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Abstract
Automatically establishing that a probabilistic program sat-

isfies some property φ is a challenging problem. While a

sampling-based approach—which involves running the pro-

gram repeatedly—can suggest that φ holds, to establish that

the program satisfies φ, analysis techniques must be used.

Despite recent successes, probabilistic static analyses are still

more difficult to design and implement than their determin-

istic counterparts. This paper presents a framework, called

PMAF, for designing, implementing, and proving the correct-

ness of static analyses of probabilistic programs with chal-

lenging features such as recursion, unstructured control-flow,

divergence, nondeterminism, and continuous distributions.

PMAF introduces pre-Markov algebras to factor out common

parts of different analyses. To perform interprocedural anal-
ysis and to create procedure summaries, PMAF extends ideas

from non-probabilistic interprocedural dataflow analysis to

the probabilistic setting. One novelty is that PMAF is based

on a semantics formulated in terms of a control-flow hyper-
graph for each procedure, rather than a standard control-

flow graph. To evaluate its effectiveness, PMAF has been

used to reformulate and implement existing intraprocedural
analyses for Bayesian-inference and the Markov decision

problem, by creating corresponding interprocedural analy-
ses. Additionally, PMAF has been used to implement a new

interprocedural linear expectation-invariant analysis. Exper-
iments with benchmark programs for the three analyses

demonstrate that the approach is practical.

CCS Concepts • Software and its engineering → Au-
tomated static analysis; • Theory of computation →

Probabilistic computation; Program analysis;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192408

Keywords Program analysis, probabilistic programming,

expectation invariant, pre-Markov algebra

ACM Reference Format:
Di Wang, Jan Hoffmann, and Thomas Reps. 2018. PMAF: An Al-

gebraic Framework for Static Analysis of Probabilistic Programs.

In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192408

1 Introduction
Probabilistic programming is becoming increasingly popu-

lar because it provides a rich framework for implementing

randomized algorithms [5], cryptography protocols [6], cog-

nitive [39] models, and machine learning [37] algorithms.

Static analysis of probabilistic programs has received a lot

of attention [10, 11, 13–18, 25, 29–31, 33, 36, 48–50, 72, 79].

Unfortunately, analyses of probabilistic programs have usu-

ally been standalone developments, and it is not immediately

clear how different techniques relate.

This paper presents a framework, which we call PMAF
(for Pre-Markov Algebra Framework), for designing, imple-

menting, and proving the correctness of static analyses of

probabilistic programs. We show how several analyses that

may appear to be quite different, can be formulated—and

generalized—using PMAF. Examples include Bayesian infer-

ence [18, 30, 31], Markov decision problemwith rewards [75],

and probabilistic-invariant generation [13, 15, 49]

New constructs in probabilistic programs are of two kinds,

to express data randomness (e.g., sampling) and control-
flow randomness (e.g., probabilistic choice). To express both

features, we introduce a new algebraic structure, called

a pre-Markov algebra, which is equipped with operations

corresponding to control-flow actions in probabilistic pro-

grams: sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice. PMAF is based on a new fixed-

point semantics that models challenging features such as

divergence, unstructured control-flow, nondeterminism, and

continuous distributions. To establish correctness, we in-

troduce probabilistic abstractions between two pre-Markov

algebras that represent the concrete and abstract semantics.

Our work shows how, with suitable extensions, a blend-

ing of ideas from prior work on (i) static analysis of single-

procedure probabilistic programs, and (ii) interprocedural

https://doi.org/10.1145/3192366.3192408
https://doi.org/10.1145/3192366.3192408
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dataflow analysis of standard (non-probabilistic) programs

can be used to create a framework for interprocedural analy-

sis of multi-procedure probabilistic programs. In particular,

• The semantics on which PMAF is based is an interpreta-

tion of the control-flow graphs (CFGs) for a program’s

procedures. One insight is to treat each CFG as a hyper-
graph rather than a standard graph.

