
Lecture Notes on
Shift-Reduce Parsing

15-411: Compiler Design
Frank Pfenning, Rob Simmons, André Platzer, Jan Hoffmann

Lecture 8
September 20, 2018

1 Introduction

In this lecture we discuss shift-reduce parsing, which is the basis of most modern
parser generator tools. Shift-reduce parsing is based on the idea of predictive parsing
with lookahead. To improve upon the inefficiency of CYK parsing, we process strings
in some fixed order: generally left-to-right, since most computer languages have
been designed to be read and written in that direction. While processing the string
in this fixed order, we attempt to correctly predict how to continue parsing the
string based on the part of the string we have already seen and a finite amount
of the string that we haven’t yet considered (the lookahead). It is possible to do so
successfully in a surprising number of cases, and when possible it allows us to have
extremely efficient parsing algorithms.

Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and a paper by Shieber et al. [SSP95].

2 Deductive Shift-Reduce Parsing

Recall our original rules for deductive parsing of context-free grammars.

a : a
D1

[r]X −→ γ1 . . . γn
w1 : γ1 . . . wn : γn

w1 . . . wn : X
D2

Interpreted as the CYK parsing algorithm, we allow these rules to be applied in any
order or combination, so long as we only derive facts w : γ where w is a substring
of the original string w0 we are trying to parse.

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.2

In shift-reduce parsing, we modify the form of the facts we use. Instead ofw : γ,
where w is a sequence of terminals and γ is a single terminal or nonterminal, we
conclude facts of the form w : β, where β = γ1 . . . γn is a (possibly empty) series
of terminals and nonterminals, respectively. Then, we restrict both of our previous
rules so that they only manipulate the rightmost element side of w or β, adding a
new rule start as a base case:

ε : ε
start

w : β

w a : β a
shift

[r]X −→ α
w : β α

w : β X
reduce(r)

Our previous restriction, that we only consider substrings of the sentence w0 that
we’re trying to parse, remains in effect. This means that we know, when we con-
clude w : β, that w is a prefix of w0. The requirement that we effectively scan
the string from left to right means that we know exactly what any deduction of
[][[][]] : S looks like this, where each of the omitted portions consist of zero or
more applications of the rule reduce:

ε : ε
start

...
ε : β0

[: β0[
shift

...
[: β1

[] : β1]
shift

...
[] : β2

[][: β2[
shift

...
[][: β3

[][[: β3]
shift

...
[][[: β4

[][[] : β4]
shift

...
[][[] : β5

[][[][: β5[
shift

...
[][[][: β6

[][[][] : β6]
shift
...

[][[][] : β7

[][[][]] : β7]
shift
...

[][[][]] : S

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.3

If we the manually-derived unambiguous grammar for matching parentheses
discussed in the previous lecture:

[emp] S −→ ε
[next] S −→ [S]S

we can create a deductive parse tree, again treating the reduce rule as two rules
specialized to the [emp] and [next] grammar productions:

ε : ε
start

[: [
shift

[: [S
reduce(emp)

[] : [S]
shift

[][: [S][
shift

[][[: [S][[
shift

[][[: [S][[S
reduce(emp)

[][[] : [S][[S]
shift

[][[][: [S][[S][
shift

[][[][: [S][[S][S
reduce(emp)

[][[][] : [S][[S][S]
shift

[][[][] : [S][[S][S]S
reduce(emp)

[][[][] : [S][[S]S
reduce(next)

[][[][] : [S][S
reduce(next)

[][[][]] : [S][S]
shift

[][[][]] : [S][S]S
reduce(emp)

[][[][]] : [S]S
reduce(next)

[][[][]] : S
reduce(next)

Looking back at our general template, we can identify β0 = ε, β1 = [S, β2 =
[S], β3 = [S][, β4 = [S][[S, β5 = [S][[S], β6 = [S][[S][S, and β7 = [S][S.
The advantage of shift-reduce parsing comes, in part, from the fact that not only is
this deduction unambiguous as a proof tree, it’s unambiguous as a series of appli-
cations of grammar productions. There is no other way to conclude [][[][]] : S
according to our rules. The modified rules do not change the sentences that we can
parse, but they force us to apply grammar productions in a specific order. In fact,
we produce the rightmost derivation.

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.4

3 Predictive parsing

Only allowing rightmost derivations means that at most one sequence of shift and
reduce rules for every given parse tree. If a grammar is unambiguous, this means
that, as we apply a series of rules to try to derive w : S from ε : ε, there is at most
one rule we can apply that will lead us to success. The goal of predictive parsing is
to always be able to pick the correct rule.

