15-714: Resource Aware Programming Languages

Lectures 1 & 2: Traditional Complexity Analysis

Jan Hoffmann

August 29, 2025

1 Introduction

In the abstract, the goal of Computer Science is to understand the nature of computation and
information. In practice, the goal is to create software and hardware systems that are both correct
and efficient. There is a tension between correctness and efficiency that lies at the heart of our
discipline: It is usually easier to write correct and inefficient code than correct and efficient code.
The reason is that inefficient code tends to be simpler, while complex efficient code provides
more opportunities for mistakes. Donald Knuth wrote that premature optimization is the root of
all evil. Similarly, one could say that the pursuit of efficiency is the root of most bugs.

Computer Science can be organized into different subareas such as applications (machine
learning, computer graphics, robotics, etc.), systems (operating systems, computer networks,
computer architecture, etc.) theory (algorithm, computational complexity, cryptography, etc.),
and programming languages (type theory, verification, compiler design, etc.). Naturally, cor-
rectness and efficiency are central in each of the subareas. However, among the three core
areas, systems and theory have historically focused more on efficiency, whereas programming
languages has focused more on correctness.

Within programming languages, efficiency has been mainly a systems concern. In other
words, the focus has been on creating practical tools such as compilers that produce efficient
code but not on providing information about the efficiency of the code to a programmer. For
instance, a compiler rejects a program because it is likely incorrect, for example, as the result of a
type error, but not because it is potentially inefficient. Type systems and program logic focus on
functional properties of code and static analyses on finding bugs that compromise the security
or correctness of a system rather than its performance.

This book is about resource aware programming languages.

Resource aware programming languages provide information about the resource
consumption of programs at development time.

This information can come in the form of concrete, non-asymptotic bounds on the time, mem-
ory, or energy consumption of a function or, more abstractly, as the guarantee that the imple-
mented function is a member of a certain complexity class such as the functions computable in
polynomial-time.

Analysis of Algorithms vs. Analysis of Programs To contrast resource-aware programming
with the analysis of algorithms, it is helpful to first identify some of the applications of resource
aware programming languages. The goals of these languages include to

1. ensure safety in resource-constraint systems such as embedded, real-time, or intermittent
systems,

2. provide information to the user of a software library,
3. help write efficient code and avoid performance bugs,

4. simplify scheduling in cloud computing,

5. ensure security by mitigating side channels and algorithmic complexity attacks,

6. aid verification by enforcing cost bounds in smart contracts and complexity requirements
in cryptographic protocols.

In analysis of algorithms, the goal is to understand an algorithm and its performance char-
acteristics. This is important to select the best algorithm for a given task or to design new
algorithms. However, the analysis of algorithms focuses on asymptotic bounds, which is un-
suitable for many of the aforementioned applications. There are two reasons for the focus on
asymptotic bounds. The first is the use of pseudo code, which is supposed to showcase the algo-
rithm without distraction by implementation details. The lack of a formal syntax and semantics
of the code makes it impossible to precisely define the resource cost of running the algorithm
on a given input. Consequently, it does not make sense to derive bounds with constant factors.

The second reason is the heavy use of recurrence relations. The analysis of an algorithm is
often performed in three steps: (1) identify a size measure for the inputs, (2) derive a recurrence
relation that recursively defines the cost as a function of the size measure, and (3) find a closed
form that is a bound for the recurrence. I argue that deriving a recurrence can be as hard as
solving it, but commonly it is argued that finding a closed form is usually the most difficult part
of the analysis. Most of the popular recipes for finding closed forms, like the master method,
only yield functions that asymptotically bound the recurrence.

In the analysis of programs that resource aware languages provide, we are instead interested
in concrete constant factors. Additionally, we also study programming languages that reject
programs that are not efficient, that is, programs that potentially do not correspond to functions
that are part of a certain complexity class like the functions computable in polynomial time.

2 Recurrence Relations

A popular (and somewhat systematic) way of performing the analysis of an algorithm is to use
recurrence relations. Most commonly, recurrence relations are used for manual analyses but
we also look at them from the perspective of automatic and mechanized resource analysis of
programs.