• The abstract semantics is formulated so that the analyzer

can obtain procedure summaries.
Hyper-graphs contain hyper-edges, each of which con-

sists of one source node and possibly several destination

nodes. Conditional-branching, probabilistic-branching, and

nondeterministic-branching statements are represented by

hyper-edges. In ordinary CFGs, nodes can also have several

successors; however, the operator applied at a confluence

point q when analyzing a CFG is join (⊔), and the paths lead-
ing up to q are analyzed independently. For reasons discussed
in §2.3, PMAF is based on a backward analysis, so the con-

fluence points represent the program’s branch points (i.e.,

for if-statements and while-loops). If the CFG is treated as a

graph, join would be applied at each branch-node, and the

subpaths from each successor would be analyzed indepen-

dently. In contrast, when the CFG is treated as a hyper-graph,

the operator applied at a probabilistic-choice node with prob-

abilityp is λa.λb .ap⊕b—where p⊕ is not join, but an operator
that weights the two successor paths by p and 1 − p. For in-
stance, in Fig. 2(b), the hyper-edge ⟨v0, {v1,v5}⟩ generates
the inequality A [v0] ⊒ A [v1]0.75 ⊕ A [v5], for some analy-

sis A . This approach allows the (hyper-)subpaths from the

successors to be analyzed jointly.
To perform interprocedural analyses of probabilistic pro-

grams, we adopt a common practice from interprocedural

analysis of standard non-probabilistic programs: the abstract

domain is a two-vocabulary domain (each value represents

an abstraction of a state transformer) rather than a one-
vocabulary domain (each value represents an abstraction

of a state). In the algebraic approach, an element in the al-

gebra represents a two-vocabulary transformer. Elements

can be “multiplied” by the algebra’s formal multiplication

operator, which is typically interpreted as (an abstraction of)

the reversal of transformer composition. The transformer ob-

tained for the set of hyper-paths from the entry of procedure

P to the exit of P is the summary for P .
In the case of loops and recursive procedures, PMAF

uses widening to ensure convergence. Here our approach

is slightly non-standard: we found that for some instanti-

ations of the framework, we could improve precision by

using different widening operators for loops controlled by

conditional, probabilistic, and nondeterministic branches.

The main advantage of PMAF is that instead of starting

from scratch to create a new analysis, you only need to instan-

tiate PMAF with the implementation of a new pre-Markov

algebra. To establish soundness, you have to establish some

well-defined algebraic properties, and can then rely on the

soundness proof of the framework. To implement your analy-

sis, you can rely on PMAF to perform sound interprocedural

analysis, with respect to the abstraction that you provided.

The PMAF implementation supplies common parts of differ-

ent static analyses of probabilistic programs, e.g., efficient

iteration strategies with widenings and interprocedural sum-

marization. Moreover, any improvements made to the PMAF

implementation immediately translate into improvements

to all of its instantiations.
To evaluate PMAF, we created a prototype implemen-

tation, and reformulated two existing intraprocedural

probabilistic-program analyses—the Bayesian-inference al-

gorithm proposed by Claret et al. [18], and Markov decision

problem with rewards [75]—to fit into PMAF: Reformula-

tion involved changing from the one-vocabulary abstract

domains proposed in the original papers to appropriate two-

vocabulary abstract domains. We also developed a new pro-

gram analysis: linear expectation-invariant analysis (LEIA).
Linear expectation-invariants are equalities involving ex-

pected values of linear expressions over program variables.

A related approach to static analysis of probabilistic pro-

grams is probabilistic abstract interpretation (PAI) [25, 67–69],
which lifts standard program analysis to the probabilistic set-

ting. PAI is both general and elegant, but the more concrete

approach developed in our work on PMAF has a couple of

advantages. First, PMAF is algebraic and provides a simple

and well-defined interface for implementing new abstrac-

tions.We provide an actual implementation of PMAF that can

be easily instantiated to specific abstract domains. Second,

PMAF is based on a different semantic foundation, which fol-

lows the standard interpretation of non-deterministic proba-

bilistic programs in domain theory [27, 46, 47, 64, 65, 82].

The concrete semantics of PAI isolates probabilistic

choices from the non-probabilistic part of the semantics by

interpreting programs as distributions P : Ω → (D → D),
whereΩ is a probability space andD → D is the space of non-

probabilistic transformers. As a result, the PAI interpreta-

tion of the following non-deterministic program is that with

probability
1

2
, we have a program that non-deterministically

returns 1 or 2; with probability
1

4
, we have a program that

returns 1; and with probability
1

4
, a program that returns 2.

if ⋆ then if prob( 1
2
) then return 1 else return 2

else if prob( 1
2
) then return 1 else return 2 fi

In contrast, the semantics used in PMAF resolves non-

determinism on the outside, and thus the semantics of the

program is that it returns 1 with probability
1

2
and 2 with

1

2
.

As a result, one can conclude that the expected return value

r is 1.5. However, PAI—and every static analysis based on

PAI—can only conclude 1.25 ≤ r ≤ 1.75.

