
Resource Analysis: Problem Set 5

Jan Hoffmann
Carnegie Mellon University

February 22, 2016

Due before 1:30pm on Monday, February 29

5.1 (8 Points) Resource Monoid

Recall the definition of the resource monoid Q= (Q≥0 ×Q≥0, ·) where

(q, q ′) · (p, p ′) =
{

(q +p −q ′, p ′) if q ′ ≤ p
(q, p ′+q ′−p) if q ′ > p

Let (q, q ′) = (r,r ′) · (s, s′). Prove the following statements.

1. q ≥ r and q −q ′ = r − r ′+ s − s′

2. If (p, p ′) = (r̄ ,r ′) · (s, s′) and r̄ ≥ r then p ≥ q and p ′ = q ′

3. If (p, p ′) = (r,r ′) · (s̄, s′) and s̄ ≥ s then p ≥ q and p ′ ≤ q ′

4. (r,r ′) · ((s, s′) · (t , t ′)) = ((r,r ′) · (s, s′)) · (t , t ′)

5.2 (12 Points) Reasoning with the Cost Semantics

Consider the metric Mapp that counts the number of function applications, that is,

Mapp(app) = 1
Mapp(K) = 0 if K 6= app

Consider the function omega: (X → X) → Y that is defined as follows.

let rec omega = fun x → omega x in omega (fun x → x)

Let eomega be the above expression.

a) Prove that ·; H M`eomega ⇓ ◦ | (n,0) for every n ∈N and every heap H .

b) Prove that ·; H 6M`eomega ⇓ (`, H ′) for any ` and H ′.

1

5.3 (18 Points) Resource-Based Type Safety

We will now use our effect-based cost semantics to show that well-typed programs don’t go
wrong: In a well-formed environment, a well-typed expression will either evaluate to a value of
the right type or can make an infinite number of steps.

First, recall the definition of a well-typed environment. We write H Í ` : A to indicate that
there exists a, necessarily unique, semantic value a ∈ �A� so that H Í v 7→ a : A . An environment
V and a heap H are well-formed with respect to a context Γ if H Í V (x) :Γ(x) holds for every
x ∈ dom(Γ). We then write H ÍV : Γ.

The judgement H Í v 7→ a : A is defined by the following rules. Recall that the rules have to
be interpreted coinductively.

X ∈X ` ∈ dom(H)

H Í ` 7→ ` : X
(V:TVAR)

H Í Null 7→ [] : L(T)
(V:NIL)

H(`) = (`1,`2) H Í `1 7→ a1 H Í `2 7→ (a2, . . . , an) : L(T)

H Í ` 7→ [a1, . . . , an] : L(T)
(V:CONS)

H(`) = (λx.e,V) ∃Γ . H ÍV : Γ ∧ Γ`λx.e `m T1 → T2

H Í ` 7→ (λx.e,V) :Σ→ T
(V:FUN)

In this problem assume that ME is the steps metric, which counts the number of evaluation steps.
We then have M K

E = 1 for all constants K .
Prove the following theorem. It is sufficient if you prove the theorem for expressions of the

form
e ::= x x

lam(x.e) fun x → e
app(e1,e2) e1 e2

let(e1, x.e2) let x = e1 in e2

rec((f , x).e f , f .e) let rec f x = e f in e

Theorem 1 (Type Safety). Let H ÍV : Γ, Γ m̀ e : T , and let ME be the steps metric. Then

• there is an n ∈N such that V ; H ME`e ⇓ (`, H ′) | (n,0), H ′ ÍV : Γ, and H ′ Í ` : T

• or V ; H ME`e ⇓ ◦ | (m,0) for every m ∈ N

A consequence of the theorem is that resource bounds on the number of evaluation steps
prove termination.

Hint: The following lemma can be proved by induction on n.

Lemma 1. Let H ÍV : Γ and Γ m̀ e : T . If V ; H ME`e ⇓ ◦ | (n,0) then V ; H ME`e ⇓ ◦ | (n +1,0) or
V ; H ME`e ⇓ (`, H ′) | (n +1,0) for a location el l and an heap H ′.

2

V ; H M`e ⇓ (`, H ′) | (q, q ′) In environment V and heap H , expression e evaluates to (`, H ′),
the watermark resource usage is q and q ′ resources are available afterwards.

V ; H M`x ⇓ (`, H) | Mvar (EE:VAR)
H ′ = H ,` 7→ (λx.e,V)

V ; H M` lam(x.e) ⇓ (`, H ′) | Mabs
(EE:ABS)

V ; H M`e1 ⇓ (`1, H1) | (q0, q1) H(`1) = (λx.e,V ′)
V ; H1 M`e2 ⇓ (`2, H2) | (q2, q3) V ′[x 7→ `2]; H2 M`e ⇓ (`, H ′) | (q3, q4)

V ; H M`app(e1,e2) ⇓ (`, H ′) | Mapp·(q0, q1)·(q2, q3)·(q3, q4)
(EE:APP)

V , H M`e1 ⇓ (`1, H1) | (q0, q1) V [x 7→ `1], H1 M`e2 ⇓ (`, H ′) | (q2, q3)