First, we should define what a recurrence relation is. The textbook Introduction to Algo-
rithms [CSRLO1] contains the following definition.

A recurrence is an equation or inequality that describes a function in terms of its
value on smaller inputs.

One could argue that this definition is a bit too broad because an input does not necessarily
have a unique order to which smaller can refer. Moreover, the aforementioned book contains
only recurrence relations where the inputs are natural numbers. The definition from Carnegie
Mellons’s algorithms course (15-451/651) reads as follows.

A recurrence relation is a description of the running time on an input of size n as a
function of n and the running time on inputs of smaller sizes.

Here, we have the mention of a size but it is not clear if multiple arguments are permitted and if
they all need to be abstracted to one size. The exact definition of the term recurrence relation is
probably not that important. For the purpose of this course, we use the following one.

Definition. A recurrence relation is a recursive function T of typeNF — N.

The idea is that the arguments of T : N — N represent different size measures that are
related in some way to the inputs of the program that is the subject of the resource analysis.
Resource analysis with recurrence relations proceeds in three steps. First, we identify the size
measures that the bound should be a function of. Second, we derive a recurrence relation that
describes the resource usage of the program in terms of the input sizes. Third, we find a closed
(i.e., non-recursive) form of the recurrence. In the context of automatic or mechanized analysis,
the two final steps are often called extracting and solving of recurrences.

Both deriving and solving recurrence relations are non-trivial. To start with, it is sometimes
also not straightforward to find the right size measures for the analysis and an automatic ap-
proach would likely settle for the most common ones like the size or height of a data structure.
The extraction of the recurrence is particularly difficult if we have higher-order functions, com-
plex data structures, or also require a proof that the derived recurrence correctly describes the
resource use of the program. One of the difficulties is that it is often not obvious how to describe
the size of the arguments of recursive calls as a function of the original arguments. For example,
these arguments could be returned by a complex auxiliary function before being passed to a re-
cursive call. Finally, solving (i.e., finding closed forms for) recurrences is undecidable in general
and also difficult to do manually. If we are looking for exact (non-asymptotic) solutions, we can
only rely on a few techniques from calculus (see below) and mainly have to guess and substitute
solutions or solution templates. The situation looks slightly better for asymptotic solutions and
this is one of the reasons why asymptotic resource analysis is popular. However, even in the
asymptotic case, solution recipes cover only specific cases such as divide-and-conquer (Master
method).

2.1 The Substitution Method

We now perform a resource analysis for a simple program using recurrence relations in two
steps:

1. We derive a recurrence relation 7T'(#) from the description of the algorithm (or the pro-
gram).

2. We find a closed form for T'(7i), that is, a non-recursive, easily-understood function f(n)
such that f(n) = T'(n).

To find such a function f(n), we use the substitution method, which is one of the simplest and
most general ways of solving recurrences.
Consider the factorial function fac that is implemented in OCaml below.

let rec fac n =
if n > 1 then
n * (fac (n-1))
else
1

Assume we are interested in the number of multiplications that are performed by fac. The first
question that arises is how to abstract an integer with a natural number. In this case, we can see
right away that the cost for negative inputs is 0 and focus on positive integers, which are simply
abstracted by their values. We can express the cost with the following recurrence.

Tfac(o) =0
Tfac(l) =0
Ttac(n) =Tgem—-1)+1 ifn>1

If n =0 or n =1 then the program does not execute any multiplications. If n > 1 then fac(n)
performs a multiplication plus the multiplications performed by fac(n-1).

Next, we solve the recurrence relation with the substitution method. We guess the solution
f(n) for Tz (n) is linear, that is, f(n) = c1n + ¢y for constants ¢; and cy. To verify that f(n) is a
correct solution and to determine the constants, we substitute f(n) into the recurrence relations.
We obtain

0-c1+¢c9 =0
l-ci+¢cg =0

which implies ¢y = ¢; = 0. However, this doesn'’t satisfy the remaining equality Tg,c (1) = Tpac(n —
1) + 1. We conclude that there does not exist a linear solution for the recurrence relation.

