
15-819: Foundations of Quantitative Program Analysis

Lecture 16: AARA with Univariate Polynomial
Potential

Jan Hoffmann

October 31, 2019

1 Introduction

Linear automatic amortized analysis works well because of three reasons: it is compositional, it
computes precise bounds, and the type inference is based on efficient linear constraint solving.
The main shortcoming of the analysis is its limitation to linear bounds.

In this lecture, we see how to overcome this shortcoming while preserving the beneficial fea-
tures of the analysis system. We study an automatic amortized resource analysis that computes
univariate polynomial bounds [HH10b, Hof11]. For simplicity, we return to our simple language
with lists. The type system develop is mostly identical to the one for linear AARA. The only
changes are in the definition of lists types and the type rules for introduction and elimination of
lists. In particular, the structure of soundness proof does not change. Moreover, we are still able
to reduce type inference to linear optimization.

2 Syntax and Dynamic Semantics

Like for linear AARA, we only introduce polynomial potential for lists. However, it can be
extended to inductive types. Moreover, it is compatible with language features like recursive
functions, sums, and products. The typing rules for these constructs do not have to be altered.

e ::= . . .
nil []
cons(x1; x2) x1 :: x2

matL{e0; x1, x2.e1}(x) case x {nil ,→ e0 | cons (x1, x2) ,→ e1}
. . .

Like before, we have list values.

v ::= . . .
[]
v1 :: v2

. . .

Similarly, the cost semantics defines the judgment V ` e ⇓ v | (q, q ′) using the same rules as
in linear AARA.

3 Resource Annotations

In linear AARA, we annotated list types with a single non-negative rational number q that defines
the potential function q ·n, where n is the length of the list. In this lecture, we use potential
functions that are non-negative linear combinations of binomial coefficients

(n
k

)
, where k is a

natural number and n is length of the list.

1

In (univariate) polynomial AARA, a resource annotation for lists is a vector ~q = (q1, . . . , qk) ∈
(Q≥0)k of non-negative rational numbers.

τ ::= . . .
L~q (τ)
. . .

For two resource annotations ~p = (p1, . . . , pk) and ~q = (q1, . . . , q`) I write ~p ≤ ~q if k ≤ ` and
pi ≤ qi for all 1 ≤ i ≤ k. If `≥ k then we define ~p +~q = (p1 +q1, . . . , pk +qk , qk+1, . . . , q`).

One intuition for the resource annotations is as follows: The annotation ~q assigns the
potential q1 to every element of the data structures, the potential q2 to every element of every
proper suffix (sublist or subtree, respectively) of the data structure, q3 to the elements of the
suffixes of the suffixes, etc.

The Potential of Lists Let us now consider the construction or destruction of non-empty lists.
For linear potential annotations we can simply assign potential to the tail by using the same
annotations as on the original list. This would however lead to a substantial loss of potential in
the polynomial case. For this reason, we use an additive shift operation to assign potential to
sublists.

Let ~q = (q1, . . . , qk) be a resource annotation. The additive shift of ~q is

C(~q) = (q1 +q2, q2 +q3, . . . , qk−1 +qk , qk) .

The definition of potential Φ(v : τ) of a value v of type τ is extended as follows.

Φ([] : L~q (τ)) = 0
Φ(v1 :: v2 : L~q (τ)) = Φ(v1 : τ)+q1 +Φ(v2 : LC~q (τ)

As usual, we assume ~q = (q1, . . . , qk) in the definition.
To understand the potential functions for lists, we first consider some simple examples. Let

for instance `= [v1 . . . , vn] : L(1) be list of units. Then the following holds for all q1, q2, q3 ∈Q≥0.

Φ(`:L(q1)(1)) = q1 ·n

Φ(`:L(0,q2)(1)) =
n−1∑
i=1

q2 · i = q2
n · (n −1)

2

Φ(`:L(0,0,q3)(1)) =
n−1∑
i=1

q3
i · (i −1)

2
= q3

n · (n −1) · (n −2)

6

In fact, the potential of a list can always be written as a non-negative linear combination of
binomial coefficients. This is proved by the following lemma. We define

φ(n,~q) =
k∑

i=1

(
n

i

)
qi .

