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1 Introduction

In previous lectures, we have studied automatic amortized resource analysis (AARA) for deter-
ministic programs. In recent years, probabilistic programming becomes increasingly popular
and has a wide range of applications such as randomized algorithms, cryptographic construc-
tions, and machine learning. Reasoning rigorously about probabilistic programs introduces new
possibilities and challenges. In terms of resource bound analysis, so far we have talked about
worst-case resource usage, but when probabilities come into the picture, average-case resource
usage makes more sense.

In this lecture, we extend AARA to derive upper bounds on the expected usage of monotone
resources, such as time, for probabilistic programs. We extend our simple functional language
that features pairs and lists with probabilistic constructs, adapting ideas from an automatic
amortized resource analysis for imperative probabilistic programs [NCH18]. For simplicity, we
only consider linear AARA, while it is straightforward to extend the type system with univariate
and multivariate polynomial bounds. It will be clear that the extended type system has all the
prominent features of AARA: precise, compositional, and efficient (through linear programming).

We also need a new cost semantics of probabilistic programs for formal development. We
study two operational semantics introduced by Lago et al. [BLGS16]: one is trace-based, the other
distribution-based. While the trace-based semantics is more intuitive as a direct extension of
the evaluation dynamics with resource effects introduced in previous lectures, the distribution-
based semantics is more suitable for presenting and proving the soundness theorem.

2 Probabilistic Programs

Syntax The syntax of our probabilistic programming language is given by the grammar below.
It is a simple ML-like language with pairs and lists, except that an extra probabilistic-branching
expression flip{e1;e2}(p) is introduced to execute e1 or e2 at random. The intuitive meaning
of the flip expression is to flip a biased coin, which shows head with probability p, or tail with
probability (1−p), then execute e1 if the coin shows head, or execute e2 if the coin shows tail.

e ::= x x
triv 〈〉
fun( f , x.e) fun f x = e
app(x1; x2) x1(x2)
pair(x1; x2) 〈x1, x2〉
letp(x; x1, x2.e) letp〈x1, x2〉 = x in e
nil [ ]
cons(x1; x2) x1 :: x2

matL{e0; x1, x2.e2}(x) case x {[] ,→ e0 | x1 :: x2 ,→ e2}
tick{q} tick q
let(e1; x.e2) let x = e1 in e2

share(x; x1, x2.e) share x as x1, x2 in e
flip{e1;e2}(p) flip p {H ,→ e1 | T ,→ e2}
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Elementary Probability Theory We recall some essential concepts from elementary probabil-
ity theory. You can find more serious mathematical development of probabilities in textbooks
on measure theory [Wil91, Bil12].

Consider a random experiment. Let Ω denote the set of all the possible outcomes, called the
sample space. A probability space is a pair (Ω,P), where P :Ω→ [0,1] is a probability distribution
onΩ, i.e.,

∑
ω∈ΩP(ω) = 1. The probability of an event E ⊆Ω, writtenP(E ), is defined as

∑
ω∈E P(ω).

We often write P(θ) for the probability of a statement θ, i.e., P({ω | θ(ω) is true}). A random
variable X :Ω→R∪ {−∞,+∞} is a function from a probability space to extended real numbers.
The expected value of a random variable X is the weighted average E(Ω,P)(X ) :=∑

ω∈Ω X (ω) ·P(ω).
We often write E(X ) if there is no ambiguity in the choice of the probability space. An important
property of the expectation is linearity. If X and Y are random variables and a,b ∈ R, then
(aX +bY ) is a random variable and E(aX +bY ) = aE(X )+bE(Y ).

Example 1 (Experiments of Coin Flips). Consider an experiment that flips an unbiased coin
twice. We can take Ω= {HH,HT,TH,TT} where H and T stands for the head and the tail of the
coin, respectively. Because the coin is unbiased, the probability distribution is uniform over the
sample space, i.e., P(ω) = 1/4 for all ω ∈Ω. As an instance of events and statements, we have

P(“at least one head is obtained”) =P({HH,HT,TH}) = 3

4
.

Consider another experiment that flips the same biased coin for n times. Suppose the coin
shows head with probability p, or tail with probability (1−p). We take Ω= {H,T}n . For each coin
flip sequence ω=ω1 · · ·ωn ∈Ω, its probability is the product of the probability of the outcome of
each coin flip, i.e., P(ω) = p](i≤n:ωi=H)(1−p)](i≤n:ωi=T), where ](A) returns the number of elements
in the set A. As an instance of events and statements, we have

P(“exact k heads are obtained”) =P({ω ∈ {H,T}n : ](i ≤ n :ωi =H) = k ∧ ](i ≤ n :ωi =T) = n −k})

=
(

n

k

)
pk (1−p)n−k .

Now we present several probabilistic programs and analyze their resource usage manually.

Example 2 (Biased Random Walk with One End). The following program implements a 1-
dimensional random walk. We represent a natural number n ∈N by a unit list `= [〈〉, · · · ,〈〉] of
size n. If the current position n is zero, then the program terminates. Otherwise, it proceeds to
(n −1) with probability 3/4, or (n +1) with probability 1/4. We use ticks to count the number of steps
before the random walk reaches zero.

fun brdwalk l =
match l with
| [] → ()
| _ :: xs →

let _ = tick 1 in
match flip(3/4) with
| H → brdwalk(xs)
| T → brdwalk(() :: () :: xs)

First let’s analyze the worst-case bound on the ticks. If the program always observes tails from
coin flips, i.e., the random walk always increases the current position by one, the program will
not terminate. Indeed, the worst-case bound on the ticks is infinity. However, this worst case
rarely happens, and the program indeed terminates with probability one, called almost-sure (a.s.)
termination [FFH15].

Now let’s reason about the average-case bound on the ticks. We take the sample space Ω as all
possible executions of the program. Let P maps these executions to their probabilities with respect
to the coin flips. Then we can define a random variable T :Ω→Q≥0∪{∞} that maps an execution
to the number of ticks at the termination of the execution. If an execution will not terminate, then
we take the limit along the infinite execution, which in this example, is indeed ∞. The average
number of ticks is then defined as the expected value E(T ) in the probability space (Ω,P).
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Let’s try to use recurrence relations to analyze E(T ). Let R(n) be the expectation E(T ) when
` is initially a unit list of size n. Obviously, R(0) = 0. For n ≥ 1, we know the program executes
tick{1}, and then recurses on a list of size (n −1) with probability 3/4, or a list of size (n +1) with
probability 1/4. Because R(n) accounts for the average case, R(n) should consist of a weighted
average of R(n +1) and R(n −1) with respect to the branching probabilities as follows1

R(n) = 1+ 3

4
R(n −1)+ 1

4
R(n +1) for n ≥ 1.

To solve the recurrence relation using the techniques in previous lectures, we still need to figure out
an initial value R(1). If we solve it anyway by treating R(1) as a constant, we obtain the following
solution

R(n) = R(1)−2

2
·3n + 2−R(1)

2
+2n.

