Lecture Notes on
Shift-Reduce Parsing

15-411: Compiler Design
Frank Pfenning, Rob Simmons, André Platzer, Jan Hoffmann

Lecture 8
September 21, 2017

1 Introduction

In this lecture we discuss shift-reduce parsing, which is the basis of most modern
parser generator tools. Shift-reduce parsing is based on the idea of predictive parsing
with lookahead. To improve upon the inefficiency of CYK parsing, we process strings
in some fixed order: generally left-to-right, since most computer languages have
been designed to be read and written in that direction. While processing the string
in this fixed order, we attempt to correctly predict how to continue parsing the
string based on the part of the string we have already seen and a finite amount
of the string that we haven’t yet considered (the lookahead). 1t is possible to do so
successfully in a surprising number of cases, and when possible it allows us to have
extremely efficient parsing algorithms.

Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and a paper by Shieber et al. [SSP95].

2 Deductive Shift-Reduce Parsing

Recall our original rules for deductive parsing of context-free grammars.

X — ... 7

wriyr ... Wy Yn
— Dy Dy
a:a Wl ... Wy X

Interpreted as the CYK parsing algorithm, we allow these rules to be applied in any
order or combination, so long as we only derive facts w : v where w is a substring
of the original string wo we are trying to parse.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.2

In shift-reduce parsing, we modify the form of the facts we use. Instead of w : 7,
where w is a sequence of terminals and v is a single terminal or nonterminal, we
conclude facts of the form w : 8, where 8 = ~v; ..., is a (possibly empty) series
of terminals and nonterminals, respectively. Then, we restrict both of our previous
rules so that they only manipulate the rightmost element side of w or 3, adding a
new rule start as a base case:

[X — «
w:pf w: o
—— start —— shift —————— reduce(r)
€:¢€ wa:fa w: X

Our previous restriction, that we only consider substrings of the sentence wy that
we're trying to parse, remains in effect. This means that we know, when we con-
clude w : B, that w is a prefix of wg. The requirement that we effectively scan
the string from left to right means that we know exactly what any deduction of
[1L0101] : S looks like this, where each of the omitted portions consist of zero or
more applications of the rule reduce:

— start
€€

€: Bo
[: B0l
[: B
0 : 6]
(J: 75
[00: ol
[0 : B
[LL: Bs]
0L s
0to g o
0o g
L0 Gl
LT fe
RIGIERES

oooa: sy
————————— shift
00071 : 841

aorani:s

shift

shift
shift

shift

shift

shift

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.3

If we the manually-derived unambiguous grammar for matching parentheses
discussed in the previous lecture:

[emp] S — €
[next] S — [S1S

we can create a deductive parse tree, again treating the reduce rule as two rules
specialized to the [emp] and [next] grammar productions:

—— start
€:¢
— shift
[:L duce(emp)
reduce(emp
[:[S
shift
(1:L[S]
—— shift
(OC0: [S1L
—————— shift
(OCC: 0STLC
——— reduce(emp)
(OC0C: [STLLS
shift
(D001 : [STLLST
shift

(IC0OC: 0STL0SIL
(0CaC: LS1LLs1Ls
(JC000 : LS1C0S1LS] °
(JC000: 0S100s1s1s
(000101 : LSTLLST1S
oo : s1es
(1001011 : 051 L8]
(10001 : 0510518
ool : is1s
oooa1:s

reduce(emp)

hift

reduce(emp)

reduce(next)

reduce(next)

shift

reduce(emp)

reduce(next)

reduce(next)

Looking back at our general template, we can identify 8y = ¢, 81 = [, f2 =
(ST, B3 = [STL, By = [STLLS, Bs = [STLLS], Be = [STLLSTLS, and B7 = [S]LS.
The advantage of shift-reduce parsing comes, in part, from the fact that not only is
this deduction unambiguous as a proof tree, it’s unambiguous as a series of appli-
cations of grammar productions. There is no other way to conclude [1[[]1[1] : S
according to our rules. The modified rules do not change the sentences that we can
parse, but they force us to apply grammar productions in a specific order. In fact,
we produce the rightmost derivation.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.4

3 Predictive parsing

Only allowing rightmost derivations means that at most one sequence of shift and
reduce rules for every given parse tree. If a grammar is unambiguous, this means
that, as we apply a series of rules to try to derive w : S from € : ¢, there is at most
one rule we can apply that will lead us to success. The goal of predictive parsing is
to always be able to pick the correct rule.

