
15-819: Foundations of Quantitative Program Analysis

Lectures 2 and 3: Cost Semantics

Jan Hoffmann

September 12, 2019

1 Introduction

In the first lecture, we discussed proving that a defined recurrence relation actually corresponds
to the resource usage of a program. However, we defined our cost models only informally, for
example, as the number of multiplications executed. Such informal cost models are common
in the analysis of algorithms and often convenient to focus on the main points of the analysis.
Nevertheless, they are sometimes problematic when comparing different algorithms or when
there are different possibilities to execute certain operations. In any case, it is not possible to
formally prove the correctness of a resource bound without precisely defining a cost model.

In this course, our cost models are be defined by an operational cost semantics and (option-
ally) resource metrics. There are many ways of how to define a cost semantics and we explore only
the most common ones in this lecture. Which cost semantics to pick depends on the resource
of interest (time, stack space, clock-cycles, etc.) and the purpose of the cost semantics, like
proving the soundness of resource bound analysis, implementing an interpreter that measures
the resource usage according to the model, or relating a high-level cost model to the compiled
code in a compiler. Of course, there are also connections between different cost semantics and
the defined cost models are often equivalent or at least compatible. This makes it possible to
easily switch between different cost semantics.

We only study a simple sequential evaluation model. However, there are cost semantics
for modeling other evaluation strategies like parallel evaluation [Har12] and complex runtime
features like garbage collection [NH18]. Such more advanced dynamic behavior is not beyond
the scope of automatic resource analysis but omitted for brevity.

2 A Simple Language and its Static Semantics

Syntax We study cost semantics using a simple language that should be sufficient to discuss
the most interesting points: the simply-typed lambda calculus with fixed points and unit. The
main properties that we later discuss carry over to most other language features.

The types of the language are given by the following grammar. The role of unit in the language
is just to provide a base type so that the set of types is not empty. Like in PFPL [Har12], we define a
abstract syntax (using abstract binding trees) and a concrete syntax for each syntactic form. The
abstract syntax is the actual definition but we sometimes use concrete syntax if it is convenient.

τ ::= arr(τ1;τ2) τ1 → τ2

unit 1

Expressions are defined as follows. We have variables x, function applications app(e1;e2),
lambda abstraction lam{τ}(x.e), fixed points fix{τ}(x.e), and the unit value triv. The reason for
including fixed points is that we can discuss issues that arise for diverging computations. The
types τ in the forms for function abstraction and fixed points ensure that every expression has a

1

Γ` e : τ “expression e has type τ in context Γ”

Γ(x) = τ

Γ` x : τ
(T:VAR)

Γ, x:τ′ ` e : τ

Γ` lam{τ′}(x.e) : τ′ → τ
(T:ABS)

Γ` e1 : τ′ → τ Γ` e2 : τ′

Γ` app(e1;e2) : τ
(T:APP)

Γ, x : τ` e : τ

Γ` fix{τ}(x.e) : τ
(T:FIX)

Γ` triv : unit
(T:UNIT)

Figure 1: Type rules.

unique type (under a given type context).

e ::= x x
app(e1;e2) e1(e2)
lam{τ}(x.e) λ(x : τ)e
fix{τ}(x.e) fix x as e
triv 〈〉

Static semantics We now define a standard type system. The benefit of working with a typed
language in this lecture is that we can avoid dealing with failure in the dynamic semantics.
Moreover, it is a good warm up for the more complex type systems that we will study in the
following lectures.

The rules in Figure 1 inductively define a type judgement

Γ` e : τ

that reads expression e has type τ in type context Γ. As usual, a context Γ is a finite mapping
from variables to types.

Γ ::= · | Γ, x : τ

The order in which variables appear in a context is irrelevant. A well-formed context contains
each variable only once. In particular, if we write Γ′ = Γ, x : τ then Γ′(x) = τ.

We can show by induction on the type derivation that every expression has at most one type
under a given context.

Theorem 1. If Γ` e : τ1 and Γ` e : τ2 then τ1 = τ2.

3 Structural Cost Semantics

The first cost semantics that we study is structural dynamic semantics, sometimes also called
small-step semantics. As the latter name suggests, a structural dynamics defines a notion of
steps and these steps can used to define the cost of an evaluation. Before we can define the
semantics, we need to introduce substitutions.

