
15-411: Calling Conventions

Jan Ho!mann



Example: Recursive Pow



Recursive Pow

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is defined by the call

LECTURE NOTES OCTOBER 6, 2015



Recursive Pow

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is defined by the call

LECTURE NOTES OCTOBER 6, 2015

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Recursive Pow

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is defined by the call

LECTURE NOTES OCTOBER 6, 2015

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015

C0



Recursive Pow

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is defined by the call

LECTURE NOTES OCTOBER 6, 2015

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e
done:

ret 1
recurse: b, e

t0 ! e " 1 t0 e b, e
t1 ! pow(b, t0) t1 b, t0 b, t0
t2 ! b# t1 t2 b, t1 b, t1
ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015

C0 3-Address code.



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Liveness Analysis!
(3-address code)

Calling Conventions L11.8

abstract assembly on the right. We use a different form of conditional jump in this
example, and just proceed to the next instruction if the conditional evaluates to
false.

int pow(int b, int e) pow(b,e):
//@requires e >= 0; if (e == 0) then done else recurse
{ done:

if (e == 0) ret 1
return 1; recurse:

else t0 <- e - 1
return b * pow(b, e-1); t1 <- pow(b, t0)

} t2 <- b * t1
ret t2

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program def use live-in
pow(b, e) : b, e

if (e == 0) then done else recurse e b, e

done :

ret 1

recurse : b, e

t0  e� 1 t0 e b, e

t1  pow(b, t0) t1 b, t0 b, t0

t2  b ⇤ t1 t2 b, t1 b, t1

ret t2 t2 t2

Next, we move to a lower-lever representation, making the precolored registers
explicit with the code pattern in Section 5. Keeping in line with our understanding
of function calls, every argument and caller-saved register is deÞned by the call

LECTURE N OTES OCTOBER 6, 2015



Rules for Low-Level 3-Address Code

Calling Conventions L12.5

First we move the temps into the appropriate argument registers, then we call the
function f (represented by a symbolic label), and then we move the result register
into the desired destination.

This organization, perhaps just before register allocation, has the advantage
that the live ranges of fixed registers (called precolored nodes in register allocation) is
minimized. This is important to avoid potential conflict. We have already applied a
similar technique in the implementation of div and mod operations, which expect
their arguments in fixed registers.

Let us state this as a fundamental principle of code generation that you should
strive to adhere to:

The live range of precolored registers should be as short as possible!

We can now see a problem with our previous calculation of def and use infor-
mation: the above sequence to actually implement the function call will overwrite
the argument registers arg1, arg2, and arg3 as well as the result register res0. In fact,
any of the argument registers, the result register, as well as %r10 and %r11, may not
be preserved across function calls and therefore have to be considered to be defined

by the call. If we represent this in the low-level intermediate language, we would
add to the rule J8 the following rule J

0
8:

l : call f

caller-save(r)

def(l, r)

J

0
8

where caller-save(r) is true of register r among %rax, %rdi, %rsi, %rdx, %rcx, %r8,
%r9, %r10, and %r11.

Here we assume that register aliasing is handled correctly, that is, the register
allocator understands that, for example, %eax constitutes the lower 32 bits of %rax.

Note that all argument registers and the result register are caller-save. This is justi-
fied by the fact that we often compute a value for the purposes of passing it into a
function, but we do not require that value afterwards. Of course, the result register
has to be caller-save, since it will be defined by the called function before it returns.

We refer to argument registers more abstractly as arg1, arg2, . . . , arg6 and ler7
and ler8 for the other two caller-saved registers (even if they are not used for pass-
ing arguments to a function). We refer to the result register %rax as res0.

Now if a temp t is live after a function call, we have to add an infererence edge
connecting t with any of the fixed registers noted above, since the value of those
registers are not preserved across a function call.

The other fixed use of argument registers is of course at the beginning of a
function. Again, we should be careful to generate code that keeps the live ranges
of precolored registers short. We can accomplish this by moving the argument

LECTURE NOTES OCTOBER 6, 2016

Calling Conventions L12.7

register coalescing.2 Register coalescing consults the interference graph to check if
we can assign the same register for variable-to-variable moves. Another optimiza-
tion that can eliminate register-to-register moves is copy propagation, covered in a
later lecture. However, copy propogation requires care because it might extend the
live range of variables, possibly undoing the care we applied to keep precolored
registers contained.