Lemma 1. Let `= [v1 . . . , vn] : L(τ) be a list of type τ and let ~p = (p1, . . . , pk) be a resource annota-
tion. Then

Φ(`:L~p (τ)) =φ(n,~p)+
n∑

i=1
Φ(vi :τ) .

Proof. We prove the statement by induction on n. If n = 0 then `= [] and we have Φ(`:L~p (τ)) =
0 =∑0

i=1Φ(vi :τ)+φ(0,~p).
Let n > 0. It then follows by induction that

Φ(`:L~p (τ)) = p1 +Φ(v1:τ)+Φ([v2, . . . , vn]: LC(~p)(τ))

= p1 +
n∑

i=1
Φ(vi :τ)+φ(n −1,C(~p))

2

But since (
n −1

i

)
+

(
n −1

i +1

)
=

(
n

i +1

)
(1)

it follows that

φ(n −1,C(~p)) =
k∑

i=1

(
n −1

i

)
pi +

k−1∑
i=1

(
n −1

i

)
pi+1

= (n −1)p1 +
k−1∑
i=1

((
n −1

i +1

)
+

(
n −1

i

))
pi+1

= (n −1)p1 +
k−1∑
i=1

(
n

i +1

)
pi+1 (by (1))

=
k∑

i=1

(
n

i

)
pi −p1 =φ(n,~p)−p1

It is essential for the type system that φ is linear in the sense of the following lemma that
follows directly from the definition of φ.

Lemma 2. Let n ∈N, α ∈Q and let ~p,~q be resource annotations. Then φ(n,~p)+φ(n,~q) =φ(n,~p+
~q) and α ·φ(n,~p) =φ(n,α ·~p).

The use of binomial coefficients rather than powers of variables has many advantages. In
particular, the identity

∑
i=1,...,k

qi

(
n +1

i

)
= q1 +

∑
i=1,...,k−1

qi+1

(
n

i

)
+ ∑

i=1,...,k
qi

(
n

i

)

gives rise to a local typing rule for cons and pattern matching, which naturally allows the typing
of both recursive calls and other calls to subordinate functions in branches of a pattern match.

It is a general pattern in functional programs to compute a task on a list recursively for the
tail of the list and to use the result of the recursive call to compute the result of the function. In
such a recursive function it is natural to assign a uniform potential to each sublist (depending
on its length) that occurs in a recursive call. In other words: one wants to use the potential of the
input list to assign a uniform potential to every suffix of the list. With this view, the list potential
α=φ(n, (p1, p2, · · · , pk)) can be read as follows: a recursive function on a list ` of length n that
has the potential α can use the potential φ(i , (p2, · · · , pk) for the suffixes of ` of length 1 ≤ i < n
that occurs in the recursion. This intuition is proved by the following lemma.

Lemma 3. Let ~p=(p1, . . . , pk) be a resource annotation, let n ∈N and define φ(n, ()) = 0. Then
φ(n, (p1, . . . , pk)) = n ·p1 +∑n−1

i=1 φ(i , (p2, . . . , pk)).

Proof. The proof uses the following well-known equation.

n−1∑
i=1

(
i

k

)
=

(
n

k +1

)
for each k ∈N (2)

3

Let now k ≥ 0. Then

φ(n, (p1, . . . , pk+1)) =
k+1∑
j=1

(
n

j

)
p j

= n ·p1 +
k∑

j=1

(
n

j +1

)
p j+1

= n ·p1 +
k∑

j=1
(

n−1∑
i=1

(
i

j

)
p j+1)) (by (2))

= n ·p1 +
n−1∑
i=1

(
k∑

j=1

(
i

j

)
p j+1))

= n ·p1 +
n−1∑
i=1

φ(i , (p2, . . . , pk+1)) (by definition)

Note that the binomial coefficients are a basis of the vector space of the polynomials. Here,
however, we are only interested in non-negative linear combinations of binomial coefficients.
These admit a natural characterization in terms of growth: for f : N→ N define (∆ f)(n) =
f (n +1)− f (n). Call f hereditarily non-negative if ∆i f ≥ 0 for all i ≥ 0. One can show that a
polynomial p is hereditarily non-negative if and only if it can be written as a non-negative linear
combination of binomial coefficients. To wit, the coefficient of

(n
i

)
in the representation of p

is (∆i p)(0). Note that they include all non-negative linear combinations of the polynomials
(xi)i∈N.

