Assignment 4: Semantics

15-411: Compiler Design
Jan Hoffmann
Jonathan Burns, DeeDee Han, Anatol Liu, Alice Rao

Due Thursday, November 3, 2016 (9:00am)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own. Please hand in your solution electronically in PDF format and refer to the
late policy for written assignments on the course web pages.

Problem 1: Generalized Ifs (15 points)

In this problem, assume we’re using a subset of the restricted abstract syntax used in lec-
ture, and the corresponding statics and dynamics. For your convenience, these are repro-
duced below.

Language
Operators @ = + <
Expressions e¢ == n|z|e; ®ea|e1&&er
Statements s ::= assign(z,e)|if(e,s1,s2) | while(e, s)
| return(e) | nop | seq(si1, s2) | decl(z,T,s)
Statics
(z)=71
I'txz:7 I'n:int I' - true : bool I' - false : bool
I'ke;:int TI'Fey:int I'Fep:int T'Feg:int I'ke; :bool T'Fey:bool
I'e; +ey:int I'e; <eg:bool ' ei1&&es : bool

ASSIGNMENT 4 THURSDAY, NOVEMBER 3, 2016 (9:00AM)

Semantics

A4.2

IMNz)=7 Tre:7

F'Fe:bool Tk sp:|[7]

Ik ose: 7]

I' - assign(z,e) : [7]

'Fe:bool Tk s:[7]

't if(e, s1,$82) : [7]

I'ke:r

I' Fwhile(e, s) :[7]

I'Fnop:

Dynamics

nke Ge> K
77"61[>(_@€2,K)
nkc>(aé_, K)

n Fei&&es > K
n - false > (_&&es, K)
Nk true > (_&&es, K)

nkFax> K

n - assign(z,e) » K
ntc> (assign(z,), K)

nk decl(z,7,s) » K
nt if(e, s1,s2) » K
Nk true > (if(—, s1, s2),
nF false > (if(_, s1, s2)

n - while(e,s) » K

n F return(e) » K
Nt v> (return(_), K)

I' - return(e) : [7]
F'kFsy:fr] TEsy:]r]
[7] 'k seq(s1, s2) : [7]
Lz’ s 7]
'k decl(z,7',s): [7]
— nhke>(—®er, K)
— nke>(ad_,K)
— nkcp> K (c=c1 @)
— T]|—€1I>(_&&62,K)
— nkfalse> K
— nkep>K
— nknl@)> K
— nker (assign(z,_), K)
— 1z ¢ Fnop» K
— nlz — nothing] - s » K
— nker (if(-, s1,$2), K)
K) — nksis K
,K) — nksop K
— nt if(e, seq(s,while(e,s)),nop) » K
— nke> (return(_), K)
— value(v)

Thinking about C, Jonathan realizes how convenient it would be to have conditionals op-
erate on any type by implicitly casting them to booleans. For example, we would expect

the code fragment

if (7) { do_something fun();

else { do_something not_fun(); }

¥

to call do_something_fun() in C, as 7 is non-zero. However, in CO we only have a judge-
ment for when the expression being compared upon is a boolean. To solve this problem,

ASSIGNMENT 4

THURSDAY, NOVEMBER 3, 2016 (9:00AM)

Semantics A4.3

Jonathan adds a new typing rule
Fke:int Thksy:[r] Tk sy:]r]
'k if(e, s1,82) : [7]

However, when he runs a small program using the semantics, the program fails to termi-
nate.

if (7) {
return 1;
} else {
return O;
}

1. What could be wrong?
2. Provide a trace in the format from lecture exposing the problem.

3. Help Jonathan out and provide a fix for this issue that will allow if statements to
function as he desires. Ensure that your fix does not break any other features of this
language.

Problem 2: Enums (20 Points)

Many programming languages contain enumerations or sets of named constants. These
enum constructs appear in C, C++, and Java, among others.

In C, enumeration types u can be declared as

enum u;
or defined as
enum u {v1,..., v };
where v1, ..., v,, and u are identifiers. Enums can be used in switch statements, which take
the form
switch(e){vy > s1 |...| vp — sp}

Informally, a switch statement inspects the enum u, and branches based its value. In the
above example, if e is the constant v, then the statement s; will be executed. If e is vy, then
s9 will be executed, and so on. Expressions, can now contain named constants v.

