Resource Analysis: Problem Set 3

Jan Hoffmann
Carnegie Mellon University

February 5, 2016

Due before 1:30pm on Monday, February 8

3.1 (12 Points) Unique Types

Consider the following subset of the type rules of the monomorphic type system and the corre-
sponding subset of syntactic forms.

rx)="T ILxT1H" e: T
——— (T:VAR) (T:ABS)
rH"x: T ' lam(x.e): 71 — T»

TH" e, : b =T TH'ey: T,
(T:App) ——— (T:NIL)
I'H" app(ey,e): T I'H"nil: L(T)

e : T I'H" ey : L(T)
I'H" cons(eq, e2) : L(T)

(T:Cons)

TH" e: L(T" IT'H" e : T T,xi:T,x:L(THH" ey: T

(T:MATL)
I'H" matL(e, e1, (x1, X2).€2): T

[, f:Th—TxTiH" er: T» I,f;Ti1—>TH'e:T
I H'rec((f,x).ep, f.e): T

(T:REC)

a) Show that there are expressions e such thatI' H" e: T and I' H" e : T’ for monomorphic types
T # T’ and a type context I'.

b) Add a minimal number of type annotations to the syntactic forms to make types unique.

c) Prove that your annotations make types unique: If T H" ¢: T and I’ H" e: T’ in the modified
type system then T = T'. For example, the rule T:PAIR with type annotations could look as
follows.

Fl—meI:Tl Fl—megiTg
I'H" pair(e;: T1,e0:) : T1 + T

(T:PAIR)

d) Prove that your annotations are minimal: Show that every type system that you obtain after
removing one annotation has the property stated in part (a).

3.2 (18 Points) Unification in OCaml

A naive implementation of the declarative unification rules that we discussed in the lecture can
be quite inefficient. To make type inference efficient, the developers of the OCaml compiler took
the following approach. First, types are represented by the following mutually recursive type.

type type_exp =
{ mutable desc : type_desc; mutable mark : int }

and type_desc =
Var
| Arr of type_exp * type_exp
| Pair of type_exp * type_exp
| Link of type_exp

The record type type_exp contains to mutable fields. Mutable fields are a convenient short
form and equivalent to fields that contain references. See https://realworldocaml.org/v1/
en/html/records.html . (In fact, references are derived from mutable records.)

The mutual recursion in the type is a common pattern in OCaml code. It makes it more
convenient to access (and update) data that is shared among all constructors of an inductive
type. The type a * a — b can be represented as follows. Note that type-variable names are
implicitly represented by “heap addresses”.

let type_exp d : type_exp = {desc = d; mark = 0} in

let a = type_exp Var in

let b = type_exp Var in

let s = type_exp (Pair(a, a)) in
type_exp (Arr(s, b))

Values of type type_exp can by used as a union-find data structure.

(* union find operations *)
let rec find (t : type_exp) : type_exp =
match t.desc with
| Link 1 —
let r = find 1
in t.desc «— Link r;
r
| - — ¢t

let union (t1 : type_exp) (t2 : type_exp) : unit =
(find t1).desc «— Link (find t2)
Recall the rule U:ELIM2:
oc={X~T} X ¢ Var(T)
(X, HuC = (X, THud(C)

(U:ELIM2)

As the first step of OCaml’s unification algorithm, the rule E:ELIM2 is basically implemented
by a call to the function union without checking the side condition X ¢ Var(T). In this way, a
graph structure is created on the heap. The record field mark is not used in this first step. In the
second, step the graph structure is traversed to identify cycles. If a cycle is found then the types
are not unifyable. Otherwise, the unifyied type can be derived by following the pointers on the
heap (see function string_of_type inunify.ml).

a) Implement OCaml’s efficient unification algorithm by completing the OCaml file unify.ml
that is available on the web page.

b) Argue informally why this approach is equivalent to the declarative rules presented in the
lecture.

¢) Inyour solution, provide three (different) pairs of (different) values of type type_exp that are
not unifyable. Similarly, provide three pairs of values of type type_exp that are unifyable.