With this technique, the general shape of the code for a function f before regis-
ter allocation would be

f :

t1  lee9
t2  lee10
· · ·
function body

· · ·
lee10  t2

lee9  t1

ret

One complication with this approach is that we need to be sure to spill the full
64-bit registers, while registers holding 32-bit integer values might be saved and
restored (or directly used as operands) using only 32 bits. Looking ahead, we see
that we will need both 32 bit and 64 bit registers and spill slots in the next lab, so we
might decide to introduce this complication now. Or we can still treat callee-saved
registers specially and switch over to a more uniform treatment in the next lab.

With either of the techniques for using callee-saved registers, the one additional
rule (J

0
8) is not enough. We should also note that all callee-save registers should be

considered live at the return instruction.

l : ret s

callee-save(r)

use(l, r)

J

0
2

We already know, by prior rule, that s itself is live at l. The rule new rule J 0
2 correctly

flags all callee-saved registers as live throughout the function body, unless they are
assigned somewhere. The code pattern above achieves exactly that, cutting their
live ranges down to a minimum.

7 An Extended Example

We use the recursive version of the power function as an example to illustrate reg-
ister allocation in the presence of function calls. The C0 source is on the left; the
abstract assembly on the right.

2One technique for register coalescing is briefly described in Section 8 of Lecture 3.

LECTURE NOTES OCTOBER 6, 2016



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Liveness Take into account pre-colored 
registers

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l , we create an edge between t and any variable live in the successor. The only
exception is a move t ! s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we don’t include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registeres lee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE NOTES OCTOBER 6, 2015



Interference Graph All pre-colored registers 
interfere with each other

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t deÞned
at l , we create an edge betweent and any variable live in the successor. The only
exception is a move t ! s, where we donÕt create and edge betweent and s because
they could be consistently be assigned to the same register. We Þnd that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we donÕt include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registereslee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE N OTES OCTOBER 6, 2015



Interference Graph All pre-colored registers 
interfere with each other

Calling Conventions L11.9

instruction.

program def use live-in
pow : arg1, arg2

b ! arg1 b arg1 arg1, arg2
e ! arg2 e arg2 b,arg2
if (e == 0) then done else recurse b, e

done:
res0 ! 1 res0

ret res0 res0

recurse: b, e
t0 ! e " 1 t0 e b, e
arg2 ! t0 arg2 t0 b, t0
arg1 ! b arg1 b b,arg2
call pow res0, arg1, arg2, arg1, arg2 b,arg1, arg2

arg3, arg4, arg5,
arg6, ler 7, ler 8

t1 ! res0 t1 res0 b,res0

t2 ! b# t1 t2 b, t1 b, t1
res0 ! t2 res0 t2 t2

ret res0 res0

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t deÞned
at l , we create an edge betweent and any variable live in the successor. The only
exception is a move t ! s, where we donÕt create and edge betweent and s because
they could be consistently be assigned to the same register. We Þnd that only b
interferes with other temps and precolored registers.

temp interfering with
b res0, arg1, arg2, arg3, arg4, arg5, arg6, ler 7, ler 8, e, t0, t1

e b
t0 b
t1 b
t2

All precolored registers implicitly interfere with each other, so we donÕt include
that in the interference graph. We are left with no caller-saved registeres where it is
possible to store b. Rather than storing it on the stack, we can store it in one of our
callee-saved registereslee9, which we will therefore need to push when we enter
into the function and pop before returning. We also add an epilouge, exitpow, to
keep us from having to write the pop operations multiple times in the program.

LECTURE N OTES OCTOBER 6, 2015

No caller-saved register 
for b available."

Use lee9.



Save Callee-Saved Regs 
and epilog

Calling Conventions L11.10

program live-in
pow : arg1, arg2, lee9
push lee9 arg1, arg2, lee9
b ! arg1 arg1, arg2
e ! arg2 b,arg2
if (e == 0) then done else recurse b, e

done :

res0 ! 1

goto exitpow res0
recurse : b, e

t0 ! e " 1 b, e
arg2 ! t0 b, t0
arg1 ! b b,arg2
call pow b,arg1, arg2
t1 ! res0 b,res0
t2 ! b# t1 b, t1
res0 ! t2 t2
goto exitpow res0

exitpow : res0
pop lee9 res0
ret lee9, res0

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function
because they are all needed at the final return, after the rewrite lee9 no longer is.
Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler7, ler8, lee9

with the idea that caller-save registers come first (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would first have to spill and
restore them.