Contributions. Our work makes five main contributions:

• We present a new denotational semantics for probabilistic

programs, which is capable of expressing several nontriv-

ial features of probabilistic-programming languages.
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• We develop PMAF, an algebraic framework for static anal-

yses of probabilistic programs. PMAF provides a novel

approach to analyzing probabilistic programs with non-

deterministic choice (§4.1 and §4.2) and general recursion

(§4.3) (as well as continuous sampling and unstructured

control-flow).

• We show that two previous intraprocedural probabilistic

program analyses can be reformulated to fit into PMAF,

thereby creating new interprocedural analyses for such

previous work.

• We develop a new program analysis, linear expectation-

invariant analysis, by means of a suitable instantiation

of PMAF. This analysis is more general than previous

approaches to finding expectation invariants.

• We report on experiments with PMAF that show that the

framework is easy to instantiate andworks effectively. The

experiments also show that linear expectation-invariant

analysis can derive nontrivial invariants.

2 Overview
In this Section, we familiarize the reader with probabilistic

programming, and briefly introduce two different static anal-

yses of probabilistic programs: Bayesian inference and linear

expectation invariant analysis. We then informally explain

the main ideas behind our algebraic framework for analyz-

ing probabilistic programs and show how it generalizes the

aforementioned analyses.

2.1 Probabilistic Programming
Probabilistic programs contain two sources of randomness:

(i) data randomness, i.e., the ability to draw random values

from distributions, and (ii) control-flow randomness, i.e., the
ability to branch probabilistically. A variety of probabilistic

programming languages and systems has been proposed

[12, 38, 54, 61, 63, 74]. In this paper, our prototypical language

is imperative.

We use the Boolean program in Fig. 1a to illustrate data

randomness. In the program, b1 and b2 are two Boolean-

valued variables. The sampling statement x ∼ Dist( ¯θ ) draws
a value from a distribution Dist with a vector of parameters

¯θ , and assigns it to the variable x , e.g., b1 ∼ Bernoulli(0.5)
assigns to b1 a random value drawn from a Bernoulli distri-

bution with mean 0.5. Intuitively, the program tosses two

fair Boolean-valued coins repeatedly, until one coin is true.
We introduce control-flow randomness through the arith-

metic program in Fig. 1b. In the program, x , y, and z are

real-valued variables. As in the previous example, we have

sampling statements, and Uniform(l , r ) represents a uniform
distribution on the interval (l , r ). The probabilistic choice
prob(p) returns true with probability p and false with proba-

bility 1 − p. Moreover, the program also exhibits nondeter-
minism, as the symbol⋆ stands for a nondeterministic choice
that can behave like standard nondeterminism, as well as an

b1 ∼ Bernoulli(0.5);
b2 ∼ Bernoulli(0.5);
while (¬b1 ∧ ¬b2) do
b1 ∼ Bernoulli(0.5);
b2 ∼ Bernoulli(0.5)

od

while prob( 3
4
) do

z ∼ Uniform(0, 2);
if ⋆ then x := x + z
else y := y + z
fi

od
(a) (b)

Figure 1. (a) Boolean probabilistic program; (b) Arithmetic

probabilistic program

arbitrary probabilistic choice [60, §6.6]. Intuitively, the pro-

gram describes two players x and y playing a round-based

game that ends with probability
1

4
after each round. In each

round, either player x or player y gains some reward that is

uniformly distributed on [0, 2].

2.2 Two Static Analyses

Bayesian inference (BI). Probabilistic programs can be

seen as descriptions of probability distributions [12, 38, 63].

For a Boolean probabilistic program, such as the one in

Fig. 1a, Bayesian-inference analysis [18] calculates the dis-

tribution over variable valuations at the end of the program,

conditioned on the program terminating. The inferred proba-

bility distribution is called the posterior probability distribu-
tion. The program in Fig. 1a specifies the posterior distribu-

tion over the variables (b1,b2) given by: P[b1 = f alse,b2 =

f alse] = 0, and P[b1 = f alse,b2 = true] = P[b1 = true,b2 =

f alse] = P[b1 = true,b2 = true] = 1

3
. This distribution also

indicates that the program terminates almost surely, i.e., the
probability that the program terminates is 1.