Free Variables For an expression e, the set of free variables FV (e) is the set of variable that is
not bound in e. Formally

FV (x) = {x}
FV (t (~x1.e1, . . . ,~xn .en)) = ⋃

1≤i≤n FV (ei) \ {xi 1, . . . , xi mi }

2

e val “expression e is a value”

lam{τ}(x.e) val
(V:LAM)

triv val
(V:UNIT)

Figure 2: Values.

e 7−→ e ′ “expression e steps to expression e ′”

e1 7−→ e ′1
app(e1;e2) 7−→ app(e ′1;e2)

(S:APP1)
e1 val e2 7−→ e ′2

app(e1;e2) 7−→ app(e1;e ′2)
(S:APP2)

e2 val

app(lam{τ}(x.e);e2) 7−→ [e2/x]e
(S:APPLAM)

fix{τ}(x.e) 7−→ [fix{τ}(x.e)/x]e
(S:FIX)

e 7−→n e ′ “expression e steps to expression e ′ in n steps”

e 7−→ e ′′ e ′′ 7−→n e ′

e 7−→n+1 e ′
(N:STEP)

e 7−→0 e
(N:BASE)

Figure 3: Vanilla structural dynamic semantics.

Substitutions Let x be a variable and let e and e ′ be expressions. Intuitively, a substitution
[e ′/x]e replaces every free occurrence of the variable x in e with e ′. We define

[e ′/x]x = e ′
[e ′/x]y = y if y 6= x
[e ′/x]t (~x1.e1, . . . ,~xn .en) = t (~x1.e ′1, . . . ,~xn .e ′n) where xi j 6∈ FV (e ′) for all i,j

and e ′i =
{

ei if ∃ j . x = xi j

[e ′/x]ei otherwise

In the following we assume that substitution is always defined.1

Values A value is an expression that cannot be evaluated further. It is a result of a terminating
evaluation that does not go wrong. As we will see, the type system ensures that evaluations do
not go wrong. The values of our simple language are lambda abstractions and the unit value.
They are formally defined in Figure 2.

3.1 Vanilla Structural Dynamics

A structural dynamic semantics is a transition system. The states of the transition system are
expressions and transitions are inductively defined by transition rules. A transition corresponds
to a step in the evaluation of the expression. The evaluation of an expression consists of a
sequence of evaluation steps that is either infinite or ends with a value or a stuck state (i.e., a
malformed expression).

We denote a step from expression e to e ′ by e 7−→ e ′. Figure 3 defines the evaluation rules.
The only expressions that can take a step are function applications app(e1;e2) and fixed points
fix{τ}(x.e). There are no rules for values or variables. We never need to evaluate a variable

1This is justified since bound variables can be renamed without changing the meaning of an expression [Har12].

3

because we only evaluated closed expressions, that is, expressions that do not contain free
variables.

The judgement e 7−→n e ′ denotes that expression e steps to e ′ in n steps. We write e 7−→∗ e ′ if
there exists an n such that e 7−→n e ′. The number of steps n it takes for an evaluation to step to a
value is a natural measure of the time cost of the evaluation. It is important to note that this cost
(and the resulting value) is uniquely defined.

Lemma 1. If e 7−→n1 v1 and e 7−→n2 v2 then v1 = v2 and n1 = n2.

Type Safety We have mentioned that well-typed expressions do not get stuck. This fact is
known as type safety. A well-typed expression is an expression e for which we can find a context
Γ and a type τ such that Γ` e : τ. When evaluating expressions, we are interested in well-typed
closed expressions, that is, expressions · ` e : τ that can be typed with an empty context. We
usually just write e : τ instead of · ` e : τ.

Structural dynamic semantics is a particularly convenient semantics for formulating and
proving type safety using progress and preservation.

Theorem 2 (Progress). If e : τ then either e val or there exists an expression e ′ such that e 7−→ e ′.

Theorem 3 (Preservation). If e : τ and e 7−→ e ′ then e ′ : τ.

We can prove progress by induction on the type judgment e : τ and preservation by induction
on the evaluation judgment e 7−→ e ′.

Now we can formally define the evaluation cost of well-typed closed expressions.

Definition 1. Let e : τ be a closed expression. The evaluation cost of e is n if e 7−→n e ′ for some e ′
and ∞ otherwise.

