
15-411: Compiler Design Fall 2017

Recitation 5: Calling Conventions 6 October

The L3 language adds support for function calls, type definitions, and header files with C interoperability.
In this recitation, we’ll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers Function 64-bit 32-bit 16-bit 8-bit

Return	Value %rax %eax %ax %al

Callee	saved %rbx %ebx %bx %bl

4th	Argument %rcx %ecx %cx %cl

3rd	Argument %rdx %edx %dx %dl

2nd	Argument %rsi %esi %si %sil

1st	Argument %rdi %edi %di %dil

Callee	saved %rbp %ebp %bp %bpl

Stack	Pointer %rsp %esp %sp %spl

5th	Argument %r8 %r8d %r8w %r8b

6th	Argument %r9 %r9d %r9w %r9b

Caller	saved %r10 %r10d %r10w %r10b

Caller	saved %r11 %r11d %r11w %r11b

Callee	saved %r12 %r12d %r12w %r12b

Callee	saved %r13 %r13d %r13w %r13b

Callee	saved %r14 %r14d %r14w %r14b

Callee	saved %r15 %r15d %r15w %r15b

In Lab 3, your compiler’s code-generation and register allo-
cation phases will need to distinguish between callee-saved
and caller-saved registers:

• The values stored in callee-saved registers must
be preserved across function calls. This means that
your function must save and restore any callee-saved
registers that it modifies.

• The values stored in caller-saved registers may be
modified by any function call, so your compiler can-
not assume that they will retain their values after
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call.

In your register allocation, you will probably want to con-
sider the differences between these two types of registers in
order to reduce the number of save and restore instructions
you must add. In lecture on Tuesday, you’ll see a relatively
simple way of dealing with most of these issues.

Checkpoint 0
One team’s compiler made some bad decisions about where to store values, and also forgot to save and
restore registers! Add the necessary save and restore instructions to the following assembly function.

_c0_foo:
mov $15, %ebx
mov $411, %r12d
mul $100, %ebx
add %r12d, %ebx
mov %ebx, %edi
mov $2, %esi
call _c0_bar
mov %edi, %eax
div %esi, %eax
ret

Checkpoint 1
If different choices were made during register allocation, some of the save and restore operations that you
just added would not have been necessary. Modify the above function so that it has the same behavior,
but uses less save and restore operations.

Tracing Function Calls in x86-64
In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

• The first six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(respectively).

• The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

• The return value of a function should be stored in %rax.

• The use of %rbp as a base pointer is not required (but you may find that using it simplifies your
compiler’s logic significantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in C0 (and thus in L3) has a fixed stack
size that can be computed at compile time. This observation allows you to make your compiler’s stack-
handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 2
Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

1 int f(int we, int dont, int care, int about, int these, int args, int a, int b) {
2 // assume that x is spilled on the stack
3 int x = a + b;
4 return 2 * x;
5 }
6
7 int main() {
8 return f(0,0,0,0,0,0,3,5);
9 }

Checkpoint 3
Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately!

Header Files in L3
Unlike in C, header files in L3 (and above) are only used to declare types and external functions. If a
function is declared in a header file, then it may not be defined in the program – it is declared as external.
External functions are defined in C source files, which are linked together with the assembly produced by
your compiler.