1

Linear expectation invariant analysis (LEIA). Loop in-

variants are crucial to verification of imperative programs

[28, 34, 43]. Although loop invariants for traditional pro-

grams are usually Boolean-valued expressions over program

variables, real-valued invariants are needed to prove the

correctness of probabilistic loops [55, 60]. Such expectation
invariants are usually defined as random variables—specified

as expressions over program variables—with some desirable

properties [13, 14, 49]. In this paper, we work with a more

general kind of expectation invariant, defined as follows:

Definition 2.1. For a program P , E[E2] ▷◁ E1 is called an

expectation invariant if E1 and E2 are real-valued expres-

sions over P ’s program variables, ▷◁ is one of {=, <, >, ≤, ≥},
and the following property holds: For any initial valuation of

the program variables, the expected value of E2 in the final

valuation (i.e., after the execution of P ) is related to the value
of E1 in the initial valuation by ▷◁.

We typically use variables with primes in E2 to denote the

values in the final valuation. For example, for the program in

1
In general, we work with with subprobability distributions, where the

probabilities add up to strictly less than 1. In the case of a program that

diverges with probabilityp > 0, the posterior distribution is a subprobability

distribution in which the probabilities of the states sum up to 1 − p .
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Fig. 1b, E[x ′ +y ′] = x +y + 3, E[z ′] = 1

4
z + 3

4
, E[x ′] ≤ x + 3,

E[x ′] ≥ x , E[y ′] ≤ y + 3, and E[y ′] ≥ y are several linear

expectation invariants, and our analysis can derive all of

these automatically! The expectation invariant E[x ′ + y ′] =
x +y+3 indicates that the expected value of the total reward

that the two players would gain is exactly 3.

2.3 The Algebraic Framework
This section explains the main ideas behind PMAF, which is

general enough to encode the two analyses from §2.2.

Data Randomness vs. Control-Flow Randomness. Our
first principle is to make an explicit separation between data
randomness and control-flow randomness. This distinction is

intended to make the framework more flexible for analy-

sis designers by providing multiple ways to translate the

constructs of their specific probabilistic programming lan-

guage into the constructs of PMAF. Analysis designers

may find it useful to use the control-flow-randomness con-

struct directly (e.g., “if prob(0.3) . . .”), rather than simu-

lating control-flow randomness by data randomness (e.g.,

“p ∼ Uniform(0, 1); if (p < 0.3) . . .”). For program analysis,

such a simulation can lead to suboptimal results if the con-

structs used in the simulation require properties to be tracked

that are outside the class of properties that a particular analy-

sis’s abstract domain is capable of tracking. For example, if an

analysis domain only keeps track of expectations, then anal-

ysis of “p ∼ Uniform(0, 1)” only indicates that E[p] = 0.5,
which does not provide enough information to establish that

P[p < 0.3] = 0.3 in the then-branch of “if (p < 0.3) . . .”.
In contrast, when “prob(0.3) . . .” is analyzed in the frag-

ment with the explicit control-flow-randomness construct

(“if prob(0.3) . . .”) the analyzer can directly assign the prob-

abilities 0.3 and 0.7 to the outgoing branches, and use those

probabilities to compute appropriate expectations in the re-

spective branches.

We achieve the separation between data randomness and

control-flow randomness by capturing the different types

of randomness in the graphs that we use for representing

programs. In contrast to traditional program analyses, which

usually work on control-flow graphs (CFGs), we use control-
flow hyper-graphs to model probabilistic programs. Hyper-

graphs are directed graphs, each edge of which (i) has one

source and possibly multiple destinations, and (ii) has an as-

sociated control-flow action—either sequencing, conditional-
choice, probabilistic-choice, or nondeterministic-choice. A tra-

ditional CFG represents a collection of execution paths, while

in probabilistic programs, paths are no longer independent,

and the program specifies probability distributions over the

paths. It is natural to treat a collection of paths as a whole

and define distributions over the collections. These kinds of

collections can be precisely formalized as hyper-paths made

up of hyper-edges in hyper-graphs.

Fig. 2 shows the control-flow hyper-graphs of the two

programs in Fig. 1. Every edge has an associated action,

e.g., the control-flow actions cond[¬b1 ∧ ¬b2)], prob[ 3
4
],

and ndet are conditional-choice, probabilistic-choice, and

nondeterministic-choice actions. Data actions, like x := x +z
and b1 ∼ Bernoulli(0.5), also perform a trivial control-flow

action to transfer control to their one destination node.

Just as the control-flow graph of a procedure typically has

a single entry node and a single exit node, a procedure’s

control-flow hyper-graph also has a single entry node and a

single exit node. In Fig. 2a, the entry and exit nodes are v0

and v3, respectively; in Fig. 2b, the entry and exit nodes are

v0 and v5, respectively.

Backward Analysis. Traditional static analyses assign to a

CFG node v either backward assertions—about the computa-

tions that can lead up tov—or forward assertions—about the
computations that can continue from v [21, 23]. Backward

assertions are computed via a forward analysis (in the same

direction as CFG edges); forward assertions are computed

via a backward analysis (counter to the flow of CFG edges).