To move forward, we’re going to reframe the problem a bit. Instead of talking
about facts w : β where w is a prefix of w0, we’re going to think about facts of the
form β || w′, where w′ is the complement of w, the string where ww′ = w0. This
makes the interpretation of the shift rule more natural, because we are shifting a
character from left-hand side of the un-processedw′ string onto the right-hand side
of the processed w string. This re-interpretation of the rules gives us the following
summary of the proof tree above:

|| [][[][]] shift [

[||][[][]] reduce emp

[S ||][[][]] shift]

[S] || [[][]] shift [

[S][|| [][]] shift [

[S][[||][]] reduce emp

[S][[S ||][]] shift]

[S][[S] || []] shift [

[S][[S][||]] reduce emp

[S][[S][S ||]] shift]

[S][[S][S] ||] reduce emp

[S][[S][S]S ||] reduce next

[S][[S]S ||] reduce next

[S][S ||] shift

[S][S] || reduce emp

[S][S]S || reduce next

[S]S || reduce next

S ||

If we can successfully predict what the next step should be at every point, then we
can implement this proof search with a stack holding the terminals and nontermi-
nals (on the left) and a queue or array index tracking the unprocessed tokens (on
the right).

What would we need to know how to always make the right decision for the
grammar above? It’s not enough to just look at the contents of the stack. We can
prove this by giving a counterexample: in two different states, both starting with
the same stack but with different queues of un-shifted terminals, we can see that
the correct action in one case is to reduce by emp and the correct action in the other
case is to shift a [.

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.5

[[S] ||] reduce emp [[S] || []] shift [

[[S]S ||] reduce next [[S][||]] reduce emp

[S ||] shift] vs [[S][S ||]] shift]

[S] || reduce emp [[S][S] ||] reduce emp

[S]S || reduce next [[S][S]S ||] reduce next

S || [[S]S ||] reduce next

[S ||] shift]

[S] || reduce emp

[S]S || reduce next

S ||

Therefore, in addition to inspecting the structure of the stack, we will need to
use extra information to decide what to do. In particular, we will allow ourselves
to use the first unshifted token when we decide which action to take next. This
means that our shift-reduce algorithm needs a lookahead of 1.

At any step while parsing, we can (potentially) shift a [, shift a], reduce with
emp, or reduce with next. We will begin constructing a parse table, where the columns
correspond to the next unshifted token and the rows correspond to patterns that we
match against the stack β. The following table allows us to always unambiguously
make decisions about what to do next when parsing our grammar of parentheses:

β \ a [] $

ε shift error reduce(emp)

β[shift reduce(emp) error

β] shift reduce(emp) reduce(emp)

β[S error shift error

β]S error reduce(next) reduce(next)

εS error error accept(S)

4 Generating a Parse Table

A parser generator will take a context free grammar and construct a parse table for
use. If the grammar is an unambiguous LR(1) grammar then the process will suc-
ceed. Otherwise, it will result in shift-reduce and reduce-reduce conflicts, which
we discuss in the following section. For now, assume that we have an unambigu-
ous LR(1) grammar.

To automatically generate the parse table, we first determine all the “spots” (the
different situation) in the derivation at which we could be. To this end, we consider
the right-hand sides of the productions in the grammar.

[emp] S −→ ε
[next] S −→ [S]S

For the production next, there the following possibilities:

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.6

• We just have processed [and are now expecting an input string that reduces
to S]S.

• We have processed [S and are now expecting a string that reduces to]S.

• We have processed [S] and are now expecting a string that reduces to S.

• We have processed [S]S and do not expect anything.

For the production emp, we only have the case in which we produced something
(it doesn’t matter what) and expect nothing. In other words, this production can
always be applied. This information can can be generated mechanically from the
productions.

From this information, we can generate the set of potentially “good” stack
states. These are the stacks from which we can still hope to reduce them to the
start symbol S. We always include ε and S. If these states are not good then the
language of the grammar is empty. Additionally, we add all other possible states
that we can still reduce with some production:

β[β[S β[S] β[S]S

This gives us the columns of the table. The lines are just the terminal symbols
in our alphabet and the end-of-file marker. Next, we have to determine what to put
into the cells of the table. To this end, we first compute the prefix set for every non-
terminal symbol. In our example, the only non-terminal symbol is S. We can see
right away that if S →∗ w then w = [w′ for some string w′. That’s why the prefix
set for S is {[}. To compute the prefix set, we usually have to do more iterations.
For example if we have a rule like X → Y Z then the prefix set of X includes the
prefix set of Y , and even the prefix set of Z if Y →∗ ε.

Now we can fill the parse table. However, we add another column next? that
tells us what the remainder of the input should reduce to in a successful parse. We
consider the next input token. If it is in the prefix set of the first symbol in next
the we do a shift. Otherwise we go for the reduce. However, if this would lead to a
stack pattern that does not appear in the table we put error in the cell. For example,
in the first line [is in the prefix set of S so we chose shift. The other two tokens are
not in the prefix set of S and reduce(emp) would lead to the stack in the last row. So
we chose reduce(emp) there.