3.2 Resource Metrics

Our vanilla structural dynamics provides an adequate cost model for evaluation time. However,
we one could criticize that it is not quite realistic to account the same cost for each evaluation
step. In particular, substitution and finding the right spot in an expression for preforming the
next step seem like they could be quite costly. Moreover, it seems questionable to assign cost 0 to
the evaluation of values. Don’t we have to at least look at the complete expression to decide it is
a value? These issues could potentially be fixed by switching to a different transition system (an
abstract machine) that is more in line with an actual implementation. However, we are not only
interested in time but also in other resources like memory usage or specific other metrics like,
say, the number of function calls performed. Switching to a different transition system would
not directly address this.

To make the resource accounting more general, we introduce a resource metric that assigns a
cost to each evaluation step. This cost can be negative to model that resources become available
(like deallocation of memory) and depend on the current expression. However, in view of our
goal of performing a resource analysis, we require that a metric only depends on statically
available information such as the size of a tuple and not on dynamic information such as the
length of a list. However, you could also include dynamic information like number of substituted
variables in the metric if your main goal is to have a cost model that matches your evaluation
strategy.

To keep things simple, we work with a metric M that associates a single constant with each
syntactic form of the language.

M : {var,app, lam,fix,trv} →Q

There are two ways of integrating the resource metric with the evaluation dynamics: resource
effects and resource safety.

4

M ` e 7−→ e ′ | q “expression e steps to expression e ′ with cost q”

M ` e1 7−→ e ′1 | q

M ` app(e1;e2) 7−→ app(e ′1;e2) | q
(SE:APP1)

e1 val M ` e2 7−→ e ′2 | q

M ` app(e1;e2) 7−→ app(e1;e ′2) | q
(SE:APP2)

e2 val

M ` app(lam{τ}(x.e);e2) 7−→ [e2/x]e | M(app)
(SE:APPLAM)

M ` fix{τ}(x.e) 7−→ [fix{τ}(x.e)/x]e | M(fix)
(SE:FIX)

M ` e 7−→∗ e ′ | q “expression e steps to expression e ′ with net cost q”

M ` e 7−→ e ′′ | q1 M ` e ′′ 7−→∗ e ′ | q2

M ` e 7−→∗ e ′ | q1 +q2
(NE:STEP)

M ` e 7−→∗ e | 0
(NE:BASE)

Figure 4: Structural dynamic semantics with resource effects.

3.3 Resource Effects

The idea of resource effects is to augment the dynamic semantics with additional information
about resource usage that is recorded during the evaluation but does not influence the transitions
that are taken.

Figure 4 defines the step transition of the form M ` e 7−→ e ′ | q , where e and e ′ are expressions
and q ∈ Q. The intended meaning is that e steps to e ′ inuring cost q under metric M . If q is
negative then −q resources become available. Like for the vanilla structural dynamics, we define
a many-steps judgement M ` e 7−→∗ e ′ | q where q is the sum of the cost of the individual steps.

The following lemma shows that the resource metric does influence evaluation.

Lemma 2. Let M and M ′ be two metrics. If M ` e 7−→ e ′ | q then M ′ ` e 7−→∗ e ′ | q ′ for some q ′.

We can prove the following relations to the vanilla structural dynamics.

Lemma 3. There exists a q such that M ` e 7−→∗ e ′ | q if and only if e 7−→∗ e ′.

From Lemma 3, it follows that type soundness directly carries over if we replace the vanilla
dynamics with the version with resource effects.

Theorem 4. Let M(app) = M(fix) = 1. Then e 7−→n e ′ iff M ` e 7−→∗ e ′ | n.

We point out that the cost constants lam, trv, and var have no influence on the cost of the
evaluation and it is not immediately clear how to change this.

High-Water Mark If a metric defines non-negative cost for each step then the resource usage
is monotonic. If some cost are negative then this is not the case and we are usually interested in
the high-water mark resource usage, that is the maximal amount of resources that are used a
point during the evaluation.

Definition 2. Let e : τ be a closed expression. The high-water mark resource usage of e under
metric M is defined as max{q | M ` e 7−→∗ e ′ | q} if the maximum exists and ∞ otherwise.

Note that the high-water mark can be finite for diverging computations that, for example,
alternate between allocating and freeing resources.