Because we work with hyper-graphs rather than CFGs,

from the perspective of a node v , there is a difference in

how things “look” in the backward and forward direction:

hyper-edges fan out in the forward direction. Hyper-edges

can have two destination nodes, but only one source node.

The second principle of the framework is essentially dic-

tated by this structural asymmetry: the framework supports
backward analyses that compute a particular kind of forward
assertion. In particular, the property to be computed for a

nodev in the control-flow hyper-graph for procedure P is (an

abstraction of) a transformer that summarizes the transfor-

mation carried out by the hyper-graph fragment that extends

from v to the exit node of P . It is possible to reason in the

forward direction—i.e., about computations that lead up to

v—but one would have to “break” hyper-paths into paths and
“relocate” probabilities, which is more complicated than rea-

soning in the backward direction. The framework interprets

an edge as a property transformer that computes proper-

ties of the edge’s source node as a function of properties of

the edge’s destination node(s) and the edge’s associated ac-

tion. These property transformers propagate information in

a hypergraph-leaf-to-hypergraph-root manner, which is nat-

ural in hyper-graph problems. For example, standard formu-

lations of interprocedural dataflow analysis [52, 57, 71, 80]

can be viewed as hyper-graph analyses, and propagation is

performed in the leaf-to-root direction there as well.

Recall the Boolean program in Fig. 1a. Suppose that we

want to perform BI to analyze P[b1 = true,b2 = true] in
the posterior distribution. The property to be computed

for a node will be a mapping from variable valuations to

probabilities, where the probability reflects the chance that

a given state will cause the program to terminate in the

post-state (b1 = true,b2 = true). For example, the property
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v0 v1 v2

v3

b1,b2 ∼ B(0.5)

f alse

true¬b1 ∧ ¬b2

b1,b2 ∼ B(0.5)
v4

v5

v0

v1 v2

v3

true
z ∼ U(0, 2)

prob[ 3
4
] f alse

x := x + z

y := y + z

ndet

(a) (b)

Figure 2. (a) Control-flow hyper-graph of the program in Fig. 1a. (b) Control-flow hyper-graph of the program in Fig. 1b.

that we would hope to compute for node v1 is the function

λ(b1,b2).[b1 ∧ b2] + [¬b1 ∧ ¬b2] · 1

3
, where [φ] is an Iverson

bracket, which evaluates to 1 if φ is true, and 0 otherwise.

Two-Vocabulary Program Properties. In the example of

BI above, we observe that the property transformation dis-

cussed above is not suitable for interprocedural analysis. Sup-
pose that (i) we want analysis results to tell us something

about P[b1 = true,b2 = true] in the posterior distribution of

the main procedure, but (ii) to obtain the answer, the anal-

ysis must also analyze a call to some other procedure Q . In
the procedure main, the analysis is driven by the posterior-

probability query P[b1 = true,b2 = true]; in general, how-

ever, Q will need to be analyzed with respect to some other

posterior probability (obtained from the distribution of valu-

ations at the point in main just after the call toQ). One might

try to solve this issue by analyzing each procedure multiple

times with different posterior probabilities. However, in an

infinite state space, this approach is no longer feasible.

Following common practice in interprocedural static anal-

ysis of traditional programs, the third principle of the frame-

work is to work with two-vocabulary program properties.
The property sketched in the BI example above is actually

one-vocabulary, i.e., the property assigned to a control-flow

node only involves the state at that node. In contrast, a two-

vocabulary property at node v (in the control-flow hyper-

graph for procedure P ) should describe the state transforma-

tion carried out by the hyper-graph fragment that extends

from v to the exit node of P .
For instance, LEIA assigns to each control-flow node a

conjunction of expectation invariants, which relate the state

at the node to the state at the exit node; consequently, LEIA

deals with two-vocabulary properties. In §5, we show that we

can reformulate BI to manipulate two-vocabulary properties.

As in interprocedural dataflow analysis [22, 80], procedure

summaries are used to interpret procedure calls.

Separation of Concerns. Our fourth principle—which is

common to most analysis frameworks—is separation of con-
cerns, by which we mean

Provide a declarative interface for a client to specify the pro-

gram properties to be tracked by a desired analysis, but leave

it to the framework to furnish the analysis implementationby

which the analysis is carried out.

We achieve this goal by adopting (and adapting) ideas from

previous work on algebraic program analysis [32, 76, 81].

