
Assignment 2: Lexing and Parsing

15-411: Compiler Design
Jan Hoffman, Evan Begeron, Xue An Chuang, Aaron Gutierrez, Shyam Raghavan

Due Thursday, Sept 29, 2016 (9:00am)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions as a PDF file on Autolab. Please read the late
policy for written assignments on the course web page.

Problem 1: Lexing (20 points)

(a) In class, we discussed how lexers can use regular expressions to parse an input cor-
pus into tokens. A common way of implementing a regular expression parser is with
deterministic finite automata, or DFAs, which you might have seen in 251 or FLAC1.
For example, the DFA for the regex ban(an)*a would be:

s0
b a n a

a

n

Shyam has decided to create a new language Cnaught which is startlingly similar to
C0 but utilizes new and exciting tokens. To lex his identifiers, he hand-crafts the
following DFA which accepts a language L over the alphabet Σ = {a, b}.

s0

a

b

b

a

b

b

a

a

a

b

b

a

b

a

1To learn more about DFAs, you can read about it in the textbook or ask the TAs. Seriously,
our office hours aren’t very busy. Also check out this neat site: http://hackingoff.com/compilers/

regular-expression-to-nfa-dfa

ASSIGNMENT 2 THURSDAY, SEPT 29, 2016 (9:00AM)

http://hackingoff.com/compilers/regular-expression-to-nfa-dfa
http://hackingoff.com/compilers/regular-expression-to-nfa-dfa

Lexing and Parsing A2.2

Help Shyam simplify his language specification by finding a simple regular expres-
sion that accepts L. Note that although a DFA is required to a transition for every
character in Σ defined for every state, we omit certain transitions for brevity—these
enter a permanent failure state, i.e. a string that enters (like “aa” in the above DFA)
it is guaranteed to never be accepted.

(b) Jan stumbles across Shyam’s new language specification and thinks to himself, “Wow,
this whole lexing business is far too simple.” Reminiscing on his old SIGBOVIK days,
Jan makes a new language Cℵ0 which requires that all identifiers must be of the form
anbncn for n > 0. However, Jan quickly finds that his old regular expression-based
lexer generator won’t properly lex these identifiers. Identify the limitation of Jan’s
lexer generator and why he cannot decide this language with the regular expression
lexer generator. Then briefly describe the kind of tool he needs to solve this problem.2

Problem 2: Grammars (10 points)

In formal language theory, a context-free grammar G is said to be in Chomsky normal form
(first described by Noam Chomsky) if all of its production rules are of the form:

A→ BC or A→ a or S → ε

where A, B, and C are nonterminal symbols, a is a terminal symbol, S is the start symbol,
and ε denotes the empty string (if it is in the language).

To convert a grammar to Chomsky normal form, a sequence of simple transformations
is applied in a certain order; this is described in most textbooks on automata theory. This
conversion is called CNF conversion; the conversion algorithm is often used by algorithms
as a preprocessing step (including the CYK parsing algorithm).

But why is this useful? The CYK parsing algorithm, used by some parser generators,
runs in O(n3) time, where n is the number of tokens in the string. This is one of the best
parsing algorithms known in terms of worst-case asymptotic complexity; others exist that
are better in average running time.

(a) Which language is generated by the grammar G given by the following rules (where
S is the start symbol):

S → 0S0 | 0B0

B → 1B | 1

(b) Convert the grammar G from part (a) into a grammar G′ in Chomsky normal form
that generates the same language, that is, L(G) = L(G′).

(c) Informally argue why L(G) = L(G′).

2Consider how we might be able to (or not be able to) make a finite state machine that can accept Jan’s
language.

ASSIGNMENT 2 THURSDAY, SEPT 29, 2016 (9:00AM)

Lexing and Parsing A2.3

Problem 3: Parsing (30 points)

After Jan’s disastrous foray into lexing, Aaron figures he’s safe by just writing a context free
grammar for his new language, Cλ0 which combines all the usability of lambda calculus
with all the safety of C. He specifies it with the following productions (note that x is an
identifier token and n is a number token):

γ1 : 〈E〉 → n
γ2 : 〈E〉 → x
γ3 : 〈E〉 → lam x . 〈E〉
γ4 : 〈E〉 → 〈E〉 〈E〉
γ5 : 〈E〉 → (〈E〉)
γ6 : 〈E〉 → 〈E〉 ⊕ 〈E〉

(a) Aaron gets Evan’s pet bison to review his grammar and uncovers a number of prob-
lems. Show two ambiguities in the above grammar by providing for each ambiguity
two possible parse trees for the same string.

(b) Xue An’s company Compilers-R-Us is seeking to acquire Aaron’s revolutionary new
language, but the terms of the acquisition require that the grammar is unambiguous.
Help Aaron achieve his billion dollar buyout and rewrite the grammar so it is unam-
biguous3. For each ambiguity you found in (a), identify which of the two parse trees
will be accepted by your new grammar.

(c) Not content to let the TAs have all the fun, you set out to write your own grammar,
but run into some familiar pitfalls. Describe an unambiguous grammarGwith fewer
than 6 productions that contains a reduce/reduce conflict in a shift-reduce parser
with lookahead 1. The language L(G) must be context free, but not regular. You may
use your parser generator of choice to help.

(d) Prove that the reduce/reduce conflict in (c) exists by giving two conflicting deriva-
tions (Compare the example given in the lecture notes.).

3Hint: your new grammar may not have the precedence you’d expect from lambda calculus.

ASSIGNMENT 2 THURSDAY, SEPT 29, 2016 (9:00AM)