5

M ` 〈e | q〉 7−→ 〈e ′ | q ′〉 “with q ≥ 0 available resources, e steps to e ′ and q ′ ≥ 0 resources”

M ` 〈e1 | q〉 7−→ 〈e ′1 | q ′〉
M ` 〈app(e1;e2) | q〉 7−→ 〈app(e ′1;e2) | q〉 (SS:APP1)

e1 val M ` 〈e2 | q〉 7−→ 〈e ′2 | q ′〉
M ` 〈app(e1;e2) | q〉 7−→ 〈app(e1;e ′2) | q ′〉 (SS:APP2)

e2 val q ′ = q −M(app) ≥ 0

M ` 〈app(lam{τ}(x.e);e2) | q〉 7−→ 〈[e2/x]e | q ′〉 (SS:APPLAM)

q ′ = q −M(fix) ≥ 0

M ` 〈fix{τ}(x.e) | q〉 7−→ 〈[fix{τ}(x.e)/x]e | q ′〉 (SS:FIX)

M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉 “with q ≥ 0 available resources, e steps to e ′ and q ′ ≥ 0 resources”

M ` 〈e | q〉 7−→ 〈e ′′ | q ′′〉 M ` 〈e ′′ | q ′′〉 7−→∗ 〈e ′ | q ′〉
M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉 (NS:STEP)

M ` 〈e | q〉 7−→∗ 〈e | q〉 (NS:BASE)

Figure 5: Structural dynamic semantics with resource safety.

3.4 Resource Safety

Another way to model resource usage is by resource safety. Instead of resource usage being an
effect of the evaluation, we view resources as fuel that gets consumed during the evaluation.
If the fuel is not sufficient to cover the cost then the evaluation gets stuck. So in contrast to
resource effects, resources can influence the evaluation and type safety does only hold if we start
with a sufficient amount of resources.

Figure 5 defines the judgment M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉, which states that, with q ∈ Q≥0

available resources, expression e evaluates to expression e ′ and q ′ ∈ Q≥0 available resources.
The difference q − q ′ of initial and remaining resources is the net cost of the evaluation. For
an expression, there are now many possible initial resources we can start the evaluation with.
However, the net cost of the evaluation is invariant. Note that Lemma 5 does not hold for c < 0.

Lemma 4. If M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉, M ` 〈e | p〉 7−→∗ 〈e ′ | p ′〉,and e ′ val then q −q ′ = p −p ′.

Lemma 5. If M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉 and c ≥ 0 then M ` 〈e | q + c〉 7−→∗ 〈e ′ | q ′+ c〉.
Let us examine how the resource safety dynamics relates to the version with resource effects.

Theorem 5. Let e : τ be a closed expression. If M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉 then M ` e 7−→∗ e ′ | q −q ′.

Theorem 6. Let e : τ be a closed expression. If M ` e 7−→∗ e ′ | q then there exist p, p ′ ∈Q≥0 such
that p −p ′ = q and M ` 〈e | p〉 7−→∗ 〈e ′ | p ′〉.

You may have expected a stronger version of Theorem 6 in which we conclude M ` 〈e | q〉 7−→∗
〈e ′ | 0〉 (for q ≥ 0). However, this only holds for metrics M without negative cost. A more general
version of this question is how two evaluations M ` 〈e1 | q〉 7−→∗ 〈e2 | q ′〉 and M ` 〈e2 | p〉 7−→∗
〈e3 | p ′〉 compose. We know that there exists r,r ′ ∈Q≥0 such that M ` 〈e1 | r 〉 7−→∗ 〈e3 | r ′〉 but it
is not immediately clear how we can express them in terms of q, q ′, p, and p ′. We will revisit this
question in Section 4.

6

As you can infer from Theorem 6, type safety with the resource safety semantics is slightly
different from the vanilla version: If you do not have enough resources then you can get stuck
even if the expression is well typed.