Algebraic program analysis is based on the following idea:

Any static analysis method performs reasoning in some

space of program properties and property transformers;

such property transformers should obey algebraic laws.

For instance, the data action skip, which does nothing, can be
interpreted as the identity element in an algebra of program-

property transformers.

Concretely, our fourth principle has three aspects:

1. For our intended domain of probabilistic programs, iden-

tify an appropriate set of algebraic laws that hold for useful

sets of property transformers.

2. Define a specific algebra A for a program-analysis prob-

lem by defining a specific set of property transformers

that obey the laws identified in item 1. Give translations

from data actions and control-flow actions to such prop-

erty transformers. (When such a translation is applied to

a specific program, it sets up an equation system to be

solved over A.)

3. Develop a generic analysis algorithm that solves an equa-

tion system over any algebra that satisfies the laws identi-

fied in item 1.

Items 1 and 3 are tasks for us, the framework designers; they

are the subjects of §3 and §4. Item 2 is a task for a client of

the framework: examples are given in §5.

A client of the framework must furnish an interpretation—
which consists of a semantic algebra and a semantic function—
and a program. The semantic algebra consists of a universe,
which defines the space of possible program-property trans-

formers, and sequencing, conditional-choice, probabilistic-

choice, and nondeterministic-choice operators, correspond-

ing to control-flow actions. The semantic function is a map-

ping from data actions to the universe. (An interpretation is

also called a domain.)
To address Item 3, our prototype implementation follows

the standard iterative paradigm of static analysis [21, 51]: We

first transform the control-flow hyper-graph into a system

of inequalities, and then use a chaotic-iteration algorithm to

compute a solution to it (e.g., [9]), which repeatedly applies

the interpretation until a fixed point is reached (possibly

using widening to ensure convergence). For example, the

control-flow hyper-graph in Fig. 2b can be transformed into

the system shown in Fig. 3, where S(v) ∈ M are elements

in the semantic algebra; ⊑ is the approximation order onM;

J·K is the semantic function, which maps data actions toM;

and 1 is the transformer associated with the exit node.
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S(v0) ⊒prob[ 3
4
](S(v1), S(v5)) S(v3) ⊒seq[x := x + z](S(v0))

S(v1) ⊒seq[z ∼ Uniform(0, 2)](S(v2)) S(v4) ⊒seq[y := y + z](S(v0))
S(v2) ⊒ndet (S(v3), S(v4)) S(v5) ⊒1

Figure 3. The system of inequalities corresponding to Fig. 2b

The soundness of the analysis (with respect to a concrete

semantics) is proved by (i) establishing an approximation re-

lation between the concrete domain and the abstract domain;

(ii) showing that the abstract semantic function approximates

the concrete one; and (iii) showing that the abstract oper-

ators (sequencing, conditional-choice, probabilistic-choice,

and nondeterministic-choice) approximate the concrete ones.

For BI, we instantiate our framework to give lower bounds

on posterior distributions, using with an interpretation in

which state transformers are probability matrices (see §5.1).

For LEIA, we design an interpretation using a Cartesian

product of polyhedra (see §5.3). Once the functions of the

interpretations are implemented, and a program is translated

into the appropriate hyper-graph, the framework handles

the rest of the work, namely, solving the equation system.

3 Probabilistic Programs
In this Section, we first review the concepts of hyper-graphs
[35] and introduce a probabilistic-program model based on

them. Then we briefly sketch a new denotational semantics

for our hyper-graph based imperative program model.

3.1 A Hyper-Graph Model of Probabilistic Programs
Definition 3.1 (Hyper-graphs). A hyper-graph H is a

quadruple ⟨V ,E,ventry,vexit⟩, whereV is a finite set of nodes,

E is a set of hyper-edges, ventry ∈ V is a distinguished entry
node, andvexit ∈ V is a distinguished exit node. A hyper-edge
is an ordered pair ⟨x ,Y ⟩, where x ∈ V is a node and Y ⊆ V
is an ordered, non-empty set of nodes. For a hyper-edge

e = ⟨x ,Y ⟩ in E, we use src(e) to denote x and Dst(e) to de-

note Y . Following the terminology from graphs, we say that

e is an outgoing edge of x and an incoming edge of each of

the nodes y ∈ Y . We assume that ventry
has no incoming

edges, and vexit
has no outgoing edges.