Intuitively, the expected number of steps for one reaches zero from one should be the same as
that for one reaches one from two. By the linearity of expectations, therefore, it should hold that
R(2) = R(1)+R(1). With the extra information, we derive R(1) = 2 and thus R(n) = 2n.

Example 3 (Unbiased Random Walk with Two Ends). The following program implements a 1-
dimensional random walk with two ends. We represent the current position by a pair of “distances”
from the left end and the right end. As in the last example, we use unit lists ` and r to represent
natural numbers. Note that in this example, we consider unbiased coin flips. It is a standard
result from probability theory that the random walk terminates with probability one.

fun urdwalk (l, r) =
match l with
| [] → ()
| _ :: xs →

match r with
| [] → ()
| _ :: ys →

let _ = tick 1 in
match flip(1/2) with
| H → urdwalk(xs, () :: () :: ys)
| T → urdwalk(() :: () :: xs, ys)

Similar to the last example, let E(T ) denote the expected value of ticks. Let m = |`| and n = |r | be
the sizes of the lists that indicate the current position. Let R(m,n) be the expectation E(T ) when `
and r are initially units lists of size m and n, respectively. Then we extract the following recurrence
relation

R(0,n) = 0,

R(m,0) = 0,

R(m,n) = 1+ 1

2
R(m −1,n +1)+ 1

2
R(m +1,n −1) for n ≥ 1,m ≥ 1.

We claim that R(m,n) = m ·n is a solution to the system above. Indeed, for the third equation, we
have

1+ 1

2
R(m −1,n +1)+ 1

2
R(m +1,n −1) = 1+ 1

2
(m −1)(n +1)+ 1

2
(m +1)(n −1)

= 1+ 1

2
(m ·n +m −n −1+m ·n −m +n −1)

= 1+m ·n −1

= m ·n.

1Indeed, this can be justified by the law of total expectations: E(X ) = E(X | A)P(A)+E(X | B)P(B), where {A,B} is a
partition of Ω and E(X | A) is the conditional expectation of X on the subset A of the sample space.
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Example 4 (Problems with Negative Ticks). The following program implements an unbiased
1-dimensional random walk with one termination position at zero. It is a known result from
probability theory that the random walk terminates with probability one, however, the expected
number of recursions (aka steps) before termination is infinity.

fun nrdwalk l =
match l with
| [] → ()
| _ :: xs →

match flip(1/2) with
| H → let _ = tick 1 in nrdwalk(xs)
| T → let _ = tick -1 in nrdwalk(() :: () :: xs)

We no longer use ticks to count the number of steps before reaching zero. Instead, we use ticks to
keep track of how many steps the walker has taken towards zero. Intuitively, when the program
terminates, the net cost should coincide with the size |`| of the initial list `.

Because the program uses negative ticks, we define R(n) to take values in the resource monoid
where n = |`| is the size of the initial list `. Then we extract the following recurrence relation

R(0) = (0,0),

R(n) = 1

2
((1,0) ·R(n −1))+ 1

2
((0,1) ·R(n +1)).

We claim that R(n) = (n,0) is a solution to the system above. Indeed, for the second equation, we
have

1

2
((1,0) ·R(n −1))+ 1

2
((0,1) ·R(n +1)) = 1

2
((1,0) · (n −1,0))+ 1

2
((0,1) · (n +1,0))

= 1

2
(n,0)+ 1

2
(n,0)

= (n,0).

Let’s consider a variant of the probabilistic program above.

fun nrdwalk’ l =
match l with
| [] → ()
| _ :: xs →

let _ = tick -1 in
match flip(1/2) with
| H → let _ = tick 2 in nrdwalk’(xs)
| T → nrdwalk’(() :: () :: xs)

Intuitively, when the variant terminates, the net cost should also be |`| where ` is the initial list.
However, we claim that R(n) = (0,0) is an unsound solution to the variant. Indeed, we have

(0,1) · (
1

2
((2,0) ·R(n −1))+ 1

2
R(n +1)) = (0,1) · (

1

2
((2,0) · (0,0))+ 1

2
(0,0))

= (0,1) · (1,0)

= (0,0).

Although we can interchange the order of E(·) and + by linearity of expectations, we cannot
interchange the order of E(·) and the resource monoid composition. As pointed out by Chatterjee
et al. [WFG+19], negative ticks need to be treated differently in resource analysis for probabilistic
programs via techniques from martingale theory. In this lecture, we will not cover this topic and
simply assume all the ticks are nonnegative.

3 Linear AARA with Probabilistic Branching

An Informal Account Let’s try to analyze probabilistic programs with the potential method.
Recall that Φ : State→Q≥0 is a potential function if for all state S and operation o, the following
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holds
Φ(S) ≥ cost(o)+Φ(o(S)).

Now let’s take probabilities into account. If operation o is probabilistic, then cost(o) and o(S)
are also probabilistic. Intuitively, we want to extend the property as follows

Φ(S) ≥ E(cost(o))+E(Φ(o(S))),

where the expectation is taken with respect to the probability space induced by operation o from
S. In addition, we assume that if S is a termination state, then Φ(S) = 0. Then we have

E(
∑

i
cost(oi )) =∑

i
E(cost(oi ))

=∑
i
E(E(cost(oi ) | Si−1))

≤∑
i
E(Φ(Si−1)−E(Φ(Si ) | Si−1))

=∑
i

(E(Φ(Si−1))−E(Φ(Si )))

= E(Φ(S0)) =Φ(S0).

Note that if a probabilistic program has non-terminating executions, the first step of the deriva-
tion above requires that cost(o) ≥ 0 for all the operations o.

Static Semantics Recall the definition of annotated types used in linear AARA.

τ ::= unit 1
arr(A;B) A → B
prod(τ1;τ2) τ1 ×τ2

L(A) Lq (τ)
A,B ::= pot(τ; q) 〈τ, q〉

The typing judgment stills has the form Γ; q ` e : A, the intuitive meaning of which is that
the potential given by Γ and q is sufficient to cover the expected evaluation cost of e and the
expected potential of the evaluation result with respect to A.