To move forward, we're going to reframe the problem a bit. Instead of talking
about facts w : § where w is a prefix of wy, we’re going to think about facts of the
form (3 || w’, where w’ is the complement of w, the string where ww’ = wy. This
makes the interpretation of the shift rule more natural, because we are shifting a
character from left-hand side of the un-processed w’ string onto the right-hand side
of the processed w string. This re-interpretation of the rules gives us the following
summary of the proof tree above:

[[JCOO0] shift [

[11700007 reduce emp
(s II 1000011 shift]
(s1 11 [0101] shift [
(s1C 11 01011 shift [

(s1CC 1 101 reduce emp

[s1CIs Il 1011 shift]

[(s1CCs] |1 (3] shift [
[(STCCSIC 11 1] reduce emp

(s1C[s1[s Il 11 shift]
[SICCS1Cs] Il 1] reduce emp
[(S1CCs1[s1s Il 1 reduce next
[S1[[s]s |1 1] reduce next

[s10s Il 1 shift
[s1(s] I reduce emp
[s1(s]s || reduce next
[s1s || reduce next
S |1

If we can successfully predict what the next step should be at every point, then we
can implement this proof search with a stack holding the terminals and nontermi-
nals (on the left) and a queue or array index tracking the unprocessed tokens (on
the right).

What would we need to know how to always make the right decision for the
grammar above? It’s not enough to just look at the contents of the stack. We can
prove this by giving a counterexample: in two different states, both starting with
the same stack but with different queues of un-shifted terminals, we can see that
the correct action in one case is to reduce by emp and the correct action in the other
case is to shifta [.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.5

[[S] Il] reduce emp [[S] Il [1] shift [
[[SIS ||] reduce next [[S1C Il 11 reduce emp
[S Il 1 shift] vs [[SICs Il 11 shift]

[S] || reduce emp [[SI[S] Il 1 reduce emp
[S]S || reduce next [[SI[S]IS || 1 reduce next
S I [[SIS |l 1 reduce next
[S 111 shift]
(sl Il reduce emp
[sis |1 reduce next
S |

Therefore, in addition to inspecting the structure of the stack, we will need to
use extra information to decide what to do. In particular, we will allow ourselves
to use the first unshifted token when we decide which action to take next. This
means that our shift-reduce algorithm needs a lookahead of 1.

At any step while parsing, we can (potentially) shift a [, shift a], reduce with
emp, or reduce with next. We will begin constructing a parse table, where the columns
correspond to the next unshifted token and the rows correspond to patterns that we
match against the stack 3. The following table allows us to always unambiguously
make decisions about what to do next when parsing our grammar of parentheses:

B\ a [] $
€ || shift error reduce(emp)
BL | shift | reduce(emp) error
B1 | shift | reduce(emp) | reduce(emp)
BLS || error shift error
B1S || error | reduce(next) | reduce(next)
eS | error error accept(.9)

4 Parsing Ambiguous Grammars

We can use shift-reduce parsing to parse ambiguous grammars, but our parse ta-
bles will no longer be able to give us unambiguous guidance about what the next
step to take is. We'll consider a subset of our ambiguous grammar of arithmetic
again:

[plus] E — E+FE
[times] E — ExE
[number] E — num
[parens] E — (E)

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.6

If we begin parsing num + num + num, then our first several steps are unam-
biguous:

|| num + num + num shift num

num || + num + num reduce number
E || + num + num shift +
E + || num + num shift num
E + num || + num reduce number
E+E || + num 777

At this point, we have a real decision. We can either reduce by the plus rule or
shift the next + token. Either way, we will be able to complete the derivation:

E+E ||l + num E+E ||l + num
E || + num E+E+ || num
E + || num vs E+E+ num ||

E + num || E+E+E ||

E+E|I E+E|I
E || E |l

these two examples are a counterexample proving that we cannot use shift-reduce
parsing to unambiguously parse this grammar. (That’s not surprising: it’s an am-
biguous grammar!)