We could now start looking for non-linear solutions but the recurrence is so simple that we
can see that the problem originates from the base cases. So we simply drop T,.(0) = 0 and only

c(n/b?)k

[e(n/67%:)] [e(n/E"%)]

Figure 1: Recursion tree for T'(n) = aT () + cnk.

focus on positive numbers. While this seems to be an insignificant detail in our manual analysis,
such issues make it difficult to automatically derive the right recurrence relations from code.
We again substitute our guess (or ansatz) into the remaining two equations.

c1+¢cp=0
can+1)+cg =cin+cy+1

Now we can solve for ¢; and ¢y and obtain ¢; = 1 and ¢y = —1. A sanity check shows that
f(n) = n—1isindeed a solution of the recurrence.
Unfortunately, coming up with a candidate for a solution is not always straightforward.

2.2 The Recursion-Tree Method

A powerful method for finding an asymptotic solution (or candidate solution) for a recurrence
for particular divide-and-conquer algorithms is the recursion tree method (or master method).
Recall the following definitions for asymptotic notation.

Definition 1. Let f, g :N — Rx¢ be two functions from natural numbers to non-negative reals.
We write

* fe0(g) if there exists c > 0 and ng € N such that f(n) < c-g(n) foralln = ny
o feQl(g) if there exists c > 0 and ny € N such that f(n) = c-g(n) foralln = ny
e feB(g)iffeQ(g)and feO(g)

You may notice that these definitions only apply to functions with one argument and it is
not trivial to generalize them to multiple arguments.

Consider a divide-And-conquer algorithm that divides a problem of size n into a sub-
problems of size n/b, which are recursively solved. The solutions of the sub-problems are
then combined to a solution of the original problem of size . Assume that the combination of
the sub-solutions and the division into sub-problems needs time c¢n*. The run time of such an
algorithm can then be expressed as a recurrence relation T'(n) as follows where a,b,c, and k are
positive constants.

T1) =c
T(n) =aT(})+ cnk ifn>1

Example 1. Consider for example the divide-and-conquer algorithm merge sort. Merge sort
divides a problem of size n into 2 sub-problems of size % . Division and merging takes time cn for
some constant c. We thus havea=b=2,k=1 and Ty,s = 2Tms(§) +cn.

The recurrence relation T'(n) = aT(}) + cn* can be solved systematically using the recursion-
tree method. To see how, consider the recursion tree that arises when unrolling T'(n) in Figure 1.
We derive a closed form for T'(n) by summing up the cost level by level. The cost for the top level

is cn¥, the cost for the second level is ac(%)k , and the cost of the third level is azc(b—”z)k . In total,

the sum of costs is
T % . a a\? a\d a log, n .
(n)=cn +ﬁ+ oE + o +eeet o (1)
If we define r = b—‘ﬁc then we have
T(n)=cnk(1+r+r2+r3+~-+r1°gb”))

We now distinguish three cases.

Case r <1. Then 1+7+ 7% +73 +---+ rl%>" are the first log, n terms of a geometric series. So

(0]) 1
Tr+r?+ 8+ rlosn <y pic —
20 1-r

and cnf < T(n) < %I; Thus T'(n) € @(nk) since r and c are constants.
Caser=1 Then1+r+r2+r3+..- 478" =log, n+1 and

T(n) = cnk(loglJ n+l)e G)(nklog n.
Case r > 1 Then we have still the first log,, n terms of a geometric series and thus

1= rlogpn+l jlog,n+l _q

L4r+r2+r8 4.4 rlo8n = = =08 "),
1-r r—1
Thus
T(n) € OMmrE) 8"
= 0" since bk1o8» " = pk
@(nlogb a) since al°8» " = plog, @log,n) _ ylog,a

In summary, the so called master method for solving recurrences for divide-and-conquer
algorithms is stated by the following theorem.