V ; H M` let(e1, x.e2) ⇓ (`, H ′) | M let·(q0, q1)·(q2, q3)
(EE:LET)

H ′ = H ,` 7→ Null

V ; H M`nil ⇓ (`, H ′) | Mnil
(EE:NIL)

V ; H M`e1 ⇓ (`1, H1) | (q0, q1)
V ; H1 M`e2 ⇓ (`2, H2) | (q2, q3) H ′ = H2,` 7→ (`1,`2)

V ; H M`cons(e1,e2) ⇓ (`, H ′) | Mcons·(q0, q1)·(q2, q3)
(EE:CONS)

V ; H M`e ⇓ (`, H ′) | (q0, q1) H ′(`) = Null V ; H ′
M`e1 ⇓ (`1, H1) | (q2, q3)

V ; H M`matL(e,e1, (x1, x2).e2) ⇓ (`1, H1) | MmatL
1 ·(q0, q1)·(q2, q3)

(EE:MATL1)

V ; H M`e ⇓ (`, H ′) | (q0, q1)
H ′(`) = (`1,`2) V [x1 7→ `1, x2 7→ `2]; H ′

M`e2 ⇓ (`, H ′) | (q2, q3)

V ; H M`matL(e,e1, (x1, x2).e2) ⇓ (`1, H1) | MmatL
2 ·(q0, q1)·(q2, q3)

(EE:MATL2)

V ′ =V [f 7→ ` f] H ′ = H ,` f 7→ (λx.e f ,V ′) V ′; H ′
M`e ⇓ (`′, H ′′) | (q, q ′)

V ; H M`rec((f , x).e f , f .e) ⇓ (`′, H ′′) | M rec·(q, q ′)
(EE:REC)

Figure 1: Rules of the effect-based cost semantics.

3

V ; H M`e ⇓ ◦ | (q, q ′) After evaluating expression e in environment V and heap H for several
steps, the watermark resource usage is q and q ′ resources are available.

V ; H M`e ⇓ ◦ | 0
(EP:ABORT)

V ; H M`e1 ⇓ ◦ | (q0, q1)

V ; H M`app(e1,e2) ⇓ ◦ | Mapp·(q0, q1)
(EP:APP1)

V ; H M`e1 ⇓ (`1, H1) | (q0, q1) V ; H1 M`e2 ⇓ ◦ | (q2, q3)

V ; H M`app(e1,e2) ⇓ ◦ | Mapp·(q0, q1)·(q2, q3)
(EP:APP2)

V ; H M`e1 ⇓ (`1, H1) | (q0, q1) H(`1) = (λx.e,V ′)
V ; H1 M`e2 ⇓ (`2, H2) | (q2, q3) V ′[x 7→ `2]; H2 M`e ⇓ ◦ | (q3, q4)

V ; H M`app(e1,e2) ⇓ ◦ | Mapp·(q0, q1)·(q2, q3)·(q3, q4)
(EP:APP3)

V , H M`e1 ⇓ ◦ | (q0, q1)

V ; H M` let(e1, x.e2) ⇓ ◦ | M let·(q0, q1)
(EP:LET1)

V , H M`e1 ⇓ (`1, H1) | (q0, q1) V [x 7→ `1], H1 M`e2 ⇓ ◦ | (q2, q3)

V ; H M` let(e1, x.e2) ⇓ ◦ | M let·(q0, q1)·(q2, q3)
(EP:LET2)

V ; H M`e1 ⇓ ◦ | (q0, q1)

V ; H M`cons(e1,e2) ⇓ ◦ | Mcons·(q0, q1)
(EP:CONS1)

V ; H M`e1 ⇓ (`1, H1) | (q0, q1) V ; H1 M`e2 ⇓ ◦ | (q2, q3)

V ; H M`cons(e1,e2) ⇓ ◦ | Mcons·(q0, q1)·(q2, q3)
(EP:CONS2)

V ; H M`e ⇓ ◦ | (q0, q1)

V ; H M`matL(e,e1, (x1, x2).e2) ⇓ ◦ | MmatL
1 ·(q0, q1)

(EP:MATL0)

V ; H M`e ⇓ (`, H ′) | (q0, q1) H ′(`) = Null V ; H ′
M`e1 ⇓ ◦ | (q2, q3)

V ; H M`matL(e,e1, (x1, x2).e2) ⇓ ◦ | MmatL
1 ·(q0, q1)·(q2, q3)

(EP:MATL1)

V ; H M`e ⇓ (`, H ′) | (q0, q1)
H ′(`) = (`1,`2) V [x1 7→ `1, x2 7→ `2]; H ′

M`e2 ⇓ ◦ | (q2, q3)

V ; H M`matL(e,e1, (x1, x2).e2) ⇓ ◦ | MmatL
2 ·(q0, q1)·(q2, q3)

(EP:MATL2)

V ′ =V [f 7→ ` f] H ′ = H ,` f 7→ (λx.e f ,V ′) V ′; H ′
M`e ⇓ ◦ | (q, q ′)

V ; H M`rec((f , x).e f , f .e) ⇓ ◦ | M rec·(q, q ′)
(EP:REC)

Figure 2: Rules of the partial effect-based cost semantics.

4