β \ a next? [] $

ε S shift reduce(emp) reduce(emp)

β[S]S shift reduce(emp) reduce(emp)

β[S]S error shift error

β[S] S shift reduce(emp) reduce(emp)

β[S]S ε error reduce(next) reduce(next)

εS ε error error accept(S)

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.7

The second row is similar. However, in the third row, [is not in the prefix set of]
and reduce(emp) would lead to the stack state β[SS, which does not appear in the
table. So we chose error.

The resulting parse table is correct but can be further optimized to arrive the the
one that we constructed by hand. In particular, we sometimes continue to reduce
even though it is already clear that we will reach an error state. However, since the
time is at most linear, this is not a terrible efficiency problem.

5 Parsing Ambiguous Grammars

We can use shift-reduce parsing to parse ambiguous grammars, but our parse ta-
bles will no longer be able to give us unambiguous guidance about what the next
step to take is. We’ll consider a subset of our ambiguous grammar of arithmetic
again:

[plus] E −→ E + E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ (E)

If we begin parsing num + num + num , then our first several steps are unam-
biguous:

|| num + num + num shift num

num || + num + num reduce number

E || + num + num shift +

E + || num + num shift num

E + num || + num reduce number

E + E || + num ???

...

At this point, we have a real decision. We can either reduce by the plus rule or
shift the next + token. Either way, we will be able to complete the derivation:

E + E || + num E + E || + num

E || + num E + E + || num

E + || num vs E + E + num ||

E + num || E + E + E ||

E + E || E + E ||

E || E ||

these two examples are a counterexample proving that we cannot use shift-reduce
parsing to unambiguously parse this grammar. (That’s not surprising: it’s an am-
biguous grammar!)

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.8

Cases where we can make different decisions and still successfully parse the
string are called conflicts. This is a shift/reduce conflict, because our parse table has
a single entry that could contain either the rule to shift + or the rule to reduce with
the plus production.

Resolving the shift/reduce conflict in favor of shifting causes addition to be
right-associative, so we should instead resolve the conflict, in this case, by reduc-
ing, because we treat addition as left-associative. Rather than rewriting the gram-
mar to avoid these ambiguities, we can supplement our context free grammar with
precedence and associativity information, and the parser generator can use this
supplementary information to avoid some conflicts.

With supplementary information about precedence and associativity, we can
construct an unambiguous parsing table. As before, we assume that a special end-
of-file token $ has been added to the end of the input string. When the parsing
goal has the form α, β | aw where β is a prefix substring of the grammar, we look
up β in the left-most column and a in the top row to find the action to take. The
non-terminal εE in the last line is a special case in that E must be the only thing on
the stack. In that case we can accept if the next token is $ because we know that $
can only be the last token of the input string.

β \ a + * num () $

E + E reduce(plus) shift error error reduce(plus) reduce(plus)
(+ left assoc.) (+ < *)

E * E reduce(times) reduce(times) error error reduce(times) reduce(times)
(+ < *) (* left assoc.)

num reduce(number) reduce(number) error error reduce(number) reduce(number)
(E) reduce(parens) reduce(parens) error error reduce(parens) reduce(parens)
E + error error shift shift error error
E * error error shift shift error error
(E shift shift error error shift error

(error error shift shift error error
ε error error shift shift error error

ε E shift shift error error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while all other
actions (including errors) are uniquely determined. These conflicts arise when
E + E or E * E is on the stack and either + or * is the first character in the remain-
ing input string. It is called a shift/reduce conflict, because either a shift action or
a reduce action could lead to a valid parse. Here, we have decided to resolve the
conflicts by giving a precedence to the operators and declaring both of them to be
left-associative.

It is also possible to have reduce/reduce conflicts, if more than one reduction
could be applied in a given situation, but it does not happen in this grammar.

Parser generators will generally issue an error or warning when they detect a
shift/reduce or reduce/reduce conflict. For many parser generators, the default

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.9

behavior of a shift/reduce conflict is to shift, and for a reduce/reduce conflict to
apply the textually first production in the grammar. Particularly the latter is rarely
what is desired, so we strongly recommend rewriting the grammar to eliminate
any conflicts.

One interesting special case is the situation in a language where the else-clause
of a conditional is optional. For example, one might write (among other produc-
tions)

E −→ if E then E
E −→ if E then E else E

Now a statement

if b then if c then x else y

is ambiguous because it would be read as

if b then (if c then x) else y

or

if b then (if c then x else y)

In a shift/reduce parser, typically the default action for a shift/reduce conflict is to
shift to extend the current parse as much as possible. This means that the above
grammar in a tool such as ML-Yacc will parse the ambiguous statement into the
second form, that is, the else is matched with the most recent unmatched if. This
is consistent with language such as C (or C0, the language used in this course), so
we can tolerate the above shift/reduce conflict, if you wish, instead of rewriting
the grammar to make it unambiguous.