Definition 3.2 (Probabilistic programs). A probabilistic pro-
gram contains a finite set of procedures {Hi }1≤i≤n , where
each procedure Hi = ⟨Vi ,Ei ,ventry

i ,vexit
i ⟩ is a control-flow

hyper-graph in which each node except vexit
i has exactly

one outgoing hyper-edge. We assume that the nodes of

each procedure are pairwise disjoint. To assign meanings

to probabilistic programs modulo data actions A and logical
conditions L, we associate with each hyper-edge e ∈ E =⋃

1≤i≤n Ei a control-flow action Ctrl(e), where Ctrl is
Ctrl ::= seq[act] where act ∈ A | call[i] where 1 ≤ i ≤ n

| cond[φ] where φ ∈ L | prob[p] where 0 ≤ p ≤ 1

| ndet

where the number of destination nodes |Dst(e)| of a hyper-
edge e is 1 if Ctrl(e) is seq[act] or call[i], and 2 otherwise.

Fig. 2 shows two examples of hyper-graph–based proba-

bilistic programs. See Fig. 4 for data actions A and logical

conditions L that would be used for an arithmetic program

like the one shown in Fig. 1b.

3.2 Background from Measure Theory
To define denotational semantics for probabilistic programs

modulo data actions A and logical conditions L, we review
some standard definitions from measure theory [7, 73].

A measurable space is a pair ⟨X , Σ⟩ where X is a non-

empty set called the sample space, and Σ is aσ -algebra overX
(i.e, a set of subsets ofX which contains ∅ and is closed under
complement and countable union). A measurable function
from a measurable space ⟨X1, Σ1⟩ to another measurable

space ⟨X2, Σ2⟩ is a mapping f : X1 → X2 such that for

all A ∈ Σ2, f
−1(A) ∈ Σ1. The measurable functions from

a measurable space ⟨X , Σ⟩ to the Borel space B(R≥0) on
nonnegative real numbers (the smallest σ -algebra containing
all open intervals) is called Σ-measurable.
A measure µ on a measurable space ⟨X , Σ⟩ is a function

from Σ to [0,∞] such that: (i) µ(∅) = 0, and (ii) for all

pairwise-disjoint countable sequences of sets A1,A2, · · · ∈ Σ
(i.e., Ai ∩ Aj = ∅ for all i , j) we have

∑∞
i=1

µ(Ai ) =
µ(⋃∞i=1

Ai ). The measure µ is called a (sub-probability) distri-
bution if µ(X ) ≤ 1. Ameasure space is a triple M = ⟨X , Σ, µ⟩
where µ is a measure on the measurable space ⟨X , Σ⟩. The
integral of a Σ-measurable function f over the measurable

space M = ⟨X , Σ, µ⟩ can be defined following Lebesgue’s

theory and denoted either by

∫
f dµ or

∫
f (x)µ(dx). The

Dirac measure δ (x) is defined as λA.[x ∈ A].
A (sub-probability) kernel from a measurable space

⟨X1, Σ1⟩ to a measurable space ⟨X2, Σ2⟩ is a function κ :

X1 × Σ2 → [0, 1] such that: (i) for each A in Σ2, the function

λx .κ(x ,A) is Σ1-measurable, and (ii) for each x in X1, the

function κx
def

= λA.κ(x ,A) is a distribution on ⟨X2, Σ2⟩. We

write the integral of a measurable function f : Σ2 → [0,∞]
with respect to the distribution in (ii) as

∫
f (y)κ(x ,dy).

3.3 A Denotational Semantics
The next step is to define semantics based on the control-flow

hyper-graphs. We use a denotational approach because it

abstracts away how a program is evaluated and concentrates

only on the effect of the program. This property makes it

suitable as a starting point for static analysis, which is aimed

at reasoning about program properties.

We develop a new semantics for probabilistic program-

ming by combining Borgström et al.’s distribution-based

semantics using the concept of kernels from measure theory

[8] and existing results on domain-theoretic probabilistic

nondeterminism [27, 46, 47, 64, 65, 82]. This semantics can

describe several nontrivial constructs, including continuous

sampling, nondeterministic choice, and recursion.

Three components are used to define the semantics:
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A ::= x := e | x ∼ D | skip | observe(φ)
φ ∈ L ::= true | false | e ▷◁ u,where ▷◁ ∈ {=, ≤, ≥} | ¬φ
e,u ∈ Exp ::= x | c,where c ∈ R | e • u,where • ∈ {+,−,×, /}
x ∈ Var ::= x | y | z | · · ·
D ∈ Dist ::= Uniform(e,u) | Gaussian(e,u) | · · ·
Figure 4. Examples of data actions and logical conditions

• Ameasurable space P = ⟨Ω,F⟩ over program states (e.g.,

finite mappings from program variables to values).