Theorem 1 (Master Theorem). LetT(n)=aT (%) +cnk be a recurrence relations and let a, b, ¢, k >
0 be positive constants. Then

e(n*) if & <1
T(n)e @(nklogn) ifb—“k =1
Oty if & >1

There are many variants and generalizations of the recursion tree method and more powerful
“master theorems” in which cnF is replaced with an arbitrary function f(n). However, they are
all limited to divide-and-conquer algorithms, derive asymptotic bounds only, have only one
parameter, and cannot be applied if the “split factors” a and b are not constants.

Example 2. Consider again merge sort with recurrence Tps(n) = 2Tms(g) +cnanda=b=2,
and k = 1. Therefore b—“k =1 and by Theorem 1 it follows that Ty,s(n) = ©(nlogn).

So how useful is the recursion tree method for finding an ansatz for exactly solving a recur-
rence relation? It is only partially helpful. Do not be deceived by the use of ® in the theorem.
If T(n) € ©(n*) does not mean that T'(n) = cn* for some c. It's probably worth trying an ansatz
with a polynomial of degree k. However, arbitrary functions like n* + nlogn are members of
©(n%). So there is no guarantee that this approach will succeed.

let rec split 1 =
match 1 with
| 0 - 1,0
| x1::x8 —
match xs with
| O — (x11,[D
| x2::x8’ —
let (11,12) = split xs’ in
(x1::11,x2::12)

Figure 2: The split function of merge sort.

2.3 Linear Recurrence Relations

One of the few techniques for obtaining exact solutions for recurrence relations is based on
calculating roots of characteristic polynomials. It applies to homogeneous linear recurrence
relations with constant coefficients. These are recurrence relations of the form

Tm)=caT(n=1+-+cgT(n-d)

for constants c; with ¢4 # 0. We call d the degree of the recurrence. To uniquely define the value
of the recurrence T we have to define the initial or base values T(0),..., T(d —1).

We can find a closed form for a homogeneous linear recurrence relation by finding the roots
of the characteristic polynomial

Px)=xT—cix@ - — ¢y

which has d roots ry,...,r4. There are two cases. If the roots are pairwise distinct then
T(n)=kir{' +...+ kqr)

for constants k; that can be determined using the initial values T(0),..., T(d —1).

If the roots are not pairwise distinct then we add additional terms to the products in the
solution that are determined by the number of identical roots that occurred in the formula
already:

T(n)=kin"'r +...+ kgn"r}

Here, u; is number of identical roots r; (j < i and r; = r;) that appeared before r; in the formula.
Note that this is a generalization of the formula for pairwise distinct roots.

Non-Homogeneous Recurrence Relations Recurrence relations that arise in resource analysis
are usually not homogeneous because they have a cost component in addition to the cost of
the base cases. The form of such non-homogeneous linear recurrence relations with constant
coefficients is given by

Tm)=cT(n-1)+---+c4T(n—d)+ P(n)

where P(n) is a function in n. If P(n) is a polynomial then we can reduce the problem of finding
a solution to the problem of finding a solution for a homogeneous linear recurrence relation.

This is best illustrated with an example. Let us consider the split function for merge sort in
Figure 2, which recursively splits a list into two lists of (almost) equal length. To this end, split
removes the first two list elements, recursively splits the remaining list, and adds one of the
removed elements to each of the returned lists. If we count the number of cons operations, the
cost can be described by the following recurrence relation.

Tsp1it(0) =0
Tsprie (1) = 1
Tspie(n+2) = 2+ Tepiie(n)

let rec append 11 12 =
match 11 with
I 0 - 12
| x::xs — x::(append xs 12)

let rec partition f 1 =
match 1 with
| 1 — 3,
| x::x8 —
let (cs,bs) = partition f xs in
if £ x then
(cs,x::bs)
else
(x::cs,bs)

let rec quicksort le = function
' 0-10
| x::xs —
let ys, zs = partition (le x) xs in
append (quicksort le ys) (x :: (quicksort le zs))

Figure 3: An implementation of quicksort in OCaml.

