
Assignment 3:
(Implicit) Computation Complexity

15-819: Foundations of Quantitative Program Analysis (Fall 2019)

Out: Friday, October 8, 2019
Due: Friday, October 22, 2019 11:59pm EDT

1 System BC with Lists

Recall System BC with binary numerals from lecture. In this problem, you will extend System
BC to lists and implement a sorting algorithm. Recall the type rule for recursive iterations on
numerals.

∆; · ` e : nat
∆;Γ` e0 : nat ∆, x1 : nat;Γ, y1 : nat ` e1 : nat ∆, x2 : nat;Γ, y2 : nat ` e2 : nat

∆;Γ` rec{e0; x1, y1.e1; x2, y2.e2}(e) : nat
(BC:REC)

We discussed in lecture that a generalization of the rule to recursion at higher types would lead
to a language in which we can implement functions with super-polynomial complexity.

So assume that we keep all other type rules but replace the rule BC:REC with the rule
BC:REC2 below. We call the resulting programming language System BC2.

∆; · ` e : τ
∆;Γ` e0 : nat ∆, x1 : nat;Γ, y1 : τ` e1 : τ ∆, x2 : nat;Γ, y2 : τ` e2 : τ

∆;Γ` rec{e0; x1, y1.e1; x2, y2.e2}(e) : τ
(BC:REC2)

Task 1.1 (10 pts). Find a function f :Nk →N that cannot be computed in polynomial time and
show that it is implementable in System BC2 (by providing an implementation).

Hint: A function that growth exponentially is not commutable in polynomial time.

So let us go back to System BC with the rule BC:REC. The first step for implementing our
sorting algorithm is to implement a comparison function for binary numerals.

Task 1.2 (10 pts). Implement a comparison function leq : änat →änat → nat such that leq(ñ)(m̃)
returns z if n > m and s0(z).

Our next goal is to extend System BC to lists. So we define types and expressions as follows.

τ ::= nat
τ1 → τ2

äτ1 → τ2

L(τ)

1



e ::= . . .
nil nil
cons(e1;e2) cons (e1,e2)
caseL{e0; x1, x2.e1}(e) case e {nil ,→ e0 | cons (x1, x2) ,→ e1}
recL{e0; x1, x2, y.e1}(e) rec e {nil ,→ e0 | cons (x1, x2) with y ,→ e1}

The case analysis for lists plays the same role as the conditional for binary numbers: It is can
be applied to safe lists while the recurser can only be applied to modal lists. This expressivity
seems to be required to implement a sorting algorithm.

The dynamic semantics of lists is defined by the following rules.

nil ⇓ nil
(E:NIL)

e1 ⇓ v1 e2 ⇓ v2

cons(e1;e2) ⇓ cons(v1; v2)
(E:CONS)

e ⇓ nil e0 ⇓ v

caseL{e0; x1, x2.e1}(e) ⇓ v
(E:MATL-N)

e ⇓ cons(v1; v2) [v1, v2/x1, x2]e1 ⇓ v

caseL{e0; x1, x2.e1}(e) ⇓ v
(E:MATL-C)

e ⇓ nil e0 ⇓ v

recL{e0; x1, x2, y.e1}(e) ⇓ v
(E:RECL-N)

e ⇓ cons(v1; v2) recL{e0; x1, x2, y.e1}(v2) ⇓ vr [v1, v2, vr /x1, x2, y]e1 ⇓ v

recL{e0; x1, x2, y.e1}(e) ⇓ v
(E:RECL-C)

Task 1.3 (10 pts). Define the static semantics of lists (4 type rules) so that all functions you can
define are implementable in polynomial time.

Hint: You can allow recursion at all “data types”, that is, types that do not contain arrows.

Task 1.4 (10 pts). Implement a function sort : äL(nat) → L(nat) that sorts a list in ascending
order. You can use your previously defined comparison function.1

What is the (asymptotic) complexity of your solution?
Hint: Remember that you can use the input multiple times. On way to implement the function

is to ensure that the i -th recursion returns the list of the i largest numbers in ascending order.

2 Functional Queue Revisited

In this problem, we are repeating the analysis of the queue from Assignment 1. But this time we
use type-based amortized resource analysis.

In the OCaml code below, we have inserted tick expressions to count the number of cons (::)
operations. Moreover, the code is in share-let normal form.

First, consider the reverse function for lists rev.

1You can get extra credit if you can implement a sorting algorithm that doesn’t use the syntactic form for case analysis
on lists. However, I don’t think that this is possible.

2



let rec rev_append (l1, l2) =
match l1 with
| [] → l2
| x::xs →

let _ = Raml.tick 1.0 in
let l2’ = x::l2 in
rev_append (xs, l2’)

let rev l =
let nil = [] in
rev_append (l, nil)

Task 2.1 (4 pts). Provide resource-annotated types for the functions rev_append: L(bool)×
L(bool) → L(bool) and rev: L(bool) → L(bool) that can be derived using the type system for
linear amortized resource analysis from lecture.

Task 2.2 (10 pts). Using the type system for linear amortized resource analysis from lecture, give
type derivations of the types you provided for rev_append and rev in the previous task.

Task 2.3 (6 pts). Give a concise description of the set of all annotated function types that are
derivable for the function rev_append.

Now consider the following variations of the queue implementation.

let enqueue (inq, outq) x =
let _ = Raml.tick 1.0 in
let inq’ = x::inq in
(inq’, outq)

let rec dequeue (inq, outq) =
match outq with
| [] →

begin
match inq with
| [] →

let no_elem = [] in
let empty_queue =

let nil1 = [] in
let nil2 = [] in
(nil1,nil2)

in
(empty_queue, no_elem)

| x::xs →
let nil = [] in
let inq_rev = rev inq in
dequeue (nil,inq_rev)

end
| y::ys →

let queue = (inq, ys) in

3



let nil = [] in
let _ = Raml.tick 1.0 in
let elem = y::nil in
(queue,elem)

Task 2.4 (4 pts). Give derivable resource-annotated types for the functions enqueue, and
dequeue. You don’t have to provide the type derivation.

Task 2.5 (10 pts). Give resource-annotated type derivations for the functions a and b below.
Insert sharing expressions if needed.

let a =
let qu = ([],[]) in
let qu = enqueue (qu, 1) in
let qu = enqueue (qu, 2) in
let qu = enqueue (qu, 3) in
dequeue qu

let b =
let qu = ([],[]) in
let qu = enqueue (qu, 1) in
let qu = enqueue (qu, 2) in
let qu = enqueue (qu, 3) in
let _ = dequeue qu in
dequeue qu

Task 2.6 (6 pts). Give a derivable resource-annotated type for the function enq_or_deq. You
don’t have to provide the type derivation.

let rec enq_or_deq (l,queue) =
match l with
| [] → queue
| x::xs →

if x then
let queue’ = enqueue (queue,x) in
enq_or_deq (xs, queue’)

else
let (queue’,_) = dequeue queue in
enq_or_deq (xs, queue’)

4