High-Water Mark With resource safety, the high-water mark is the minimal amount of re-
sources that we need to not run out of resources. The question is how to come up with a
definition that captures this idea. A first idea would be something like this

min{q | ∀p, p ′,e ′. M ` 〈e | p〉 7−→∗ 〈e ′ | p ′〉 =⇒ ∃q ′. M ` 〈e | q〉 7−→∗ 〈e ′ | q ′〉}

However, this is not what we want since it would result in the high-water mark 0 for expressions
like fix{τ}(x.x). We could fix this by adding the number of steps to the judgment.

min{q | ∀p, p ′,e ′,n. M ` 〈e | p〉 7−→n 〈e ′ | p ′〉 =⇒ ∃q ′. M ` 〈e | q〉 7−→n 〈e ′ | q ′〉}

This works but is somewhat unsatisfactory since we now have talk about the resource usage and
the number of steps. Another possibility would be to focus on terminating evaluations only.

min{q | ∃v, q ′. v val and M ` 〈e | q〉 7−→∗ 〈v | q ′〉}

This is nice and simple but the downside is that we do not define a high-water mark for diverging
evaluations. The definition we pick directly captures our initial intuition about not running out
of resources.

Definition 3. Let e : τ be a closed expression. The high-water mark resource usage hwmM (e) of e
under metric M is defined as the smallest q such that the following holds (or ∞ if no such q exists).
For all e ′, q ′, if 〈e | q〉 7−→∗ 〈e ′ | q ′〉 and not e ′ val then 〈e ′ | q ′〉 7−→ 〈e ′′ | q ′′〉 for some e ′′, q ′′

Note that the definition is a generalization of the previous definition for values.
Of course, we expect the following theorem. However, it is not directly clear if the statement

is indeed correct and how we can prove it. So you need to prove it on the next homework
assignment.

Theorem 7. Let e : τ be a closed expression and M a metric. The maximum m = max{q | M `
e 7−→∗ e ′ | q} exists if and only if hwmM (e) is finite. In this case hwmM (e) = m.

4 Evaluation Dynamics

The second cost semantics we study is evaluation dynamics (or big-step semantics). In contrast
to structural dynamics, evaluation dynamics does not enjoy a notion of steps, so the term big-
step is somewhat misleading. The vanilla evaluation dynamics defines a judgment e ⇓ v where e
is an expression and v is a value. The judgment for values is same as for the structural dynamics
and defined in Figure 2.

We skip the inductive definition of e ⇓ v . You can obtain the rules by removing the resource
annotations for the rules in Figure 6. We can prove the following theorem.

Theorem 8. Let e : τ be a closed expression then e ⇓ v if and only if e 7−→∗ v and v val.

Note that it is not directly possible to formulate type safety with an evaluation dynamics
since there is no distinction between divergence and failure: there is no judgment for both.2

2To distinguish divergence and failure, we could introduce another judgment for failures. However, this would not be
very elegant diminish some of the benefits of a type system.

7

M ` e ⇓q
q ′ v “with q ≥ 0 available resources, e valuates v and q ′ ≥ 0 resources remain”

q ′ = q −M(trv) ≥ 0

M ` triv ⇓q
q ′ triv

(ES:UNIT)
q ′ = q −M(lam) ≥ 0

M ` lam{τ}(x.e) ⇓q
q ′ lam{τ}(x.e)

(ES:LAM)

M ` e1 ⇓q
p lam{τ}(x.e) M ` e2 ⇓p

p ′ v2 M ` [v2/x]e ⇓r
q ′ v r = p ′−M(app) ≥ 0

M ` app(e1;e2) ⇓q
q ′ v

(ES:APP)

p = q −M(fix) ≥ 0 M ` [fix{τ}(x.e)/x]e ⇓p
q ′ v

M ` fix{τ}(x.e) ⇓q
q ′ v

(ES:FIX)

Figure 6: Evaluation dynamics with resource safety.

4.1 Resource Safety

We first study an evaluation dynamics that implements the idea of resources safety. Figure 6
inductively defines the judgment M ` e ⇓q

q ′ v with the following intended meaning. If q ≥ 0

resources are available then expression e evaluation to value v and q ′ resources are available
after the evaluation. Like for the structural dynamics, we can show that the net cost is invariant.

Lemma 6. Let e : τ be a closed expression. If M ` e ⇓q
q ′ v and M ` e ⇓p

p ′ v ′ then q −q ′ = p −p ′.

Lemma 7. Let e : τ and M ` e ⇓q
q ′ v. Then M ` e ⇓q+c

q ′+c v.