We can also think about how to rewrite the grammar so it is unambiguous.
What we have to do is rule out the parse

if b then (if c then x) else y

In other words, the then clause of a conditional should be balanced in terms of
if-then-else and not have something that is just an if-then without an else clause.

E −→ if E then E
E −→ if E then E′ else E

E′ −→ if E then E′ else E
E′ −→ . . .

We would also have to repeat all the other clauses for E, or refactor the grammar
so the other productions of E can be shared with E′.

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.10

6 Adapting Grammars for Shift-Reduce Parsing

The set of languages that we can parse with shift-reduce parsers that have looka-
head 1 is called LR(1). But even though a language may be describable with an
LR(1) grammar, it’s not necessarily the case that every grammar for an LR(1) lan-
guage can be parsed with a shift-reduce parser. To understand the difference, we’ll
look at two different grammars for a language Z that can be described by a regular
expression: b∗ · (c+ d).

[xz] S −→ Xc [cz] S −→ Cc
[yz] S −→ Y d [dz] S −→ Dd

[x0] X −→ ε [c0] C −→ ε
[x1] X −→ bX [c1] C −→ Cb
[y0] Y −→ ε [d0] D −→ ε
[y1] Y −→ bY [d1] D −→ Db

Both grammars are completely unambiguous on their own, but only the first
can be correctly parsed by a shift-reduce parser that has lookahead of 1.

|| bbbc shift b

b || bbc shift b

bb || bc shift b

bbb || c reduce x0

bbbX || c reduce x1

bbX || c reduce x1

bX || c reduce x1

X || c shift c

Xc || reduce xz

Z ||

If we want to parse the same string with the second grammar, we must immedi-
ately reduce, because we will never be able to handle the b on the stack unless it is
preceded by a C or a D.

|| bbbc reduce c0 || bbd reduce d0

C || bbbc shift b D || bbd shift b

Cb || bbc reduce c1 Db || bd reduce d1

C || bbc shift b D || bd shift b

Cb || bc reduce c1 Db || d reduce d1

C || bc shift b D || d shift d

Cb || c reduce c1 Dd || reduce dz

C || c shift c Z ||

Cc || reduce cz

Z ||

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.11

Both examples have the same initial stack ε, and the same first token b, but one
of them can only be parsed by reducing by c0 and the other can only be parsed
by reducing by d0. This proves that there is a reduce/reduce conflict for a LR(1)
parser trying to parse this grammar. Even though the grammar is unambiguous, to
parse it correctly, we’d need arbitrary lookahead – we’d need to look over an arbitrary
number of b tokens to find whether they were followed by a c or a d.

Despite the fact that a parser-table-based algorithm cannot unambiguously parse
this grammar, the grammar is not unusuable. Using the deduction rules from the
beginning, we could consider possible parses as we worked through the string.
This idea is the basis of some GLR (Generalized LR) parser generators, but the cost
of increased generality is that there are fewer guarantees about efficiency.

Questions

1. What happens if we remove the ε from the last entry in the LR parser table?
Aren’t ε’s irrelevant and can always be removed?

2. What makes x*y; difficult to parse in C and C0? Discuss some possible solu-
tions, once you have identified a problem?

3. Give a very simple example of a grammar with a shift/reduce conflict.

4. Give an example of a grammar with a shift/reduce conflict that occurs in
programming language parsing and is not easily resolved using associativity
or precedence of arithmetic operators.

5. Give a very simple example of a grammar with a reduce/reduce conflict.

6. Give an example of a grammar with a reduce/reduce conflict that occurs in
programming language parsing and is not easily resolved.

7. In the reduce rule, we have used a number of symbols on the top of the stack
and the lookahead to decide what to do. But isn’t a stack something where
we can only read one symbol off of the top? Does it make a difference in
expressive power if we allow decisions to depend on 1 or on 10 symbols on
the top of the stack? Does it make a difference in expressive power if we allow
1 or arbitrarily many symbols from the top of the stack for the decision?

8. What’s wrong with this grammar that was meant to define a program P as a
sequence of statements S by P → S | P ;P

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

LECTURE NOTES SEPTEMBER 20, 2018

Shift-Reduce Parsing L8.12

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles
and implementation of deductive parsing. Journal of Logic Programming,
24(1–2):3–36, 1995.

LECTURE NOTES SEPTEMBER 20, 2018

	Introduction
	Deductive Shift-Reduce Parsing
	Predictive parsing
	Generating a Parse Table
	Parsing Ambiguous Grammars
	Adapting Grammars for Shift-Reduce Parsing

