

# Resource Analysis: Problem Set 8

Jan Hoffmann  
Carnegie Mellon University

March 28, 2016

Due before 1:30pm on Monday, April 11

## 8.1 (20 Points) Resource-Polymorphic Recursion

In this problem we are interested in the number of cons operations. We use a metric  $M$  with  $M^{\text{cons}} = 1$  and  $M^K = 0$  for all  $K \neq \text{cons}$ .

Consider the following OCaml functions.

```
let rec rev_append (l1,l2) =
  match l1 with
  | [] → l2
  | x::xs → rev_append (xs, x::l2)

let rec skip l =
  match l with
  | [] → []
  | x1::xs →
    match xs with
    | [] → []
    | x2::xs → x2::skip(xs)

let rec f1 l =
  match l with
  | [] → []
  | x::xs →
    let l' = skip l in
    rev_append (f1 l', l')
```

- a) Give linear resource-annotated types for the functions *rev\_append*, *skip*, and *f1*.
- b) Provide annotated type derivations for the functions *skip* and *f1* that justify your types.  
Transform the functions to share-let-normal form for the type derivation.
- c) Argue informally why the type inference algorithm that we discussed in class cannot derive a resource-annotated type for *f1*.
- d) Now give a resource-annotated type derivation for *f2*, which is defined below. Why can the type inference algorithm derive this bound?

```

let rec f2 l =
  match l with
  | [] → []
  | x::xs →
    let l' = skip l in
    rev_append (l', f2 l')

```

e) Finally, consider again the original program in which we replace *skip* with the following implementation.

```

let rec skip l =
  match l with
  | [] → []
  | x1::xs →
    match xs with
    | [] → [x1]
    | x2::xs → x2::skip(xs)

```

Explain informally why your type derivation from (b) does not work for the new variant of *skip*. Can you informally derive a bound for *f1* with the new variant of *skip*?

## 8.2 (16 Points) Non-Negative Polynomials

The potential functions of *univariate polynomial amortized resource analysis* are a generalization of non-negative linear combinations of binomial coefficients (binomials)

$$\mathcal{B} = \left\{ \lambda n. \sum_{i=0, \dots, k} q_i \binom{n}{i} \mid k \in \mathbb{N}, q_i \in \mathbb{Q}_{\geq 0} \right\}$$

Recall that  $\binom{n}{0} = 1$  for every  $n \in \mathbb{N}$ .

For a function  $f : \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}$ , the *discrete derivative*  $\Delta f : \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}$  is defined by

$$(\Delta f)(n) = f(n+1) - f(n).$$

As usual, we define  $\Delta^0 f = f$  and  $\Delta^k f = \Delta(\Delta^{k-1} f)$  if  $k > 0$ .

The set of polynomials is defined as

$$\mathcal{P} = \left\{ \lambda n. \sum_{i=0, \dots, k} q_i n^i \mid k \in \mathbb{N}, q_i \in \mathbb{Q} \right\}$$

We call a function  $f : \mathbb{N} \rightarrow \mathbb{Q}$  *hereditary non-negative* if  $\Delta^i f \geq 0$  for all  $i \in \mathbb{N}$ .

- Prove that if  $f \in \mathcal{B}$  and  $k \in \mathbb{N}$  then  $\Delta^k f \in \mathcal{B}$ . Note that it follows that  $\mathcal{B}$  is a set of hereditary non-negative polynomials.
- Show that  $\mathcal{B}$  is the largest set of hereditary non-negative polynomials:  $\mathcal{P} \cap \{f \mid \forall i \Delta^i f \geq 0\} = \mathcal{B}$ .  
Hint: If  $p : \mathbb{N} \rightarrow \mathbb{Q}$  is a hereditary non-negative polynomial then  $p(n) = \sum_i q_i \binom{n}{i}$  where  $q_i = (\Delta^i p)(0)$ .
- Let  $\mathcal{C}$  be a set of non-negative polynomials that is closed under discrete differentiation, that is,  $p \in \mathcal{C} \implies \Delta p \in \mathcal{C}$ . Show that  $\mathcal{C} \subseteq \mathcal{B}$ .

### 8.3 (12 Points) Resource Aware ML

Resource Aware ML (RAML) is an implementation of *multivariate polynomial amortized resource analysis* for OCaml. A web interface for RAML is available at

<http://raml.co>

1. Use the web interface of RAML to derive evaluation-step bounds on the functions defined in Problem 8.1 and report the derived bounds.
2. Use the template in the file *search.raml* and the functional queue from Problem 2.3 to implement a breadth-first search and a depth-first search in RAML. Derive and report evaluation-step bounds using the web interface.