We keep all the syntax-directed and structural rules of the type system for linear AARA
unchanged, and later we will prove their soundness in the probabilistic setting. Now we just
need to add an extra rule for probabilistic branching. As we discussed in the examples, for the
expression flip{e1;e2}(p), if e1 requires Φ1 potential and e2 requires Φ2 potential, the evaluation
of the flip expression should need a weighted average of Φ1 and Φ2, i.e., p ·Φ1 + (1− p) ·Φ2.
Following is the rule L:FLIP for probabilistic branching.

Γ.(p ×Γ1, (1−p)×Γ2) q = p ·q1 + (1−p) ·q2 Γ1; q1 ` e1 : A Γ2; q2 ` e2 : A

Γ; q ` flip{e1;e2}(p) : A
(L:FLIP)

We utilize the sharing relation τ.(τ1,τ2) to express the weighted average. First we extend the
sharing relation to typing contexts.

·.(·, ·) (SH:ENV-1)
Γ.(Γ1,Γ2) τ.(τ1,τ2)

Γ, x : τ.(Γ1, x : τ1,Γ2, x : τ2)
(SH:ENV-2)

Then we need to introduce a mechanism to perform the “weighting”, or “scaling”, on the poten-
tial. It can be defined syntactically as follows. Intuitively, p ×τ (resp., p × A) produces a type
with as much potential as that of the original type τ (resp., A) scaled by the factor p.

p ×unit = unit

p ×arr(A;B) = arr(A;B)

p ×prod(τ1;τ2) = prod(p ×τ1; p ×τ2)

p ×L(A) = L(p × A)

p ×pot(τ; q) = pot(p ×τ; p ·q)
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Also, we extend the scaling operation to typing contexts.

p × (·) = ·
p × (Γ, x : τ) = p ×Γ, x : (p ×τ)

The following lemmas ensure that the premise Γ.(p ×Γ1, (1− p)×Γ2) in the rule L:FLIP

correctly captures the weighted average of the potential in Γ1 and Γ2.

Lemma 1. 1. If V : Γ and Γ.(Γ1,Γ2), then Φ(V : Γ) =Φ(V : Γ1)+Φ(V : Γ2).

2. If v : τ (resp., v : A), then Φ(v : p ×τ) = p ·Φ(v : τ) (resp., Φ(v : p × A) = p ·Φ(v : A)).

3. If V : Γ, then Φ(V : p ×Γ) = p ·Φ(V : Γ).

Example 5 (Biased Random Walk with One End). We rewrite the biased random walk example
in formal syntax as follows.

brdwalk ≡ fun f `=
case ` {[ ] ,→〈〉

_ :: x2 ,→
let _ = tick 1 in

flip 3/4 {H ,→ f (x2)

T ,→ f (〈〉 ::〈〉 :: x2)}}

We want to derive a type like 〈L2(1),0〉→ 〈1,0〉 for brdwalk. If the coin flip shows head, we do not
need extra constant potential to evaluate the function call.

f : 〈L2(1),0〉→ 〈1,0〉, x2 : L2(1);0 ` f (x2) : 〈1,0〉 (L:APP)

Otherwise, if the coin flip shows tail, we need four units of extra constant potential to construct
the argument list.

x2 : L2(1);0 ` x2 : 〈L2(1),0〉 (L:VAR)

x2 : L2(1);2 ` 〈〉 :: x2 : 〈L2(1),0〉 (L:CONS)

x2 : L2(1);4 ` 〈〉 ::〈〉 :: x2 : 〈L2(1),0〉 (L:CONS)

x2 : L2(1);4 ` f (〈〉 ::〈〉 :: x2) : 〈1,0〉 (L:APP)

It is obvious by the definition of potential scaling that

L2(1).(
3

4
×L2(1), (1− 3

4
)×L2(1)) and 1 = 3

4
·0+ 1

4
·4.

Now we are able to apply the rule L:FLIP.

f : 〈L2(1),0〉→ 〈1,0〉, x2 : L2(1);0 ` f (x2) : 〈1,0〉
f : 〈L2(1),0〉→ 〈1,0〉, x2 : L2(1);4 ` f (〈〉 ::〈〉 :: x2) : 〈1,0〉

f : 〈L2(1),0〉→ 〈1,0〉, x2 : L2(1);1 ` flip 3/4 {H ,→ f (x2) | T ,→ f (〈〉 ::〈〉 :: x2)} : 〈1,0〉 (L:FLIP)

Example 6 (A Variant of the Biased Random Walk). Let’s consider a variant of the function
brdwalk that flips the coin first and then performs pattern match on the list `.

brdwalk′ ≡ fun f `=
flip 3/4 {H ,→ case ` {[] ,→〈〉 | _ :: x2 ,→ let _ = tick 1 in f (x2)}

T ,→ case ` {[] ,→〈〉 | _ :: x2 ,→ let _ = tick 1 in f (〈〉 ::〈〉 :: x2)}}

Intuitively, the function brdwalk’ should have the same expected resource usage as brdwalk does.
However, we cannot find a derivation for ·;0 ` brdwalk′ : 〈〈L2(1),0〉→ 〈1,0〉,0〉. One reason is that
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in order to type the tail case of the flip expression, we need non-zero units of constant potential to
cover the cost of constructing the list 〈〉 ::〈〉 :: x2. However, there is no constant potential when we
are typing the flip expression, thus we cannot “compensate” the cost of this case by reducing the
constant potential used in the head case.

Nevertheless, we can derive a type like 〈L2(1),1〉→ 〈1,0〉. For the head case, we have

f : 〈L2(1),1〉→ 〈1,0〉, x2 : L2(1);1 ` f (x2) : 〈1,0〉 (L:APP)

f : 〈L2(1),1〉→ 〈1,0〉, x : L2(1);2 ` let _ = tick 1 in f (x2) : 〈1,0〉 (L:LET )

f : 〈L2(1),1〉→ 〈1,0〉,` : L2(1);0 ` case ` {[] ,→〈〉 | _ :: x2 ,→ let _ = tick 1 in f (x2)} : 〈1,0〉 (L:MATL)

For the tail case, we have

x2 : L2(1);0 ` x2 : 〈L2(1),0〉 (L:VAR)

x2 : L2(1);2 ` 〈〉 :: x2 : 〈L2(1),0〉 (L:CONS)

x2 : L2(1);4 ` 〈〉 ::〈〉 :: x2 : 〈L2(1),0〉 (L:CONS)

x2 : L2(1);5 ` 〈〉 ::〈〉 :: x2 : 〈L2(1),1〉 (L:RELAX)

f : 〈L2(1),1〉→ 〈1,0〉, x2 : L2(1);5 ` f (〈〉 ::〈〉 :: x2) : 〈1,0〉 (L:APP)

f : 〈L2(1),1〉→ 〈1,0〉, x2 : L2(1);6 ` let _ = tick 1 in f (〈〉 ::〈〉 :: x2) : 〈1,0〉 (L:LET )

f : 〈L2(1),1〉→ 〈1,0〉,` : L2(1);4 ` case ` {[] ,→〈〉 | _ :: x2 ,→ let _ = tick 1 in f (〈〉 ::〈〉 :: x2)} : 〈1,0〉 (L:MATL)

Then we can conclude by the rule L:FLIP in the same way as the previous example.