A particularly nice feature of an evaluation dynamics is that the shape of the rules matches
to the shape of the type rules. This simplifies inductive proofs of statements that involve an
evaluation judgment and type judgment for the same expression. In particular, we can now
assign cost to values. In our simple language, we do not have composed values likes lists. As we
will see later in the course, an evaluation dynamics naturally assigns non-constant cost to such
values as the evaluation rules will evaluate the subexpression of the value.

When we relate the evaluation dynamics, we have to assume a metric M that does not assign
cost to value evaluation.

Theorem 9. Let M be a metric such that M(trv) = M(lam) = 0 and let e : τ be an expression. Then
M ` e ⇓q

q ′ v if and only if M ` 〈e | q〉 7−→∗ 〈v | q ′〉 and v val.

The high-water mark resource usage can only be defined for terminating evaluations. Let
e : τ be a closed expression. The high-water mark resource is

min{q | ∃v, q ′. v val and M ` e ⇓q
q ′ v}

if the minimum exists and undefined otherwise. From Theorem 9, we derive the following
corollary.

Corollary 1. Let M be a metric such that M(trv) = M(lam) = 0 and let e : τ be an expression. If
m = min{q | ∃v, q ′. v val and M ` e ⇓q

q ′ v} exists then hwmM (e) = m.

Downsides of Resource Safety There are a number of issues with using resource safety to
define the resource usage of programs. One issue is that the evaluation judgement is non-
deterministic, that is, for a given expression e, we have different evaluation judgements M `
e ⇓q

q ′ v and M ` e ⇓p
p ′ v where p 6= q . This is partially mitigated by the fact that there exists a

canonical judgement that has a minimal amount of initial resources. However, the evaluation
rules in Figure 6 do not help us to find this canonical judgement Therefore, if we would like to

8

M ` e ⇓ v | (q, q ′) “e valuates v with high-water mark q ≥ 0 and q ′ ≥ 0 remaining resources”

M ` triv ⇓ triv | M(trv)
(EE:UNIT)

M ` lam{τ}(x.e) ⇓ lam{τ}(x.e) | M(lam)
(EE:LAM)

M ` e1 ⇓ lam{τ}(x.e) | (q1, q ′
1) M ` e2 ⇓ v2 | (q2, q ′

2) M ` [v2/x]e ⇓ v | (q, q ′)
M ` app(e1;e2) ⇓ v | (q1, q ′

1) · (q2, q ′
2) ·M(app) · (q, q ′)

(EE:APP)

M ` [fix{τ}(x.e)/x]e ⇓ v | (q, q ′)
M ` fix{τ}(x.e) ⇓ v | M(fix) · (q, q ′)

(EE:FIX)

Figure 7: Evaluation dynamics with resource effects.

implement an interpreter based on the evaluation rules with resource safety then we cannot use
it to measure the high-watermark resource usage of programs. We rather have to start with some
fuel that we have to pick before we run the interpreter. Note that these issues equally apply to
evaluation the evaluation dynamics and the structural dynamics.

4.2 Resource Effects

In this subsection, we develop an evaluation dynamics that uses resource effects. The first idea
that comes to mind is to develop judgment of the form M ` e ⇓q v , where q ≥ 0 is the high-water
mark resource usage. But how would we compose the cost of two evaluation M ` e1 ⇓q1 v and
M ` e2 ⇓q2 v in the rule for function application? Both, taking the sum q1+q2 of the cost and the
maximum max(q1, q2) of the subexpressions is incorrect. If we have M ` 〈e1 | q1〉 7−→∗ 〈v | q2〉
then q1 seems reasonable. However, if we have M ` 〈e1 | q1〉 7−→∗ 〈v | 0〉 then q1 + q2 seems
correct.

To define a precise composition operation, we need to keep track of both the high-water mark
and the remaining resource. Figure 7 defines the judgement M ` e ⇓ v | (q, q ′). The intended
meaning is that under metric M , expression e evaluates to value v , the high-water mark resource
usage is q ∈Q≥0 and after the evaluation there are q ′ ∈Q≥0 resource units available. The net
resource consumption is then q −q ′. This difference is negative if resources become available
during the execution of e.

