type judgment
Γ`` e : τ.

As before, the rules L:VAR and L:UNIT are axioms (leaves in type derivations). To maintain
the invariant that every variable is used once, we require that the context in the rule L:VAR

contains exactly the variable x. Similarly, we require that the context is empty in L:UNIT since
we do not use a variable in the unit value. In the rule L:ABS, the premise Γ, x:τ′ `` e : τ requires
that the variables in Γ and x have to be used exactly once in the function body e. However, the
function itself will be used exactly once in the program. In the rule L:APP, we spit up the context
Γ into Γ1 and Γ2. The two premises ensure that every variable in Γ1 is used exactly once in e1

and every variable in Γ2 is used exactly once in e2.
For example, we can derive the judgment f : 1 → 1 → τ, x : 1, y : 1 `` app(app( f ; x); y) : τ as

follows

f : 1 → 1 → τ`` f : 1 → 1 → τ
(L:VAR)

x : 1 `` x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 `` app( f ; x) : 1 → τ
(L:APP)

y : 1 `` y : 1
(L:VAR)

f : 1 → 1 → τ, x : 1, y : 1 `` app(app( f ; x); y) : τ
(L:APP)

Similarly we could derive the judgment

f : 1 → 1 → τ, x : 1 `` app(app( f ; x);〈〉) : τ .

However, we can not derive

f : 1 → 1 → τ, x : 1, y : 1 `` app(app( f ; x);〈〉) : τ

nor
f : 1 → 1 → τ, x : 1 `` app(app( f ; x); x) : τ .

Implicit Exchange In the following lectures, we will just assume the presence of the exchange
property without explicitly mentioning it or introducing a specific rule. Instead, we simply identify
contexts that contain the same variable-type pairs, irrespective of their order. For example, we
consider the linear type system to only consist of the rules L:VAR, L:UNIT, L:ABS, and L:APP.
With this view, the linear type rules are syntax directed, that is, there is exactly one type rule for
each syntactic form.
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3.2 Affine Type Systems

An affine type system ensures that every variable is used at most once. There are two possibilities
to turn the linear type system in Figure 1 into an affine one.

The fist option is to leave the existing type rules unchanged and add an additional weakening
rule. We write Γ à e : τ for the judgment that we derive with these rules.

Γ`a e : τ

Γ, x : τ′ `a e : τ
( WEAK)

As discussed earlier, the idea of the rule WEAK is that we can add an unused variable x to the
context of a type judgment.

Using WEAK and the linear rules, we can derive the judgment f : 1 → 1 → τ, x : 1, y : 1 à

app(app( f ; x);〈〉) : τ .

f : 1 → 1 → τ`a f : 1 → 1 → τ
(L:VAR)

x : 1 `a x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 `a app( f ; x) : 1 → τ
(L:APP)

· `a 〈〉 : 1
(L:UNIT )

y : 1 `a 〈〉 : 1
( WEAK)

f : 1 → 1 → τ, x : 1, y : 1 `a app(app( f ; x);〈〉) : τ
(L:APP)

We can easily show that every linear typing is also an affine typing. As the previous example
shows, the converse is not true.

Theorem 1. Let e be an expression. If Γ`` e : τ then Γ à e : τ.

A disadvantage of this extension of the linear rules is that the rule WEAK is not syntax-
directed, which means that it can be applied to every syntactic form. In contrast, the type rules
in the linear type system are syntax directed and there is exactly one rule for every syntactic form
(if we view the exchange rule as an implicit rule as discussed earlier). Such a syntax-directed
type system makes type checking straightforward and simplifies type inference.

The second option is to not add additional rules but to replace the axioms L:VAR and L:UNIT

with the rules A:VAR and A:UNIT defined below. The intuition is that we allow to an implicit
weakening of all variables in the context Γ. The advantage of this approach is that the rules are
syntax directed. A disadvantage is that we have to incorporate implicit waking into multiple
rules and that we restrict derivations to have a specific form.

Γ, x : τ`as x : τ
(A:VAR)

Γ`as triv : unit
(A:UNIT )

We write Γ às e : τ for the judgment that we derive with these rules. Using the rule A:UNIT,
we can derive the previous type judgment as follows.

f : 1 → 1 → τ`as f : 1 → 1 → τ
(L:VAR)

x : 1 `as x : 1
(L:VAR)

f : 1 → 1 → τ, x : 1 `as app( f ; x) : 1 → τ
(L:APP)

y : 1 `as 〈〉 : 1
(A:UNIT )

f : 1 → 1 → τ, x : 1, y : 1 `as app(app( f ; x);〈〉) : τ
(L:APP)

We can show that the syntax-directed and declarative approaches are equivalent as formal-
ized by the following theorem.