To convert the recurrence into a homogeneous recurrence that has the same closed-form
solution, we use the equality T (2 +3) = 2+ Tgp)i(n + 1) to subtract Tgpji¢(n +3) from both sides
of the original recurrence. We obtain Tpjjc(72 + 2) — Tgpiic(12 + 3) = 2 + T (1) — 2 — Tplie(n + 1)
and thus

Tsplit(n) = Teplie(n—1) + Tgpiie(n — 2) — Tspiic(n—3)

The characteristic polynomial for Tgpji () is
Pgpiie(x) = B-x?-x+1

The roots of the characteristic polynomial are 1 and —1. The root 1 appears twice as we can write
Pgpiit(x) as (x — r)2q(x) for r =1 and a polynomial g(x), namely g(x) = x + 1.
Using the previously discussed formula we have

Tepiit(n) = ki(=D"+kp1" + k3nl"
kl(—l)n +ky+ ksn

for yet undetermined constants k;. Since Tgp)i(0) = 0 we have ky + k2 = 0. Since Typic(1) = 1 we
have k; + k3 — k1 = 1 and since Tgpjic(2) = 1 we have ky + kp +2k3 = 2. Therefore ky = k2 =0, k3 = 1,
and Tgp)(n) = n.

We can also experiment with other cost. If we for example define Tgpi¢(1) = 0 then we get the
more interesting result Tpi¢(n) = 0.5(-1)" = 0.5+ n.

2.4 Example: Quick Sort

Hoare’s quicksort algorithm is an example of a divide-and-conquer algorithm for which the
master method cannot be applied. Figure 3 shows an implementation of quicksort in OCaml.
Our goal is to use recurrence relations to analyze the worst-case complexity of quicksort. The
cost model we consider is the number of function calls. The first challenge in the analysis is that
quicksort is higher-order function: It takes the comparison function Ie as its first argument. This
is not uncommon, even in languages like C which do not have first class functions such as OCaml.
In the C standard library, one of quicksort’s arguments is a pointer to a comparison function. We
ignore the issue of higher-order functions for now and just assume that all comparison functions
have a constant cost. The second challenge in the analysis is that quicksort is a curried function:

The call quicksort gt consumes a constant amount of resources and returns a function closure.
We will also ignore the issue of curried functions and will for now assume that quicksort is always
applied to both of its arguments.

Before we can analyze quicksort, we have to analyze the helper functions append and
partition. The recurrence relations that we obtain from the code are

Tapp©,m) = 0
Tapp(n,m) = Typpp(n—1,m)+1 ifn>1
Tpar(0) = 0

Tpar(n) = Tpaln—-1)+2 ifn>1

For append (T,pp), n is the length of the first list in the argument and m is the length of the
second list in the argument. For partition (Tpar), 1 is the length of the second argument. In the
second equation of par we count the recursive call and the call to the function f. Similar as for
the recurrence Ttac, we can derive Tapp (7, m) = nand Tpar(n) = 2n.

We proceed to derive a recurrence relation Ty for the function quicksort. When looking at
the code, the question arises what the size of the lists ys and zs in the recursive calls for quicksort
is. In fact, if |¢| denotes the length of a list ¢, we have |ys| + |zs| = |xs|. So we need to prove by
induction on xs that for every function f. if (ys,zs) = partition f xs then |ys| + | zs| = |xs].

Before we can state the recurrence for quicksort, we also have to show that |quicksort le xs| =
|xs|. However, we omit this step for brevity.

qu(o) = 0
Tgs(n+1) maxo<i<n (Tqs(i) + Tgs(n—i—1)+i)+2n+4

Let us first assume that the array is always split in the middle, that is, i = |[n/2]. We then have
Tys(n) =2Tgs(n/2) + O(n)

and can use case a/b* = 1 of the master method to infer Tys(n) € ©(nlogn).
Let us now assume that the list is always split in the most imbalanced way, that is, i = 0. Then

qu(n) = qu(n -+ qu(o) +0(n)
Tgs(n—1)+06(n)

In this case, We can show with the substitution method that Tys(n) € O(n?).
We conjecture that in general Tqs(n) < cn? for a constant ¢ and use the substitution method
to prove it.
Tgs(n) < maxosizp—1(ci®+c(n—i—1)?)+0(n)
= MmaXosizp-1c(%+ (n—i-1?)+6(n)

For a fixed n, the polynomial i? + (n — i — 1)?) takes maximums in the range 0< i< n—1fori =0
and i = n— 1. To verify this claim observe that the second derivative with respect to i is positive.
Thus we have
max i+(n-i-1)H<m-1)*=n*-2n+1
O<isn-1
and conclude
Tys < cn® —2cn+c+0(n) € O(n?).