4 Dynamic Semantics

To define the expected resource usage of probabilistic programs, we formulate a cost semantics
based on an evaluation dynamics. As before, our expressions are in share-let-normal form, so
we use an evaluation environment V : Var →Val. Also, since we only consider nonnegative ticks,
we adapt from the cost dynamic lecture a dynamics that uses resource effects. Recall that the
evaluation judgment has the form

V ` e ⇓ v | q,

which intuitively means that the expression e evaluates to a value v with net cost q .

A First Attempt To extend the evaluation dynamics with probabilistic constructs, our first idea
is to add a component that states the probability of an execution. We might write V ` e ⇓p v | q
which means that there exists an execution where the expression e evaluates to a value v with
net cost q and probability p. Below are two rules for probabilistic branching.

V ` e1 ⇓p1 v1 | q1

V ` flip{e1;e2}(p) ⇓p·p1 v1 | q
(E:FLIP-1)

V ` e2 ⇓p2 v2 | q2

V ` flip{e1;e2}(p) ⇓(1−p)·p2 v2 | q
(E:FLIP-2)

However, the attempt does not work well because there might be multiple different executions
with the same evaluation result, cost, and probability. For example, consider the following
program

e ≡ flip
1

2
{H ,→ tick 2 | T ,→ let _ = tick 1 in tick 1}.

Although the program has two possible executions, there is only one valid evaluation relation
under the dynamics, which is

· ` e ⇓1/2 〈〉 | 2.

If we do not know the number of possible executions with the same evaluation relation, it will
be hard to reason about the weighted average cost over all the possible executions.
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Trace-Based Dynamics We solve this issue by an observation that an execution is uniquely
determined by the trace of outcomes of the coin flips in the execution. Therefore, we further
augment the evaluation relation with a component for traces, i.e., a finite sequence of elements
of {H,T}. The trace-based evaluation judgment then has the form

V ;σ` e ⇓p v | q,

where V ,e,σ can be seen as “inputs” and v, q, p are “outputs”. The intuitive meaning is that
under the environment V , with a sequence σ of coin-flip outcomes, the expression e evaluates
to a value v with probability p.

Figure 1 presents the rules for this trace-based evaluation dynamics. We write [] for empty
traces,σ1 @σ2 for trace concatenation, and H ::σ or T ::σ to observe a new coin flip and prepend
the outcome to σ. In the rule E:LET, we multiply the probabilities of an execution of e1 and an
execution of e2, as well as concatenate their traces of coin flips.

Recall the example that makes our first attempt fail:

e ≡ flip
1

2
{H ,→ tick 2 | T ,→ let _ = tick 1 in tick 1}

Now with the trace-based dynamics, we can distinguish the two possible executions:

·; [] ` tick 2 ⇓1 〈〉 | 2

·; [H] ` e ⇓1/2 〈〉 | 2
(E:FLIP-1)

·; [] ` let _ = tick 1 in tick 1 ⇓1 〈〉 | 2

·; [T] ` e ⇓1/2 〈〉 | 2
(E:FLIP-2)

The type soundness theorem is given below. It tells you nothing more than the original
type soundness theorem for deterministic programs does. It makes a statement that for any
terminating evaluation, the obtained value is consistent with the typing judgment.

Theorem 1 (Type Soundness). Let Γ; q ` e : A and V : Γ. For all v0, p0, q0,σ0 satisfying V ;σ0 `
e ⇓p0 v0 | q0, it holds that v0 : A.

Proof. By induction on the evaluation judgement.

Recall that in order to reason about expected resource usage, we need a notion of probability
distributions over executions. With the trace-based dynamics, we can indeed capture all the
terminating executions. Intuitively, the result value v , the net cost q , and the probability p, are
determined uniquely by the environment V , the expressions e, and the trace of coin flips σ.

Lemma 2. For all V , e and σ, there exists at most one combination of v, q and p such that
V ;σ` e ⇓p v | q.

Therefore, for fixed V and e, the set of all finite traces induces a “distribution” over terminat-
ing executions. We can extract a “distribution” �e�V

⇓ on values v and costs q as follows:

�e�V
⇓ (v, q) :=∑

σ
pσ where σ’s are finite traces satisfying V ;σ` e ⇓pσ v | q .

Note that if there are non-terminating executions with non-zero probabilities, the map defined
above is a partial distribution in the sense that the probabilities do not sum up to one. In other
words, the probability that e diverges under environment V is (1−∑

(v,q)�e�V
⇓ (v, q)).

5 Soundness

With the trace-based evaluation dynamics, we might state the soundness theorem for proba-
bilistic programs as follows.

Theorem 2 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. Then

Φ(V : Γ)+q ≥ ∑
σ0:V ;σ0`e⇓p0 v0|q0

p0 · (Φ(v0 : A)+q0).
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V ;σ` e ⇓p v | q “in environment V , with trace σ, expression e evaluates to value v with cost q and probability p”

V ; [] ` x ⇓1 V (x) | 0
(E:VAR)

V ; [] ` triv ⇓1 〈〉 | 0
(E:TRIV )

V ; [] ` fun( f , x.e) ⇓1 clo(V ; f , x.e) | 0
(E:FUN)

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2;σ` e ⇓p v | q

V ;σ` app(x1; x2) ⇓p v | q
(E:APP)

V (x1) = v1 V (x2) = v2

V ; [] ` pair(x1; x2) ⇓1 〈v1, v2〉 | 0
(E:PAIR)

V (x) = 〈v1, v2〉 V , x1 7→ v1, x2 7→ v2;σ` e ⇓p v | q

V ;σ` letp(x; x1, x2.e) ⇓p v | q
(E:LETP)

V ; [] ` nil ⇓1 [] | 0
(E:NIL)