4 Static Semantics

Like for linear potential functions, the static semantics defines a judgment

Γ; q ` e : A .

The rules of linear AARA remain unchanged except for the rules for the introduction and elimi-
nation of lists.

·;0 ` nil : 〈L~p (τ),0〉
(U:NIL)

x1 : τ, x2 : LC(~p)(τ); p1 ` cons(x1; x2) : 〈L~p (τ),0〉
(U:CONS)

Γ; q ` e0 : B Γ, x1 : τ, x2 : LC(~p)(τ); q +p1 ` e1 : B

Γ, x : L~p (τ); q ` matL{e0; x1, x2.e1}(x) : B
(U:MATL)

The rule U:NIL requires that the constant potential 0 and an empty context. It is sound to
attach any potential annotation ~p to the empty list since the resulting potential is always zero.
So not potential is gained or lost.

The rule U:CONS reflects the fact that we have to cover the potential that is assigned to the
new list of type L~p (~τ). We do so by requiring x2 to have the type LC(~p)(τ) and to have p1 resource
units available. It corresponds exactly to the recursive definition of the potential function Φ and
ensures that potential is neither gained nor lost.

The rule U:MATL defines how to use the potential of a list to pay for resource consumption.
It accounts for the fact that either e1 or e2 is evaluated. The cons case is inverse to the rule
U:CONS and allows us to use the potential associated with a list. For one thing, p1 resource
units become available as constant potential. For another thing, the tail of the list is annotated
with C(~p) rather than ~p, permitting for example a recursive call requiring annotation ~p and an
additional use of the tail with annotation (p2, . . . , pk) (e.g., to cover the cost of a recursive call).

4

We still have the structural rules for subtyping and the sharing rule and need to extend the
subtyping and sharing relations to the new potential annotations.

τ.(τ1,τ2) Γ, x1 : τ1, x2 : τ2; q ` e : B

Γ, x : τ; q ` share(x; x1, x2.e) : B
(U:SHARE)

Γ; q ` e : 〈τ′, q ′〉 τ′ <: τ

Γ; q ` e : 〈τ, q ′〉 (U:SUB)

Γ, x : τ; q ` e : B τ′ <: τ

Γ, x : τ′; q ` e : B
(U:SUP)

Subtyping The subtyping relation is extended with the following rule.

τ<: τ′ q ≤ p

L~p (τ) <: L~q (τ′)
(SUB:LIST)

We can still show the following lemma.

Lemma 4. If v : τ and τ<: τ′ then Φ(v : τ′) ≤Φ(v : τ).

Sharing The sharing relation is extended with the following rule.

q = q1 +q2 τ.(τ1,τ2)

〈τ, q〉.(〈τ1, q1〉,〈τ2, q2〉)
(SH:POT)

We still have the following lemma.

Lemma 5. If v : τ and τ.(τ1,τ2) then Φ(v : τ) =Φ(v : τ1)+Φ(v : τ2).

Example 1. As example, let us consider a very expensive identity function. In the code, we
represent the typing x : L(q1,q2)(1) by writing x(q1,q2).

fun id1 l(1,0) =
match l(1,0) with
| [] → []
| x::xs(1,0) →

let _ = tick 1.0 in
let xs’(0,0) = id1 xs(1,0) in
(x::xs’(0,0))(0,0)

fun id2 l(0,1) =
match l(0,1) with
| [] → [](0,0)

| x::xs(1,1) →
share xs(1,1) as xs1

(1,0), xs2
(0,1) in

let _ = id1 xs1
(1,0) in

let xs’ = id2 xs2
(0,1) in

(x::xs’(0,1))(0,0)

We can derive the following typings.

id1 : 〈L(1,0)(1),0〉→ 〈L(0,0)(1),0〉
id2 : 〈L(0,1)(1),0〉→ 〈L(0,0)(1),0〉

5 Soundness

We can prove the same soundness theorem as for linear AARA. Given the extended lemmas for
sharing and subtyping, the change in the proof is limited to the cases that involve the syntactic
forms for lists.

5

Theorem 1 (Soundness of AARA). Let Γ; q ` e : A and V : Γ. If V ` e ⇓ v | (p, p ′) for some v and
(p, p ′) then Φ(V : Γ)+q ≥ p and Φ(V : Γ)+q −Φ(v : A) ≥ p −p ′.

