
Resource Analysis: Problem Set 4

Jan Hoffmann
Carnegie Mellon University

February 15, 2016

Due before 1:30pm on Monday, February 22

4.1 (12 Points) Solved Forms and MGUs

Recall the following definitions from the lecture.

Definition 1. A type substitution σ is a most general unifier (MGU) of a set of type constraints C
if σ ∈U (C) and for every ρ ∈U (C) there exists a type substitution τ such that ρ = τ◦σ.

Definition 2. An equation 〈X ,T 〉 ∈ C is in solved form in a constraints set C if X is a variable
that does not occur anywhere else in C ; in particular X 6∈ Var(T). A set of constraints C is in solved
form if every equation in C is in solved form in C .

Let C = {〈X1,T1, ,〉 . . . ,〈Xn ,Tn , }〉 be a set of type constraints in solved form and letσC = {X1 7→
T1, . . . , Xn 7→ Tn}. Prove the following statements.

a) σC is a MGU of C .

b) For every unifier ρ ∈U (C) we have ρ̂ ◦σC = ρ.

4.2 (18 Points) Let Normal Form

Consider the subset of expressions that is given by the following subset of syntactic forms.

e ::= x x
app(e1,e2) e1 e2

let(e1, x.e2) let x = e1 in e2

true true
false false
if(e,e1,e2) if e then e1 else e2

Recall the corresponding rules from the resource-safety-based cost semantics.

1

V (x) = ` q = q ′+Mvar

V ; H M`x ⇓q
q ′ (`, H)

(ES:VAR)
H ′ = H ,` 7→ (λx.e,V) q = q ′+Mabs

V ; H M` lam(x.e) ⇓q
q ′ (`, H ′)

(ES:ABS)

q = q0 +Mapp V ; H M`e1 ⇓q0
q1

(`1, H1)

H(`1) = (λx.e,V ′) V ; H1 M`e2 ⇓q1
q2

(`2, H2) V ′[x 7→ `2]; H2 M`e ⇓q2
q ′ (`, H ′)

V ; H M`app(e1,e2) ⇓q
q ′ (`, H ′)

(ES:APP)

q = q0 +M let V , H M`e1 ⇓q0
q1

(`1, H1) V [x 7→ `1], H1 M`e2 ⇓q1
q ′ (`, H ′)

V ; H M` let(e1, x.e2) ⇓q
q ′ (`, H ′)

(ES:LET)

b ∈ {true, false} q = q ′+Mcbool H ′ = H ,` 7→ b

V ; H M`b ⇓q
q ′ (H ′,`)

(ES:BCONST)

q = p +Mcond
1 V ; H M`e ⇓p

p ′ (`, H ′) H ′(`)=true V ; H ′
M`e1 ⇓p ′

q ′ (`1, H1)

V ; H M` if(e,e1,e2) ⇓q
q ′ (`1, H1)

(ES:COND1)

q = p+Mcond
2 V ; H M`e ⇓p

p ′ (`, H ′) H ′(`)=false V ; H ′
M`e2 ⇓p ′

q (`2, H2)

V ; H M` if(e,e1,e2) ⇓q
q ′ (`2, H2)

(ES:COND2)

When defining more advanced type systems, it is often handy to work with a simpler set
of expressions in which the evaluation order is exclusively defined by let expressions. To this
end we use variables instead of expressions in syntactic forms whenever this is possible without
restricting the expressivity of the language. We define expressions in let normal form as follows.

ē ::= x x
free(x) free(x)
lam(x.ē) fun x → ē
app(x1, x1) x1 x2

let(ē1, x.ē2) let x = ē1 in ē2

flet(ē1, x.ē2) freelet x = ē1 in ē2

true true
false false
if(x, ē1, ē2) if x then ē1 else ē2

pair(x1, x2) (x1, x2)
matP(x, (x1, x2).ē) let (x1, x2) = x in ē
nil []
cons(x1, x2) x1 :: x2

matL(x, ē1, (x1, x2).ē2) match x with | [] → ē1 | x1 :: x2 → ē2

rec((f , x).ē f , f .ē) let rec f x = ē f in ē

The expressions in let normal form contain a new syntactic form flet(ē1, x.ē2) for let expressions.
These free let expressions are similar to ordinary let expressions except that they do not influence

2

the resource usage. The corresponding evaluation rule is defined as follows.

V , H M`e1 ⇓q
p (`1, H1) V [x 7→ `1], H1 M`e2 ⇓p

q ′ (`, H ′)

V ; H M`flet(e1, x.e2) ⇓q
q ′ (`, H ′)

(ES:FLET)

V (x) = `
V ; H M` free(x) ⇓q

q (`, H)
(ES:FVAR)

Prove the following theorem.

Theorem 1. LetΓ m̀ e : T . Then there exists an expression ē in let normal form such thatΓ m̀ ē : T
and

V ; H M`e ⇓q
q ′ (`, H ′) ⇐⇒ V ; H M` ē ⇓q

q ′ (`, H ′) .

for every resource metric M. Moreover, the expression ē can be efficiently computed from e.

Note that the expression e in the theorem is defined by the subset of syntactic forms defined
in this problem. The theorem does not hold if e contains lambda expressions since the transla-
tion to let normal form would affect function closures (λx.e,V) that are stored on the heap. So in
general, two evaluation judgements would not result in the same heap H ′. To prove the theorem
for expressions with lambda abstraction we would have to define an equivalence relation for
heaps that would be preserved during the evaluation of e and ē under equivalent heaps.

3