V (x1) = v1 V (x2) = v2

V ; [] ` cons(x1; x2) ⇓1 v1 :: v2 | 0
(E:CONS)

V (x) = [] V ;σ` e0 ⇓p v | q

V ;σ` matL{x;e0, x1.x2}(e1) ⇓p v | q
(E:MATL-1)

V (x) = v1 :: v2 V , x1 7→ v1, x2 7→ v2;σ` e1 ⇓p v | q

V ;σ` matL{x;e0, x1.x2}(e1) ⇓p v | q
(E:MATL-2)

V ; [] ` tick{q} ⇓1 〈〉 | q
(E:TICK)

V ;σ1 ` e1 ⇓p1 v1 | q1 V , x 7→ v1;σ2 ` e2 ⇓p2 v2 | q2

V ;σ1 @σ2 ` let(e1; x.e2) ⇓p1·p2 v2 | q1 +q2
(E:LET )

V (x) = v V , x1 7→ v, x2 7→ v ;σ` e ⇓p v ′ | q

V ;σ` share(x; x1, x2.e) ⇓p v ′ | q
(E:SHARE)

V ;σ` e1 ⇓p1 v1 | q1

V ;H ::σ` flip{e1;e2}(p) ⇓p·p1 v1 | q1
(E:FLIP-1)

V ;σ` e2 ⇓p2 v2 | q2

V ;T ::σ` flip{e1;e2}(p) ⇓(1−p)·p2 v2 | q2
(E:FLIP-2)

Figure 1: Cost semantics with resource effects, trace-based.
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However, it is unclear how to prove the theorem by induction on the evaluation judgment.
The reason is that we now have to deal with a collection of evaluation judgments, instead of one.
Intuitively, the trace-based evaluation dynamics talks about individual executions, while the
goal of our resource analysis for probabilistic programs is to reason about aggregated information
over all possible executions. Indeed, we can develop another evaluation dynamics that deals
with distributions of executions more directly.

A First Attempt We might start with another judgment V ` e ⇒ µ with µ defined as a distribu-
tion over pairs (v, q), where v is the evaluation result and q is the net cost. Then we just need
one rule for probabilistic branching.

V ` e1 ⇒ µ1 V ` e2 ⇒ µ2

V ` flip{e1;e2}(p) ⇒ p ·µ1 + (1−p) ·µ2
(DE:FLIP)

We denote the weighted sum of two distributions µ1 and µ2 by p ·µ1 + (1−p) ·µ2, defined as
λω.p ·µ1(ω)+ (1−p) ·µ2(ω). For the leaf cases, such as unit values, we introduce the following
rule

V ` triv ⇒ δ(〈〉,0)
(DE:TRIV )

where δ(ω) denotes the point distribution on ω, defined as λω′.[ω=ω′].
However, the attempt does not work well for almost-sure termination. The issue is that

the inductive definition of such a distribution dynamics will fail is there is a non-terminating
execution. Consider the following program

f ≡ fun f _ = flip
1

2
{H ,→〈〉 | T ,→ f (〈〉)}

and suppose that we want to evaluation f (〈〉). There does not exist a distribution µ that V `
f (〈〉) ⇒ µ, because if we try to apply the rules inductively, we will end up with a derivation tree
with an infinite depth.

V ` 〈〉⇒ δ(〈〉,0)
(DE:TRIV )

...

V ` f (〈〉) ⇒???
(DE:APP)

V ` flip 1/2 {H ,→〈〉 | T ,→ f (〈〉)} ⇒???
(DE:FLIP)

V ` f (〈〉) ⇒???
(DE:APP)

Distribution-Based Dynamics To cope with possible non-termination executions, we develop
a partial-evaluation-like dynamics. Different from the one from previous lectures, we do care
about the evaluation results. Also, to be able to construct a “complete” semantics from the
“partial” ones, we index the evaluation judgments by their derivation depth. Formally, the
distribution-based evaluation dynamics has the form

V ` e ⇒n µ.

The intuitive meaning is that the expression e reduces to a partial distribution with an at-most-n
derivation depth. We use partial distributions, whose probabilities sum up to a number possibly
less than one, because there could be terminating executions with a derivation tree whose depth
is more than n. Now for the unit values, we have the following rule

n > 0

V ` triv ⇒n δ(〈〉,0)
(DE:TRIV )

and for the flip expressions, we have

V ` e1 ⇒n µ1 V ` e2 ⇒n µ2

V ` flip{e1;e2}(p) ⇒n+1 p ·µ1 + (1−p) ·µ2
(DE:FLIP)
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Figure 2 presents the rules for this distribution-based evaluation dynamics. In addition to
the syntax-directed rules, we introduce a special base case where n = 0 and µ is set to a zero
distribution 0 :=λω.0. The intuition is that a valid derivation should apply at least one rule. The
rule DE:LET composes the distribution-based semantics for e1 and e2. Intuitively, if e1 evaluates
to v1 with cost q1 and probability p1 under environment V , as well as e2 evaluates to v2 with
cost q2 and probability p2 under environment V , x 7→ v1, then let(e1; x.e2) evaluates to v2 with
cost (q1 +q2) and probability (p1 ·p2).

We can now approximate the distribution over terminating executions using the depth-
indexed distributions.

Lemma 3. If V ` e ⇒n µ1, V ` e ⇒m µ2 and n ≤ m, then µ1 ≤µ2 pointwise. As a consequence, we
can define �e�V⇒ := sup{µn : V ` e ⇒n µn} = limn→∞µn as the partial distribution of all possible
terminating executions of a probabilistic program e under environment V .

Recall the example that makes our first attempt fail:

f ≡ fun f _ = flip
1

2
{H ,→〈〉 | T ,→ f (〈〉)}

With the distribution-based dynamics, we can derive the following judgments:

V ` f (〈〉) ⇒0 0,

V ` f (〈〉) ⇒3 1

2
·δ(〈〉,0),

V ` f (〈〉) ⇒5 1

2
·δ(〈〉,0)+ 1

4
·δ(〈〉,0),

· · ·

V ` f (〈〉) ⇒2k+1
k∑

i=1
(

1

2
)i ·δ(〈〉,0).

Therefore, let k approach infinity, we derive that � f (〈〉)�V⇒ = δ(〈〉,0), i.e., the program terminates
with probability one, as well as the evaluation result is always unit, and the net cost is always
zero.

As a remark, the distribution-based dynamics is equivalent to the trace-based one.