The proof is by induction on the evaluation judgment and an inner induction on the type
judgment. The inner induction is needed because of the structural rules.

6 Resource-Polymorphic Recursion

In AARA with polynomial potential, it is often necessary to type recursive calls with a type that
has different resource annotations than the function type of the recursive functions. Consider
for example again the function id2. Let us assume we would like to type the function

fun f l = id2 (id2 l)

The outer call to id2 can be typed again with the following type.

id2 : 〈L(0,1)(1),0〉→ 〈L(0,0)(1),0〉

For the inner call, we would like to derive the typing

id2 : 〈L(0,2)(1),0〉→ 〈L(0,1)(1),0〉

which is sound in the sense of the soundness theorem: the initial potential 2
(n

2

)
is sufficient to

cover the cost
(n

2

)
and the potential

(n
2

)
of the result of the call. Below is a sketch a “derivation” of

this typing. However, we cannot derive this typing with our type rules.

fun id2 l(0,2) =
match l(0,2) with
| [] → [](0,1)

| x::xs(2,2) →
share xs(2,2) as xs1

(1,0), xs2
(1,1) in

let _ = id1 xs1
(1,0) in

let xs’(1,1) = id2 xs2
(1,2) in

(x::xs’)(1,0)

The problem is the recursive call, which requires the following typing

id2 : 〈L(1,2)(1),0〉→ 〈L(1,1)(1),0〉

which is different from the typing that we want to justify but also intuitively sounds. If we want
to derive this typing we need the following typing in the recursive call.

id2 : 〈L(2,2)(1),0〉→ 〈L(2,1)(1),0〉

The need of passing on potential of degree at most k −1 to the output of a function with
a resource consumption of degree k is quite common in typical functions. It is present in
the derivation of time bounds for most non-tail-recursive functions that we considered, for
example, quick sort and insertion sort. The classic (resource-monomorphic) inference approach
of requiring the type of the recursive call to match its specification fails for these functions and
it was a non-trivial problem to address it with an efficient solution.

Type Rules for Resource-Polymorphic Recursion In general, we would like to state that id2
has the following set of types.

id2 : {〈L(q,2)(1),0〉→ 〈L(q,1)(1),0〉 | q ∈Q≥0}

6

We can do so with the following rules for function abstraction and application.

(〈τ, q〉→ B) ∈ T
x1 : T , x2 : τ; q ` app(x1; x2) : B

(P:APP)

A = 〈τ, q〉 Γ= |Γ| ∀(〈τ, q〉→ B) ∈ T : Γ, f : T , x : τ; q ` e : B

Γ;0 ` fun(f , x.e) : 〈T ,0〉 (P:FUN)

While the P:FUN does look slightly worrisome, the soundness proof goes through just fine
without major changes. Type inference for polymorphic recursion is more problematic.

7 Type Inference

The basis of the type inference for the univariate polynomial system is type inference algorithm
for the linear system. A further challenge for the inference of polynomial bounds is the need to
deal with resource-polymorphic recursion, which is required to type most programs that are not
tail recursive. It seems to be a hard problem to infer general resource-polymorphic types, even
for the original linear system.

This is why we use a pragmatic approach to resource-polymorphic recursion that works
well and efficiently in practice. It infers types for most functions that admit a type-derivation,
including all useful programs that we implemented. Nevertheless, it is not complete with respect
to the general resource-polymorphic typing rules. At the end of this section is a somewhat
artificial function with a linear resource consumption that admits a resource-polymorphic
typing that can neither be inferred by the algorithm we present here nor in the classic linear
system.

Resource-Monomorphic Inference

Cost-Free Types

Resource-Polymorphic Inference

Incompleteness

References

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded Linear Logic. Theoret.
Comput. Sci., 97(1):1–66, 1992.

[HH10a] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics. In 8th Asian Symposium on
Programming Languages (APLAS’10), 2010.

[HH10b] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial
Potential. In 19th European Symposium on Programming (ESOP’10), 2010.

[HJ03] Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage for First-
Order Functional Programs. In 30th ACM Symp. on Principles of Prog. Langs. (POPL’03),
2003.

[Hof11] Jan Hoffmann. Types with Potential: Polynomial Resource Bounds via Automatic
Amortized Analysis. PhD thesis, Ludwig-Maximilians-Universität München, 2011.

7