$\Sigma; \Gamma \vdash_{q'}^q e : B$  Given resource metric  $M$ , expression  $e$  has annotated type  $A$  under signature  $\Sigma$  in context  $\Gamma$ .

$$\begin{array}{c}
\frac{q = q' + M^{\text{var}}}{\Sigma; \Gamma \vdash_{q'}^q x : B} \text{ (L:VAR)} \quad \frac{A \xrightarrow{p/p'} B \in \Sigma(f) \quad q = p + M^{\text{app}}}{\Sigma; \Gamma \vdash_{p'}^q \text{app}(f, x) : B} \text{ (L:APP)} \\
\\
\frac{\Sigma; \Gamma_1 \vdash_{p'}^p e_1 : A \quad \Sigma; \Gamma_2, x:A \vdash_{q'}^{p'} e_2 : B \quad q = p + M^{\text{let}}}{\Sigma; \Gamma_1, \Gamma_2 \vdash_{q'}^q \text{let}(e_1, x.e_2) : B} \text{ (L:LET)} \\
\\
\frac{e \in \{\text{true, false}\} \quad q = M^{\text{cbool}} + q'}{\Sigma; \cdot \vdash_{q'}^q b : \text{Bool}} \text{ (L:BCONST)} \\
\\
\frac{\Sigma; \Gamma \vdash_{q'}^{q_1} e_1 : B \quad \Sigma; \Gamma \vdash_{q'}^{q_2} e_2 : B \quad q = M_1^{\text{cond}} + q_1 \quad q = M_2^{\text{cond}} + q_2}{\Sigma; \Gamma, x:\text{Bool} \vdash_{q'}^q \text{if}(x, e_1, e_2) : B} \text{ (L:COND)} \\
\\
\frac{q = M^{\text{pair}} + q'}{\Sigma; x_1 : A_1, x_2 : A_2 \vdash_{q'}^q \text{pair}(x_1, x_2) : A_1 * A_2} \text{ (L:PAIR)} \\
\\
\frac{\Sigma; \Gamma, x_1:A_1, x_2:A_2 \vdash_{q'}^p e' : B \quad q = M^{\text{MatP}} + p}{\Sigma; \Gamma, x : A_1 * A_2 \vdash_{q'}^q \text{matP}(e, (x_1, x_2).e') : B} \text{ (L:MATP)} \quad \frac{q = M^{\text{nil}} + q'}{\Sigma; \cdot \vdash_{q'}^q \text{nil} : L^p(A)} \text{ (L:Nil)} \\
\\
\frac{q = M^{\text{cons}} + p + q'}{\Sigma; x_1 : A, x_2 : L^p(A) \vdash_{q'}^q \text{cons}(x_1, x_2) : L^p(A)} \text{ (L:CONS)} \\
\\
\frac{\Sigma; \Gamma \vdash_{q'}^{q_1} e_1 : B \quad \Sigma; \Gamma, x_1 : A, x_2 : L^p(A) \vdash_{q'}^{q_2} e_2 : B \quad q = M_1^{\text{matL}} + q_1 \quad q + p = M_2^{\text{matL}} + q_2}{\Sigma; \Gamma, x : L^p(A) \vdash_{q'}^q \text{matL}(x, e_1, (x_1, x_2).e_2) : B} \text{ (L:MATL)} \\
\\
\frac{\Sigma; \Gamma, x_1 : A_1, x_2 : A_2 \vdash_{q'}^q e : B \quad A \not\asymp (A_1, A_2)}{\Sigma; \Gamma, x : A \vdash_{q'}^q \text{share}(x, (x_1, x_2).e) : B} \text{ (L:SHARE)} \\
\\
\frac{\Sigma; \Gamma, x:A \vdash_{q'}^q e : B \quad A' <: A}{\Sigma; \Gamma, x:A' \vdash_{q'}^q e : B} \text{ (L:SUPERTYPE)} \quad \frac{\Sigma; \Gamma \vdash_{q'}^q e : B \quad B <: B'}{\Sigma; \Gamma \vdash_{q'}^q e : B'} \text{ (L:SUBTYPE)} \\
\\
\frac{\Sigma; \Gamma \vdash_{p'}^p e : B \quad q \geq p \quad q - p \geq q' - p'}{\Sigma; \Gamma \vdash_{q'}^q e : B} \text{ (L:RELAX)} \quad \frac{\Sigma; \Gamma \vdash_{q'}^q e : B}{\Sigma; \Gamma, x:A \vdash_{q'}^q e : B} \text{ (L:WEAK)}
\end{array}$$

**Figure 1:** Linear resource-annotated type rules.