We have now performed only an asymptotic analysis. To determine the exact constants is even
more tedious. It is not even clear how an exact solution to the recurrence could look like since,
as we have seen, the resource usage varies based on the choices of the pivot element. However,
we have abstracted away the elements of the input list and it seems impossible to recover from
that abstraction. So we stop here as the previous calculations already illustrate the difficulties
with automating and mechanizing recurrence solving.

3 Amortized Analysis with the Potential Method

Amortized analysis is a technique to derive a worst-case resource bound for a sequence of oper-
ations (or function calls). For many data structures, the amount of resources that an operation
consumes can vary substantially depending on the state of the data structure. Nevertheless,
high cost (e.g., reorganizing the data structure) will occur with some predictable frequency;
they amortize over time. Summing up the worst-case costs of operations in such a sequence
of operations would lead to gross over-approximations of the cost. In these cases, amortized
analysis provides a much tighter resource bound.

Remark. You sometimes read that amortized analysis is a way of determining the amortized or
even average cost of an operation. However, the goal of an amortized analysis is to determine the
worst-case cost of a sequence of operations. As a means to an end, we define the amortized cost of
an operation.

Potential Functions To amortize the cost of different operations, we introduce a potential
function
@ : State — Qxp .

The idea is that an operation o : State — State that is executed in state S can use the potential
®(S) to pay for the cost of the operation. More specifically, we say that the amortized cost of
operation o in state S with respect to @ is

acost(0) = cost(0(S)) + (0(S)) — D(S)
where cost(0(S)) is the actual resource consumption of o in state S.

Theorem 2. Given starting state S; and operations o(Sy),...,0(Sy,) such that o(S;) = S;+1, we
have
Y. cost(o(S)) < Y acost(o(S;) +P(S1) .

1<i<n l<isn

Proof. We write o; for o(S;).

v

Y i<i<pacost(o;) + ®(S;) = D(S1) + X 1<i<ncost(0;) + D(Si+1) —P(S;)
D(S1) + D(Sps1) — D(S1) + X 1<i<p COSL(0;)
D (Sn+1) + X1<i<n COSL(0;)

= Yi<i=ncost(0;)

O

The challenge in performing an amortized analysis is to choose the right potential function
®. The goal is to choose @ so that the amortized cost cost(o(S)) + @(0(S)) — ®(S) is similar for
every state S.

Example: Stack Given is an implementation of a stack with operations push and pop. We
assume that cost(push(S,x)) = 1 and cost(pop(S)) = min(|S|,1). Consequently, the cost of a
sequence of n push and pop operations is less or equal to n.

Consider the additional operation multipop(S,k) that pops k elements from the stack. If
multipop(S,k) is executed for a stack S with less than k elements then all elements of S are
popped. Similarly, if pop(S) is applied to an empty stack S then S is unchanged and some error
message is returned. The cost of multipop(S,k) is min(|S|, k).

What is the worst-case cost of a sequence of n push, pop, and multipop operations? In a
conservative analysis we would first establish the worst-case cost of each operation. So we
would argue that the worst-case cost for multipop is n — 1 since there are n — 1 elements on the
stack in the worst-case. Consequently, the cost of n operations can only be bounded by r2. This
is a very loose bound since every element on the stack can only be popped once.

Using the potential method, we can perform a much more precise analysis. For a stack S we
define the potential
®(S) =15

to be the height of the stack. The amortized cost of push is then
acost(push(S,x)) =2

since ®(push(S, x)) — ®(S) = 1 for every stack S and cost(push(S)) = 1. Furthermore, we have
D(pop(S)) — P(S) = —min(|S], 1) and cost(pop(S)) = min(|S|, 1) for every S and thus

acost(pop(S)) =0.