Cases where we can make different decisions and still successfully parse the
string are called conflicts. This is a shift/reduce conflict, because our parse table has
a single entry that could contain either the rule to shift + or the rule to reduce with
the plus production.

Resolving the shift/reduce conflict in favor of shifting causes addition to be
right-associative, so we should instead resolve the conflict, in this case, by reduc-
ing, because we treat addition as left-associative. Rather than rewriting the gram-
mar to avoid these ambiguities, we can supplement our context free grammar with
precedence and associativity information, and the parser generator can use this
supplementary information to avoid some conflicts.

With supplementary information about precedence and associativity, we can
construct an unambiguous parsing table. As before, we assume that a special end-
of-file token $ has been added to the end of the input string. When the parsing
goal has the form «, 5 | aw where 3 is a prefix substring of the grammar, we look
up S in the left-most column and a in the top row to find the action to take. The
non-terminal € E in the last line is a special case in that £ must be the only thing on
the stack. In that case we can accept if the next token is $ because we know that $
can only be the last token of the input string.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.7

[B\a] + | * [um ||) | §
E+E reduce(plus) shift error | error | reduce(plus) reduce(plus)
(+ left assoc.) (+ < %)
E x E || reduce(times) reduce(times) | error | error | reduce(times) reduce(times)
(+ < %) (* left assoc.)

num || reduce(number) | reduce(number) | error | error | reduce(number) | reduce(number)

(E) | reduce(parens) | reduce(parens) | error | error | reduce(parens) | reduce(parens)

E + error error shift | shift error error
E * error error shift | shift error error
(FE shift shift error | error shift error

(error error shift | shift error error

€ error error shift | shift error error
eE shift shift error | error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while all other
actions (including errors) are uniquely determined. These conflicts arise when
E + Eor E x E is on the stack and either + or * is the first character in the remain-
ing input string. It is called a shift/reduce conflict, because either a shift action or
a reduce action could lead to a valid parse. Here, we have decided to resolve the
conflicts by giving a precedence to the operators and declaring both of them to be
left-associative.

It is also possible to have reduce/reduce conflicts, if more than one reduction
could be applied in a given situation, but it does not happen in this grammar.

Parser generators will generally issue an error or warning when they detect a
shift/reduce or reduce/reduce conflict. For many parser generators, the default
behavior of a shift/reduce conflict is to shift, and for a reduce/reduce conflict to
apply the textually first production in the grammar. Particularly the latter is rarely
what is desired, so we strongly recommend rewriting the grammar to eliminate
any conflicts.

One interesting special case is the situation in a language where the else-clause
of a conditional is optional. For example, one might write (among other produc-
tions)

E — if EthenE
E — if Ethen Eelse &/

Now a statement

if b then if c then x else y

is ambiguous because it would be read as
if b then (if c then x) else y

or

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.8

if b then (if c then x else y)

In a shift/reduce parser, typically the default action for a shift/reduce conflict is to
shift to extend the current parse as much as possible. This means that the above
grammar in a tool such as ML-Yacc will parse the ambiguous statement into the
second form, that is, the else is matched with the most recent unmatched if. This
is consistent with language such as C (or CO, the language used in this course), so
we can tolerate the above shift/reduce conflict, if you wish, instead of rewriting
the grammar to make it unambiguous.

We can also think about how to rewrite the grammar so it is unambiguous.
What we have to do is rule out the parse

if b then (if c then x) else y

In other words, the then clause of a conditional should be balanced in terms of
if-then-else and not have something that is just an if-then without an else clause.

EF — if EthenE
E — if Ethen E'else E

E' — if Ethen E' else E
E —

We would also have to repeat all the other clauses for E, or refactor the grammar
so the other productions of E can be shared with E’.