Theorem 2. Let e be an expression. Then Γ à e : τ if and only if Γ às e : τ.

3.3 Relevant Type Systems

In a relevant type system, we want to ensure that each variable is used at least once. This is of
course the case in the linear type system but we can be a bit more permissive. Like for the affine
type system, we can simply leave the (syntax-directed) linear type rules unchanged and add a
structural rule for contraction.

Γ, x1 : τ, x2 : τ`r e : τ′

Γ, x : τ`r [x, x/x1, x2]e : τ′
(CNTR)
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Γ.(Γ1,Γ2) “context Γ is shared as Γ1 and Γ2”

·.(·, ·) (SHARE0)
Γ.(Γ1,Γ2)

Γ, x : τ.(Γ1, x : τ,Γ2)
(SHAREL)

Γ.(Γ1,Γ2)

Γ, x : τ.(Γ1,Γ2, x : τ)
(SHARER)

Γ.(Γ1,Γ2)

Γ, x : τ.(Γ1, x : τ,Γ2, x : τ)
(SHAREB)

Figure 2: Sharing rules.

We write Γ r̀ e : τ for the resulting judgment. With the contraction rule we can derive the
judgment f : 1 → 1 → τ, x : 1 `` app(app( f ; x); x) : τ. We simply apply contraction and then use
the derivation linear of the linear judgment as before

· · ·
f : 1 → 1 → τ, x : 1, y : 1 `` app(app( f ; x); y) : τ

( T:APP)

f : 1 → 1 → τ, x : 1 `` app(app( f ; x); x) : τ
(CNTR)

Clearly, every linear type derivation is also a relevant derivation.

Theorem 3. Let e be an expression. If Γ`` e : τ then Γ r̀ e : τ.

As the examples show, the converse is not true and relevant and affine type systems are
incomparable.

There is also a syntax directed version of the relative type system. If we start again with the
linear type rules, a good idea is to modify the rule L:APP for function applications. However, the
standard rule

Γ`` e1 : τ′ → τ Γ`` e2 : τ′

Γ`` app(e1;e2) : τ
(L:APP)

is not quite what we want. It would result in a type system in which we have to use each variable
in Γ in both, e1 and e2. Instead, have to define a sharing judgment Γ.(Γ1,Γ2) that states that the
variables in Γ have to be used in Γ1, Γ2, or in both. The idea is formalized in Figure 2.

We can then define the syntax-directed relevant type system by replacing the rule L:APP in
the linear type system with the rule R:APP below, define the judgment Γ r̀s e : τ.

Γ1 `rs e1 : τ′ → τ Γ2 `rs e2 : τ′ Γ.(Γ1,Γ2)

Γ`rs app(e1;e2) : τ
(R:APP)

We can show that this rule is equivalent to adding the contraction rule.

Theorem 4. Let e be an expression. Then Γ r̀ e : τ if and only if Γ r̀s e : τ.

A less elaborate way of obtaining a syntax-directed contraction rule is to introduce a syntactic
form that makes multiple uses of a variable explicit in the syntax.

e ::= . . .
share(e1; x1, x2.e2) share e1 as x1, x2 in e2

The syntactic form share(e1; x1, x2.e2) is like a let binding that binds the result of e1 to both x1

and x2. The rule of evaluation dynamics is as follows.

e1 ⇓ v1 [v1, v1/x1, x2]e2 ⇓ v

share(e1; x1, x2.e2)
(E:SHARE)
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The type rule that encodes contraction is as expected.

Γ1 `rs e1 : τ′ Γ2, x1 : τ′, x2 : τ′ `rs e2 : τ

Γ1,Γ2 `rs share(e1; x1, x2.e2) : τ
(E:SHARE)

3.4 Controlling Structural Properties

In the remainder of this course, we will often use a linear type system that is extended with both
weakening and contraction. This leads to a “standard” structural type discipline but it enables
us to precisely control the structural properties. For example, we can mix linear and unrestricted
types in the same context by allowing sharing and weakening for some types only.

If we write Γ ` e : τ for the regular typing judgment from the cost-semantics lecture and
Γ ù e : τ for the judgment we obtain by extending the linear rules from Figure 1 with the rules
WEAK and CNTR then we can prove the following theorem.

Theorem 5. Let e be an expression. Then Γ` e : τ if and only if Γ ù e : τ.
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