Theorem 3. Let V be an environment and e be an expression. Then �e�V⇒ = �e�V
⇓ .

Soundness We now restate and prove the soundness theorem using the distribution-based
dynamics.

Theorem 4 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. Then

Φ(V : Γ)+q ≥ ∑
(v0,q0)

�e�V
⇒(v0, q0) · (Φ(v0 : A)+q0).

Proof. It suffices to prove for every n ∈N, if V ` e ⇒n µ, then

Φ(V : Γ)+q ≥ ∑
(v0,q0)

µ(v0, q0) · (Φ(v0 : A)+q0).

By induction on n with inversion on V ` e ⇒n µ then inner induction on Γ; q ` e : A.

• If n = 0, then µ= 0. Straightforward.

• Suppose the lemma holds for some n ∈N. Now we consider the case for n +1. Below are
the proofs for L:LET and L:FLIP.
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V ` e ⇒n µ “in environment V , expression e reduces to result distribution µ within n steps

V ` e ⇒0 0
(DE:BASE)

n > 0

V ` x ⇒n δ(V (x),0)
(DE:VAR)

n > 0

V ` triv ⇒n δ(〈〉,0)
(DE:TRIV )

n > 0

V ` fun( f , x.e) ⇒n δ(clo(V ; f , x.e),0)
(DE:FUN)

V (x1) = clo(V ′; f , x.e) V (x2) = v2 V ′, f 7→ clo(V ′; f , x.e), x 7→ v2 ` e ⇒n µ

V ` app(x1; x2) ⇒n+1 µ
(DE:APP)

n > 0 V (x1) = v1 V (x2) = v2

V ` pair(x1; x2) ⇒n δ(〈v1, v2〉,0)
(DE:PAIR)

V (x) = 〈v1, v2〉 V , x1 7→ v1, x2 7→ v2 ` e ⇒n µ

V ` letp(x; x1, x2.e) ⇒n+1 µ
(DE:LETP)

n > 0

V ` nil ⇒n δ([],0)
(DE:NIL)

n > 0 V (x1) = v1 V (x2) = v2

V ` cons(x1; x2) ⇒n δ(v1 :: v2,0)
(DE:CONS)

V (x) = [] V ` e0 ⇒n µ

V ` matL{x;e0, x1.x2}(e1) ⇒n+1 µ
(DE:MATL-1)

V (x) = v1 :: v2 V , x1 7→ v1, x2 7→ v2 ` e1 ⇒n µ

V ` matL{x;e0, x1.x2}(e1) ⇒n+1 µ
(DE:MATL-2)

n > 0

V ` tick{q} ⇒n δ(〈〉, q)
(DE:TICK)

V ` e1 ⇒n µ ∀(v1, q1) ∈ supp(µ): V , x 7→ v1 ` e2 ⇒n µ(v1,q1)

V ` let(e1; x.e2) ⇒n+1
∑

(v1,q1)

∑
(v2,q2)

µ(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2)
(DE:LET )

V (x) = v V , x1 7→ v, x2 7→ v ` e ⇒n µ

V ` share(x; x1, x2.e) ⇒n+1 µ
(DE:SHARE)

V ` e1 ⇒n µ1 V ` e2 ⇒n µ2

V ` flip{e1;e2}(p) ⇒n+1 p ·µ1 + (1−p) ·µ2
(DE:FLIP)

Figure 2: Cost semantics with resource effects, distribution-based.
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– (L:LET ) By assumption, we have Γ1; q ` e1 : pot(τ; p), Γ2, x : τ; p ` e2 : A, and Γ =
Γ1,Γ2 for some Γ1,Γ2. By inversion, we have V ` e1 ⇒n µ1, for all (v1, q1) ∈ supp(µ1),
V , x 7→ v1 ` e2 ⇒n µ(v1,q1), andµ=∑

(v1,q1)
∑

(v2,q2)µ1(v1, q1)·µ(v1,q1)(v2, q2)·δ(v2, q1+
q2). By induction hypothesis, we have

Φ(V : Γ1)+q ≥ ∑
(v1,q1)

µ1(v1, q1) · (Φ(v1 : pot(τ; p))+q1)

= ∑
(v1,q1)

µ1(v1, q1) · (Φ(v1 : τ)+q1 +p),

and also for all (v1, q1) ∈ supp(µ1),

Φ(V , x 7→ v1 : Γ2, x : τ)+p ≥ ∑
(v2,q2)

µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2).

Thus

Φ(V : Γ)+q =Φ(V : Γ1)+q +Φ(V : Γ2)

≥ ∑
(v1,q1)

µ1(v1, q1) · (Φ(v1 : τ)+q1 +p)+Φ(V : Γ2)

≥ ∑
(v1,q1)

µ1(v1, q1) · (Φ(v1 : τ)+q1 +p +Φ(V : Γ2))

= ∑
(v1,q1)

µ1(v1, q1) · (q1 +p +Φ(V , x 7→ v1 : Γ2, x : τ))

≥ ∑
(v1,q1)

µ1(v1, q1) · (q1 +
∑

(v2,q2)
µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2))

≥ ∑
(v1,q1)

µ1(v1, q1) · (
∑

(v2,q2)
µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2 +q1))

= ∑
(v1,q1)

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2 +q1).

On the other hand, we know∑
(v0,q0)

µ(v0, q0) · (Φ(v0 : A)+q0)

= ∑
(v0,q0)

(
∑

(v1,q1)

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2))(v0, q0) · (Φ(v0 : A)+q)

= ∑
(v0,q0)

(
∑

(v1,q1)

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) · [v0 = v2 ∧q0 = q1 +q2]) · (Φ(v0 : A)+q)

= ∑
(v1,q1)

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q1 +q2).

Thus we conclude this case.

– (L:FLIP) By assumption, we have Γ.(p ×Γ1, (1− p)×Γ2), q = p · q1 + (1− p) · q2,
Γ1; q1 ` e1 : A, and Γ2; q2 ` e2 : A. By inversion, we have V ` e1 ⇒n µ1, V ` e2 ⇒n µ2,
and µ= p ·µ1 + (1−p) ·µ2. By induction hypothesis, we have

Φ(V : Γ1)+q1 ≥
∑

(v0,q0)
µ1(v0, q0) · (Φ(v0 : A)+q0),

Φ(V : Γ2)+q2 ≥
∑

(v0,q0)
µ2(v0, q0) · (Φ(v0 : A)+q0).