From this we construct the assignment

b $% lee9
e $% res0
t0 $% res0
t1 $% res0
t2 $% res0

LECTURE NOTES OCTOBER 6, 2015



Save Callee-Saved Regs 
and epilog

Calling Conventions L11.10

program live-in
pow : arg1, arg2, lee9
push lee9 arg1, arg2, lee9
b ! arg1 arg1, arg2
e ! arg2 b,arg2
if (e == 0) then done else recurse b, e

done :

res0 ! 1

goto exitpow res0
recurse : b, e

t0 ! e " 1 b, e
arg2 ! t0 b, t0
arg1 ! b b,arg2
call pow b,arg1, arg2
t1 ! res0 b,res0
t2 ! b# t1 b, t1
res0 ! t2 t2
goto exitpow res0

exitpow : res0
pop lee9 res0
ret lee9, res0

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function
because they are all needed at the final return, after the rewrite lee9 no longer is.
Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler7, ler8, lee9

with the idea that caller-save registers come first (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would first have to spill and
restore them.

From this we construct the assignment

b $% lee9
e $% res0
t0 $% res0
t1 $% res0
t2 $% res0

LECTURE NOTES OCTOBER 6, 2015

Calling Conventions L11.10

program live-in
pow : arg1, arg2, lee9

push lee9 arg1, arg2, lee9
b arg1 arg1, arg2
e arg2 b, arg2
if (e == 0) then done else recurse b, e

done :

res0  1

goto exitpow res0
recurse : b, e

t0  e� 1 b, e

arg2  t0 b, t0

arg1  b b, arg2
call pow b, arg1, arg2
t1  res0 b, res0
t2  b ⇤ t1 b, t1

res0  t2 t2

goto exitpow res0
exitpow : res0

pop lee9 res0
ret lee9, res0

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function
because they are all needed at the final return, after the rewrite lee9 no longer is.
Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler7, ler8, lee9

with the idea that caller-save registers come first (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would first have to spill and
restore them.

From this we construct the assignment

b 7! lee9
e 7! res0
t0 7! res0
t1 7! res0
t2 7! res0

LECTURE NOTES OCTOBER 6, 2015

Calling Conventions L11.10

program live-in
pow : arg1, arg2, lee9

pushlee9 arg1, arg2, lee9

b ! arg1 arg1, arg2
e ! arg2 b,arg2
if (e == 0) then done else recurseb, e

done:
res0 ! 1
goto exitpow res0

recurse: b, e
t0 ! e " 1 b, e
arg2 ! t0 b, t0
arg1 ! b b,arg2
call pow b,arg1, arg2
t1 ! res0 b,res0

t2 ! b# t1 b, t1
res0 ! t2 t2

goto exitpow res0

exitpow: res0

pop lee9 res0

ret lee9, res0

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function
because they are all needed at the Þnal return, after the rewrite lee9 no longer is.
Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler 7, ler 8, lee9

with the idea that caller-save registers come Þrst (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would Þrst have to spill and
restore them.

From this we construct the assignment

b $% lee9

e $% res0

t0 $% res0

t1 $% res0

t2 $% res0

LECTURE N OTES OCTOBER 6, 2015

Register Allocation: 



Optimization and Code 
Generation

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015



Optimization and Code 
Generation

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015



Optimization and Code 
Generation

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015

Calling Conventions L11.11

Applying the substitutions:

pow :
pushlee9

lee9 ! arg1
res0 ! arg2
if (res0 == 0) then done else recurse

done:
res0 ! 1
goto exitpow

recurse:
res0 ! res0 " 1
arg2 ! res0

arg1 ! lee9 (redundant)
call pow
res0 ! res0 (redundant)
res0 ! lee9 # res0

res0 ! res0 (redundant)
goto exitpow

exitpow:
pop lee9

ret

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move if we notice that it is moving a value
from lee9 into arg1 that was deÞnitely already there (copy propogation). Using
GNU (AT&T) assembler format for x86-64, we end up with:

pow: pushq %rbx
movl %edi, %ebx
movl %esi, %eax
cmpl $0, %eax
jne L1
movl $1, %eax
goto L2

L1: subl $1, %eax
movl %eax, %esi
call pow
imull %ebx, %eax

L2: popq %rbx
ret

LECTURE N OTES OCTOBER 6, 2015