Resource Monoid It is handy to view the pairs (q, q ′) in the evaluation judgments as elements
of a monoid Q= (Q≥0 ×Q≥0, ·). A monoid has an associative operation · and a neutral element.
The neutral element is (0,0), which means that resources are neither needed before the eval-
uation nor returned after the evaluation. The operation (q, q ′) · (p, p ′) defines how to account
for an evaluation consisting of a sequence of two evaluations whose resource consumption are
defined by (q, q ′) and (p, p ′), respectively. We define

(q, q ′) · (p, p ′) =
{

(q +p −q ′, p ′) if q ′ ≤ p
(q, p ′+q ′−p) if q ′ > p

If resources are never returned (as with time) then we only have elements of the form (q,0) and
(q,0) · (p,0) is just (q +p,0).

We identify a rational number q ∈Qwith an element of Q as follows: q ≥ 0 denotes (q,0) and
q < 0 denotes (0,−q). This notation avoids case distinctions in the evaluation rules in Figure 7.

Lemma 8. Let (q, q ′) = (r,r ′) · (s, s′). We can prove the following statements.

1. q ≥ r and q −q ′ = r − r ′+ s − s′

2. If (p, p ′) = (r̄ ,r ′) · (s, s′) and r̄ ≥ r then p ≥ q and p ′ = q ′

9

M ` e ⇓ ◦ | q “e needs q ≥ 0 resources at some point in the evaluation”

M ` e ⇓ ◦ | 0
(EP:STOP)

M ` e1 ⇓ v | q

M ` app(e1;e2) ⇓ ◦ | q
(EP:APP1)

M ` e1 ⇓ v | (q1, q ′
1) M ` e2 ⇓ ◦ | q2 (p, p ′) = (q1, q ′

1) ·q2

M ` app(e1;e2) ⇓ ◦ | p
(EP:APP2)

M ` e1 ⇓ lam{τ}(x.e) | (q1, q ′
1)

M ` e2 ⇓ v2 | (q2, q2) M ` [v2/x]e ⇓ ◦ | q (p, p ′) = (q1, q ′
1) · (q2, q ′

2) ·M(app) ·q

M ` app(e1;e2) ⇓ ◦ | p
(EP:APP3)

M ` [fix{τ}(x.e)/x]e ⇓ ◦ | q (p, p ′) = M(fix) ·q

M ` fix{τ}(x.e) ⇓ v | p
(EP:FIX)

Figure 8: Partial evaluation dynamics with resource effects.

3. If (p, p ′) = (r,r ′) · (s̄, s′) and s̄ ≥ s then p ≥ q and p ′ ≤ q ′

4. (r,r ′) · ((s, s′) · (t , t ′)) = ((r,r ′) · (s, s′)) · (t , t ′)

Properties of the Dynamics A beneficial feature of the evaluation dynamics with resource
effects is that the judgment is deterministic in the sense of the following lemma. So there rules
are suitable to implement an interpreter that keeps track of the resource usage.

Lemma 9. Let e : τ be a closed expression. If M ` e ⇓ v | (q, q ′) and M ` e ⇓ v ′ | (p, p ′) then v = v ′
and (q, q ′) = (p, p ′).

We can show the following relations to the evaluation dynamics with resource safety.

Theorem 10. Let e : τ be a closed expression. If M ` e ⇓q
q ′ v then M ` e ⇓ v | (p, p ′) for some p, p ′

with p ≤ q and p −p ′ = q −q ′.

Theorem 11. Let e : τ be a closed expression. If M ` e ⇓ v | (q, q ′) then M ` e ⇓q
q ′ v.

Theorem 10 and Theorem 11 show that the high-water mark defined by resource monoid is
identical to the high-water we defined using resource safety.

Corollary 2. Let e : τ be a closed expression. We have M ` e ⇓ v | (p, p ′) for some p ′ if and only if
p = min{q | ∃v, q ′. v val and M ` e ⇓q

q ′ v}.

4.3 Partial Evaluations

A remaining disadvantage of the evaluation dynamics (in both versions) is that the high-water
mark resource usage is only defined for terminating evaluations. To extend the dynamic to
diverging computation, we define the judgment M ` e ⇓ ◦ | q in Figure 8. It states that under
metric M , the partial evaluation of expression e leads to high-water mark resource usage q . The
idea is that the rule EP:STOP can be used to derive the resource usage for a starting fragment
of a (possibly diverging) evaluation. So we can show that the high-water mark of a terminating
evaluation always exceeds the high-water mark of a partial evaluation of the same expression.