Thus we conclude this case by

Φ(V : Γ)+q =Φ(V : p ×Γ1)+Φ(V : (1−p)×Γ2)+p ·q1 + (1−p) ·q2

= p ·Φ(V : Γ1)+ (1−p) ·Φ(V : Γ2)+p ·q1 + (1−p) ·q2

≥ p · (
∑

(v0,q0)
µ1(v0, q0) · (Φ(v0 : A)+q0))+ (1−p) · (

∑
(v0,q0)

µ2(v0, q0) · (Φ(v0 : A)+q0))

= ∑
(v0,q0)

(p ·µ1(v0, q0)+ (1−p) ·µ2(v0, q0)) · (Φ(v0 : A)+q0)

= ∑
(v0,q0)

µ(v0, q0) · (Φ(v0 : A)+q0).
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6 Non-Termination

So far we only consider terminating executions in the evaluation dynamics. Although we assume
all the ticks are nonnegative, i.e., resource cannot become available during the evaluation, we
hope to be able to show that the expected bounds on resources like time imply almost-sure
termination.

Recall that in the lecture on partial evaluation, we introduce ◦ to represent some point during
the evaluation. We can then enrich the distribution-based dynamics with partial evaluation by
forcing the result distribution µ in the judgment V ` e ⇒n µ to be a complete distribution instead
of a partial one. To achieve this, we extend µ to be distributions over (Val∪ {◦})× (Q≥0 ∪ {∞}).
Most of the rules stay unchanged, except the following two:

V ` e ⇒0 δ(◦,0)
(PE:BASE)

V ` e1 ⇒n µ ∀(v1, q1) ∈ supp(µ): (v1 6= ◦) =⇒ V , x 7→ v1 ` e2 ⇒n µ(v1,q1)

V ` let(e1; x.e2) ⇒n+1
∑
q1

µ(◦, q1) ·δ(◦, q1)+ ∑
(v1,q1):v1 6=◦

∑
(v2,q2)

µ(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2)
(PE:LET )

However, it is unclear now how to define �e�V⇒ by the limit of {µn}n∈N where V ` e ⇒n µn

(recall that previously, if n ≤ m then µn ≤µm pointwise). Apparently, we need to define a new
ordering on complete distributions. We define µ1 vµ2 as

(∀v, q : (v 6= ◦) =⇒ µ1(v, q) ≤µ2(v, q))∧ (∀q :µ1((Val∪ {◦})× [0, q]) ≥µ2((Val∪ {◦})× [0, q])).

Intuitively, for concrete values, the order above is the same as the pointwise order on partial
distributions, but for divergence, we take the other direction—the property above implies that
µ1({◦}× [0, q]) ≥ µ2({◦}× [0, q]) for all q ∈ Q≥0 ∪ {∞}. Since we assume nonnegative ticks, the
probability that the cost is smaller than any q with respect to µ1 should be greater than or equal
to that with respect to µ2.

Lemma 4. 1. The relation v defines a partial order on the distributions.

2. Let {µn}n∈N be a sequence such that µ1 v µ2 v ·· · v µn v ·· · . Then there exists a least
distribution µ such that for all n ∈N, µn vµ. Further, we denote µ by

⊔
n∈Nµn .

Proof. Let’s consider the ω-chain completeness. Let ν(v, q) := limn→∞µn(v, q) for all v 6= ◦
and q . Let P := ∑

(v,q):v 6=◦ν(v, q). We want to construct ν◦ to be the “limit” of {λq.µn(◦, q)}n∈N.
Define f ◦

n (q) := µn({◦}× [0, q]) for all n and q . Then for each n ∈N, f ◦
n is monotone and right-

ω-continuous and for all q ∈Q≥0 ∪ {∞}, { f ◦
n (q)}n∈N is non-increasing. Let f ◦ be the pointwise

limit of { f ◦
n }n∈N. Because both Q≥0 ∪ {∞} and [0,1] are ω-complete partially ordered sets, the

right-ω-continuous functions between them also form an ω-complete partially ordered set.
Therefore, f ◦ is also right-ω-continuous, and we can define ν◦(q) := f ◦(q)−limq ′→q− f ◦(q ′). The
final step is to prove that f ◦(∞) = 1−P . For each n ∈N, we have f ◦

n (∞) = 1−∑
(v,q):v 6=◦µn(v, q).

Thus f ◦(∞) = limn→∞ f ◦
n (∞) = limn→∞(1−∑

(v,q):v 6=◦µn(v, q)) = 1− limn→∞
∑

(v,q):v 6=◦µn(v, q) =
1−∑

(v,q):v 6=◦ limn→∞µn(v, q) = 1−P by Monotone Convergence Theorem.

Lemma 5. If V ` e ⇒n µ1, V ` e ⇒m µ2 and n ≤ m, then µ1 v µ2 pointwise. As a consequence,
we can define �e�V⇒ :=⊔

n∈Nµn as the distribution of all possible terminating and non-terminating
executions of a probabilistic program e under environment V .

Recall that in the soundness proof, we do an induction on the index n of V ` e ⇒n µ. The
reason why this approach works is that the expected cost with respect to µ is monotone and
ω-continuous. Although it is unclear whether the continuity sill holds for v or not, we can prove
the following weaker result that is sufficient for our soundness proof.
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Lemma 6. Let h(µ) :=∑
q µ(◦, q) ·q +∑

(v,q):v 6=◦µ(v, q) · (Φ(v : A)+q). Let {µn}n∈N be a sequence
such that µ1 vµ2 v ·· · vµn v ·· · . Let M ∈R≥0. If h(µn) ≤ M for all n ∈N, then h(

⊔
n∈Nµn) ≤ M.

Proof. Let µ := ⊔
n∈Nµn . Let’s define f ◦

n (q) := µn((Val∪ {◦})× [0, q]). Similar to the proof of
ω-chain completeness, f ◦

n is monotone and right-ω-continuous for each n ∈N and for all q ∈
Q≥0∪{∞}, { f ◦

n (q)}n∈N is non-increasing. Moreover, f ◦
n (∞) = 1 for all n ∈N. Now we extend the the

domain of f ◦
n fromQ≥0∪{∞} toR≥0∪{∞} as g ◦

n(r ) = limq→r+ f ◦
n (q). By the right-ω-continuity, we

know that g ◦
n(q) = f ◦

n (q) for all q ∈Q≥0 ∪ {∞}. Therefore,
∑

(v,q)µn(v, q) ·q = ∫
(g ◦

n(∞)− g ◦
n(r ))dr .