Below are a couple of rules that begin to describe the static semantics of enumerations.

? ?
;T F switch(e){vy — s1 | ... vp = sp} 7 Sk w:?

ASSIGNMENT 4 THURSDAY, NOVEMBER 3, 2016 (9:00AM)

Semantics Ad44

The rules use an enumeration signature ¥ that contains all defined enumerations. You
can assume that every enumeration u appear and every element v appears at most once in
the signature.

You=-|enumu{vy,...,v0n}, %

(a) Complete the type rules for enumerations.

(b) Extend the dynamic semantics for expressions and statements to describe the evalu-
ation of enumerations.

(b) What would be a good low level representation for named constants belonging to an
enum?

Problem 3: Polymorphism (25 points)

The CO language provides only a very weak form of polymorphism, essentially using
struct s* in a library header, where struct s has not yet been defined. C provides a
more expressive, but inherently unsafe mechanism by allowing pointers of type void*. A
pointer of this type can reference data of any type. We then use implicit or explicit casts to
convert to and from this type. Some discussion and examples can be found in the notes on
Lecture 19 in the course on Principles of Imperative Computation. In this problem we explore
a safe version of void* which implements dynamic checking of polymorphic types and
has made its way into C1.

Tagging and Untagging Data

The key to making the type voidx* safe is to tag pointers of this type with their actual type.
When we cast values of this type to actual types we can then compare tags to make sure
the operation is type-safe. We have new tagging and untagging constructs

e = ...|tag(T*,e) | untag(r*,e)
with the following typing rules

'Fe:7x I'Fe:voidx
'+ tag(7*,€) : voidx I'F untag(7*,e) : 7%

Tagging is always safe: we can forget that e references a value of type 7 and just weaken
its type to void*. Untagging will signal a runtime error if the tag of e is different from 7.
For example, if p : int* then the expression

untag(boolx, tag(intx,p))

will type-check, but should yield a runtime error while untagging since bool # intx.

ASSIGNMENT 4 THURSDAY, NOVEMBER 3, 2016 (9:00AM)

http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/19-poly.pdf

Semantics A4.5

A Safe Implementation

In the safe implementation, a value of type void* will always be either null (0), or a pointer
to 16 bytes of memory on the heap. The first 8 bytes represent the actual type 7%, the
second 8 represent the actual value of type 7, which must be an address. We assume we
can calculate tprep(7) = w, where w is a 8-byte tag value uniquely representing the type
7*. The default value for type voidx is null (0).

(a) Provide the evaluation rules for tag(7*,¢e). You should define new transition rules
for the abstract machine with state H ; S ; n F e > K as defined in lecture.

Your rules do not need to check whether memory is exhausted. You should also
describe the evaluation of tag(7*,e) informally, which will help us assign partial
credit in case your rules are not entirely correct.

(b) Provide the evaluation rules for untag(7+, €). This should fail if the tag of e does not
match 7%, in which case you should raise a tag exception. You should define new
transition rules for the abstract machine as in part (a), and accompany them with an
informal description.

(c) Describe code generation for the tag and untag expression forms in the style we used
for arrays in lecture 14. You may use function calls

%4 < malloc(s%)

to obtain the address t of s bytes of uninitialized memory, and use the jump target
raise_tag to signal a tag exception.

An Unsafe Implementation

The unsafe implementation should forego tag checking. As a result, we do not need to tag
or untag at all, since we trust the programmer that tags would have been correct. In other
words, tag(7+*, e) would be like (voidx)e in C, and untag(7+, e) like (7%)e, relevant only
at the type-checking phase.

(d) Explain why compiling e; == e, for pointers e; and es to a naive pointer comparison
is not always correct in safe mode.

(e) Explain how to compile e; == e in both safe and unsafe modes so that program
behavior is the same for both modes (assuming, of course, that the program is indeed
safe and will not raise an exception). Code is not necessary if the implementation is
clear enough from your description.

ASSIGNMENT 4 THURSDAY, NOVEMBER 3, 2016 (9:00AM)