Similarly, ®(multipop(S, k)) — ®(S) = —min(|S|, k) and cost(multipop(S, k)) = min(|S|, k) for ev-
ery S and thus
acost(multipop(S,k)) =0.

Therefore it follows from Theorem 2 that the cost of 7 operations is at most 2x. It is also easy to
see that the cost is actually bounded by 2m, where m is the number of push operations in the
sequence.

Example: Binary Counter Consider a binary counter b = by,..., by, which is implemented
using a list or an array of bits of fixed length. The binary counter only has an operation inc(b),
which increments b by 1. The cost of inc(b) is defined as the number of bits that have to be
flipped for the update. We observe that at most one 0 is flipped to a 1 in an increment. However,
multiple 1s can be flipped to 0s. Let |b|; be the number of 1s in the counter. Then |b|; + 1 is an
upper bound on the number of bits that are flipped by one increment.

We are interested in the cost of n increment operations. To derive a worst-case bound, we
use the potential method of amortized analysis. We define the potential

@(b) =1bly

To determine the amortized cost acost(inc(b)), assume that the operation inc(b) modifies #; bits.
As discussed earlier, ¢; — 1 flips are from 1 to 0 and at most one flip (zero can happen during
overflow) is from 0 to 1. So we have

cost(inc(b)) + ®(inc(b)) — D(b) t; + ®(inc(b)) — D(b)
L+ (@) - (5; —1) +1) = ®(b)

2

IIA

It follows that ®(bg) + 21 is an upper bound on the number of flips in a sequence of n increment
operations. Here by is the initial counter.

Example: Dynamic Table Another standard example of amortized analysis is a dynamic table T
that is implemented with an array. Assume first that we only have an insert operation insert(Tx),
which inserts a new element x into the table. We simply insert the new elements successively
until the array is full. In this case, we allocate a new array of double the size of the current array
and copy the elements over. Our cost model in this example is to count the number of writes to
an array. So the worst-case cost of one operation insert(T, x) is | T| + 1. However, we are again
interested in a sequence of n insert operations.
Let | T|eim be the number of stored elements in T. We define the potential function

d(T) = 2| T|e1m - |T|

If we always start with an empty array then the load factor is never smaller than 1/2 and
®(T) = 0. If we consider arbitrary load factors at the beginning, we can instead define ®(T) =
max(0,2|T[gim — [T'1).

10

We now determine the amortized cost. There are two cases. Assume first that | T|ejm = | T.
Then

cost(insert(T, x)) + ®(insert(T, x)) — (T) | T+ 1+ d(insert(T, x)) — 2| T leim — | T1)
[T+ 1+ ®(insert(T, x)) — | T|
ITI+1+QUTI+1)=2[T)—IT]|

= 3

Assume now that | T'|ejm < |T|. Then

cost(insert(T, x)) + ®(insert(T, x)) — ®(T) 1+ ®(insert(T, x)) — 2| Tletm — | T'1)
14+ @ITletm +2—=1T1) = Q| Tletm — T

= 3

As a result, we have acost(insert) = 3.

We now add another operation remove(T, x) that deletes the element x from the table T.
Similarly, the expansion now also want to contract the table if the load factor is equal to a
constant 0 < ¢ < 1. You might have the intuition to pick ¢ = 1/2. However, this is not a good
choice since a sequence of alternating inserts and deletes can cause quadratic cost in the length
of the sequence.

A better choice is ¢ = 1/4. Now we define the potential to be

2[Tlem =TI if|Tlem/ITI=1/2

(D(T):{ IT1/2=Tleim if | Tlem/1T1 < 1/2

The amortized costs are then acost(insert) = 3 and acost(remove) = 3.

References

[CSRLO1] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2001.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd ed.): Fundamental
Algorithms. Addison Wesley, Redwood City, CA, USA, 1997.

11