5 Adapting Grammars for Shift-Reduce Parsing

The set of languages that we can parse with shift-reduce parsers that have looka-
head 1 is called LR(1). But even though a language may be describable with an
LR(1) grammar, it’s not necessarily the case that every grammar for an LR(1) lan-
guage can be parsed with a shift-reduce parser. To understand the difference, we’ll
look at two different grammars for a language Z that can be described by a regular
expression: b* - (c + 4).

xz] S — Xc [cz] § — Cc
lyzl § — Yd [dz] S — Dd
xX0] X —e [c0] C — ¢
1] X — bX] ¢ — Ob
O] Y —e [d0] D — €
] ¥ — by dl] D — Db

Both grammars are completely unambiguous on their own, but only the first
can be correctly parsed by a shift-reduce parser that has lookahead of 1.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.9

[| bbbc shift b
b || bbc shift b
bb || bc shift b

bbb || ¢ reduce x0
bbbX || ¢ reduce x1
bbX || ¢ reduce x1
bX || ¢ reduce x1
X1l c shift c
Xc || reduce xz
Z |l

If we want to parse the same string with the second grammar, we must immedi-
ately reduce, because we will never be able to handle the b on the stack unless it is
preceded by a C ora D.

|| bbbc reduce cO bbd reduce dO

I
C || bbbc shift b D || bbd shift b
Cb || bbc reduce cil Db || bd reduce di
C |l bbc shift b D || bd shift b
Cb || be reduce ci Db || d reduce di
C Il be shift b DIl d shift d
Cb |l ¢ reduce ci Dd || reduce dz
Cll c shift c Z |
Cc | reduce cz
ARl

Both examples have the same initial stack ¢, and the same first token b, but one
of them can only be parsed by reducing by c0 and the other can only be parsed
by reducing by d0. This proves that there is a reduce/reduce conflict for a LR(1)
parser trying to parse this grammar. Even though the grammar is unambiguous, to
parse it correctly, we’'d need arbitrary lookahead — we’d need to look over an arbitrary
number of b tokens to find whether they were followed by a c or a d.

Despite the fact that a parser-table-based algorithm cannot unambiguously parse
this grammar, the grammar is not unusuable. Using the deduction rules from the
beginning, we could consider possible parses as we worked through the string.
This idea is the basis of some GLR (Generalized LR) parser generators, but the cost
of increased generality is that there are fewer guarantees about effenciceny.

LECTURE NOTES SEPTEMBER 21, 2017

Shift-Reduce Parsing L8.10

Questions

1. What happens if we remove the e from the last entry in the LR parser table?
Aren’t €’s irrelevant and can always be removed?

2. What makes x*y; difficult to parse in C and C0? Discuss some possible solu-
tions, once you have identified a problem?

3. Give a very simple example of a grammar with a shift/reduce conflict.

4. Give an example of a grammar with a shift/reduce conflict that occurs in
programming language parsing and is not easily resolved using associativity
or precedence of arithmetic operators.

5. Give a very simple example of a grammar with a reduce/reduce conflict.

6. Give an example of a grammar with a reduce/reduce conflict that occurs in
programming language parsing and is not easily resolved.

7. In the reduce rule, we have used a number of symbols on the top of the stack
and the lookahead to decide what to do. But isn’t a stack something where
we can only read one symbol off of the top? Does it make a difference in
expressive power if we allow decisions to depend on 1 or on 10 symbols on
the top of the stack? Does it make a difference in expressive power if we allow
1 or arbitrarily many symbols from the top of the stack for the decision?

8. What's wrong with this grammar that was meant to define a program P as a
sequence of statements S by P — S | P; P

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles
and implementation of deductive parsing. Journal of Logic Programming,
24(1-2):3-36, 1995.

LECTURE NOTES SEPTEMBER 21, 2017

	Introduction
	Deductive Shift-Reduce Parsing
	Predictive parsing
	Parsing Ambiguous Grammars
	Adapting Grammars for Shift-Reduce Parsing