Let g ◦ be the pointwise limit of {g ◦
n}n∈N, so g ◦ is also right-ω-continuous. Thus

h(µ) =∑
q
µ(◦, q) ·q + ∑

(v,q):v 6=◦
µ(v, q) · (Φ(v : A)+q)

= ∑
(v,q)

µ(v, q) ·q + ∑
(v,q):v 6=◦

µ(v, q) ·Φ(v : A)

=
∫

(g ◦(∞)− g ◦(r ))dr + ∑
(v,q):v 6=◦

µ(v, q) ·Φ(v : A)

=
∫

(1− g ◦(r ))dr + ∑
(v,q):v 6=◦

µ(v, q) ·Φ(v : A)

=
∫

(1− lim
n→∞g ◦

n(r ))dr + ∑
(v,q):v 6=◦

lim
n→∞µn(v, q) ·Φ(v : A)

=
∫

lim
n→∞(1− g ◦

n(r ))dr + ∑
(v,q):v 6=◦

lim
n→∞µn(v, q) ·Φ(v : A)

= lim
n→∞

∫
(1− g ◦

n(r ))dr + lim
n→∞

∑
(v,q):v 6=◦

µn(v, q) ·Φ(v : A).

Since h(µn) = ∫
(g ◦

n(∞)−g ◦
n(r ))dr+∑

(v,q):v 6=◦µn(v, q)·Φ(v : A) = ∫
(1−g ◦

n(r ))dr+∑
(v,q):v 6=◦µn(v, q)·

Φ(v : A) and h(µn) ≤ M for all n ∈N, we conclude that h(µ) ≤ supn∈Nh(µn) ≤ M .

Now we can strengthen the soundness theorem to capture both termination and non-
termination.

Theorem 5 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. Then

Φ(V : Γ)+q ≥∑
q0

�e�V
⇒(◦, q0) ·q0 +

∑
(v0,q0):v0 6=◦

�e�V
⇒(v0, q0) · (Φ(v0 : A)+q0).

Proof. By the lemma we just proved, it suffices to prove for every n ∈N, if V ` e ⇒n µ, then

Φ(V : Γ)+q ≥∑
q0

µ(◦, q0) ·q0 +
∑

(v0,q0)
µ(v0, q0) · (Φ(v0 : A)+q0).

We can still proceed by induction on n with inversion on V ` e ⇒n µ then inner induction on
Γ; q ` e : A. Below is the proof for L:LET.

• (L:LET ) By assumption, we have Γ1; q ` e1 : pot(τ; p), Γ2, x : τ; p ` e2 : A, and Γ= Γ1,Γ2 for
someΓ1,Γ2. By inversion, we have V ` e1 ⇒n µ1, for all (v1, q1) ∈ supp(µ1) such that v1 6= ◦,
V , x 7→ v1 ` e2 ⇒n µ(v1,q1), and µ = ∑

q1 µ1(◦, q1) ·δ(◦, q1)+∑
(v1,q1):v1 6=◦

∑
(v2,q2)µ1(v1, q1) ·

µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2). By induction hypothesis, we have

Φ(V : Γ1)+q ≥∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦
µ1(v1, q1) · (Φ(v1 : pot(τ; p))+q1)

=∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦
µ1(v1, q1) · (Φ(v1 : τ)+q1 +p),

and also for all (v1, q1) ∈ supp(µ1) such that v1 6= ◦,

Φ(V , x 7→ v1 : Γ2, x : τ)+p ≥∑
q2

µ(v1,q1)(◦, q2) ·q2+
∑

(v2,q2):v2 6=◦
µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2).
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Thus

Φ(V : Γ)+q =Φ(V : Γ1)+q +Φ(V : Γ2)

≥∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦
µ1(v1, q1) · (Φ(v1 : τ)+q1 +p)+Φ(V : Γ2)

≥∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦
µ1(v1, q1) · (Φ(v1 : τ)+q1 +p +Φ(V : Γ2))

=∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦
µ1(v1, q1) · (q1 +p +Φ(V , x 7→ v1 : Γ2, x : τ))

≥∑
q1

µ1(◦, q1) ·q1

+ ∑
(v1,q1):v1 6=◦

µ1(v1, q1) · (q1 +
∑
q2

µ(v1,q1)(◦, q2) ·q2 +
∑

(v2,q2):v2 6=◦
µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q2))

=∑
q1

µ1(◦, q1) ·q1

+ ∑
(v1,q1):v1 6=◦

µ1(v1, q1) · (
∑
q2

µ(v1,q1)(◦, q2) · (q1 +q2)+ ∑
(v2,q2):v2 6=◦

µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q1 +q2))

=∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦

∑
q2

µ1(v1, q1) ·µ(v1,q1)(◦, q2) · (q1 +q2)

+ ∑
(v1,q1):v1 6=◦

∑
(v2,q2):v2 6=◦

µ1(v1, q1) ·µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q1 +q2).

On the other hand, we know∑
q0

µ(◦, q0) ·q0 +
∑

(v0,q0):v0 6=◦
µ(v0, q0) · (Φ(v0 : A)+q0)

= ∑
q0

(
∑
q1

µ1(◦, q1) ·δ(◦, q1)+ ∑
(v1,q1):v1 6=◦

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2))(◦, q0) ·q0

+ ∑
(v0,q0):v0 6=◦

(
∑
q1

µ1(◦, q1) ·δ(◦, q1)+ ∑
(v1,q1):v1 6=◦

∑
(v2,q2)

µ1(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2))(v0, q0) · (Φ(v0 : A)+q0)

= ∑
q0

(
∑
q1

µ1(◦, q1) ·δ(◦, q1)+ ∑
(v1,q1):v1 6=◦

∑
q2

µ1(v1, q1) ·µ(v1,q1)(◦, q2) ·δ(◦, q1 +q2))(◦, q0) ·q0

+ ∑
(v0,q0):v0 6=◦

(
∑

(v1,q1):v1 6=◦

∑
(v2,q2):v2 6=◦

µ1(v1, q1) ·µ(v1,q1)(v2, q2) ·δ(v2, q1 +q2))(v0, q0) · (Φ(v0 : A)+q0)

= (
∑
q1

µ1(◦, q1) ·q1 +
∑

(v1,q1):v1 6=◦

∑
q2

µ1(v1, q1) ·µ(v1,q1)(◦, q2) · (q1 +q2))

+ (
∑

(v1,q1):v1 6=◦

∑
(v2,q2):v2 6=◦

µ1(v1, q1) ·µ(v1,q1)(v2, q2) · (Φ(v2 : A)+q1 +q2)).

Thus we conclude this case.
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