Theorem 12. Let e : τ be a closed expression. If M ` e ⇓ v | (q, q ′) and M ` e ⇓ ◦ | p then p ≤ q.

But what can we say about diverging computations? Let us first attempt to define the
high-water mark resource usage with partial evaluations.

10

Definition 4. Let e : τ be a closed expression. The high-water mark resource usage of e under
metric M is defined as

• q if M ` e ⇓ v | (q, q ′) for some v and q ′, or otherwise

• max{q | M ` e ⇓ ◦ | q} if the maximum exists, or otherwise

• ∞
The following lemmas relates partial evaluation to the structural dynamics with resource

effects.

Lemma 10. Let e : τ. If M ` e ⇓ ◦ | q for some q then there exists e ′ such that M ` e 7−→ e ′ | q.

Lemma 11. Let e : τ and n ∈N. If qm = max{q | ∃e ′,m ≤ n. M ` e 7−→m e ′ | q} then M ` e ⇓ ◦ | qm .

From Lemma 10 and Lemma 11 we obtain the following theorem. Note that we do not have
to require any restrictions on the metric. However, this is only the case because the values in our
simple language are atomic. If we were to add lists and respective cost to the language then the
theorem would only hold if the cost of evaluating values would always be 0.

Theorem 13. Let e : τ be a closed expression. The m = max{q | M ` e ⇓ ◦ | q} exists if and only if
n = max{q | M ` e 7−→∗ e ′ | q} exists. In this case n = m.

Evaluation-Step Metric Interestingly, we can use our partial evaluation dynamics, to formulate
and prove type safety. To this end, let MS be the step metric, that is, MS (trv) = MS (lam) = 0 and
MS (app) = MS (fix) = 1. Then we can show that q ′ = 0 for every judgment MS ` e ⇓ v | (q, q ′).
Additionally, we can prove the following corollary.

Corollary 3. For e : τ, we have MS ` e ⇓ ◦ | n if and only if e 7−→n e ′ for some n.

If for a terminating evaluation of cost n we can derive partial evaluations for every m ≤ n.

Lemma 12. Let e : τ. If MS ` e ⇓ v | (n,0) and m ≤ n then MS ` e ⇓ ◦ | m.

We can formulate progress and preservation as follows.

Theorem 14 (Preservation). If e : τ and MS ` e ⇓ v | (n,0) then v : τ.

Theorem 15 (Progress). If e : τ and MS ` e ⇓ ◦ | n then either MS ` e ⇓ v | (n,0) for some v or
MS ` e ⇓ ◦ | n +1.

5 Cost Annotations

Resource metrics are a flexible and general method to define the resource usage of a program.
However, to study and implement resource analysis, it is simpler to rely on user-defined cost
annotations. For one thing, you can imagine that you would like to enable a programmer to
define the cost of a program. For another thing, cost annotations can be added to an intermediate
language to match the cost that is defined by a resource metric at the source level.

To add cost annotations, we extend the expression with an additional syntactic form tick{q}
where q ∈Q.

e ::= . . .
tick{q} tick (q)

Ticks only influence the resource usage and have no computational effect. The type rule for ticks
is defined as follows.

Γ` tick{q} : unit
(T:TICK)

We extend resource metrics to be functions

M : ({var,app, lam,fix,trv}∪ {tickq | q ∈Q}) →Q

11

The rules of the dynamics semantics can be extended in a straightforward way. For example,
the evaluation dynamics with resource effects is extended with the following rule.

M ` tick{q} ⇓ triv | M(tick{q})
(EE:TICK)

Similarly, the structural dynamics with resource safety is extended with the following rule.

p ′ = p −M(tick{q}) ≥ 0

M ` 〈tick{q} | p〉 7−→ 〈triv | p ′〉 (SS:TICK)

Tick Metric The tick metric MT is the metric with MT (tickq) = q and MT (K) = 0 for K 6= tickq .
In the remainder of the semester, we will mostly talk about the tick metric and simply omit
metrics from the judgment. However, this is just for brevity and the development can be
straightforwardly generalized to arbitrary metrics.

References

[Har12] Robert Harper. Practical Foundations for Programming Languages. Cambridge Univer-
sity Press, 2012.

[NH18] Yue Niu and Jan Hoffmann. Automatic space bound analysis for functional programs
with garbage collection. In 22nd International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR’18), 2018.

12