• A mapping from data act actions to kernels âct : Ω×F →
R. The intuition to keep in mind is that âct(ω, F ) is the
probability that the action, starting in state ω ∈ Ω, halts
in a state that satisfies F ∈ F [56].

2

• A mapping from logical conditions φ to measurable func-

tions φ̂ : Ω → {true, f alse}.

Example 3.3. For an arithmetic program with a finite set
Var of program variables, Ω is defined as Var→ R and P as
the Borel space on Ω. Fig. 5 shows interpretation of the data
actions and logical conditions in Fig. 4, where e(ω) evaluates
expression e in state ω, (x 7→ v)ω updates x in ω with v , and
µD : B(R) → [0, 1] is the measure corresponding to the distri-
bution D on reals. Note that the action observe(φ) performs
conditioning on states that satisfy φ.

While distributions can be seen as one-vocabulary speci-

fications, kernels are indeed two-vocabulary transformers

over program states. When there is no nondeterminism, we

can assign a kernel to every control-flow node. We can also

define control-flow actions on kernels. A sequence of actions

act1; act2 with kernels κ1 and κ2, respectively, is modeled by

their composition, denoted by κ1 ⊗ κ2, which yields a new

kernel defined as follows:
3

κ1 ⊗ κ2

def

= λ(x ,A).
∫

κ1(x ,dy)κ2(y,A). (1)

The conditional-choice κ1 φ^κ2 is defined as a new kernel

λ(x ,A).[φ̂(x)] ·κ1(x ,A)+ [¬φ̂(x)] ·κ2(x ,A). The probabilistic-
choiceκ1 p⊕κ2 is defined as a new kernel λ(x ,A).p ·κ1(x ,A)+
(1 − p) · κ2(x ,A).

Example 3.4. Consider the following program that models a
variation on a geometric distribution.

n := 0;

while prob(0.9) do
n := n + 1; if n ≥ 10 then break else continue fi

od

Fig. 6 shows its control-flow hyper-graph. The assignment
n := n+1 is interpreted as a kernel �n := n + 1 = λ(ω, F ).[(n 7→
2
As explained by Kozen [56], for finite or countable Ω, âct has a represen-

tation as a Markov transition matrixMâct, in which each entryMâct(ω, ω′)
for a pair of states ⟨ω, ω′⟩ gives the probability that ω transitions to ω′

under action act.
3
For finite or countable Ω, and the matrix representation described in

footnote 2, the integral in Eqn. (1) degenerates to matrix multiplication

[56].

�x := e = λ(ω, F ).[(x 7→ e(ω))ω ∈ F ] t̂rue = λω .true�x ∼ D = λ(ω, F ).µD ({v | (x 7→ v)ω ∈ F })�false = λω . f alse�observe(φ) = λ(ω, F ).φ̂(ω) · [ω ∈ F ] �e ▷◁ u = λω .[e(ω) ▷◁ u(ω)]
ŝkip = λ(ω, F ).[ω ∈ F ] ¬̂φ = λω .¬φ̂(ω)

Figure 5. Interpretation of actions and conditions

ω(n) + 1)ω ∈ F ]. The comparison n ≥ 10 is interpreted as a
measurable function �n ≥ 10 = λω .(ω(n) ≥ 10). Let K stand
for 0.3486784401; the semantics assigned to node v0 is

λ(ω, F ).
9∑

k=0

(0.1 × 0.9k ) · [(n 7→ k)ω ∈ F ] + K · [(n 7→ 10)ω ∈ F ].

When nondeterminism comes into the picture, we need to

associate each control-flow node with a collection of kernels.

In other words, we need to consider powerdomains [41] of
kernels. We adopt Tix et al.’s constructions of probabilistic

powerdomains [82], and extend them to work on kernels

instead of distributions. We denote the set of feasible col-

lections of kernels by PΩ, and the composition, conditional-

choice, probabilistic-choice, and nondeterministic-choice op-

erators on that by ⊗, φ^, p⊕, and ⋓. PΩ is also equipped

with a partial order ⊑.
We reformulated distributions and kernels in a domain-

theoretic way to adopt existing studies on powerdomains.We

discuss the details of the construction of PΩ in a companion

paper [83]; the focus of this paper is static analysis and we

will keep the domain-theoretic terminology to a minimum.

We adopted Hoare powerdomains and Smyth powerdo-

mains [1, §6.2] over kernels. Kernels are ordered pointwise,

i.e., κ1 ≤ κ2 if and only if for all ω and F , κ1(ω, F ) ≤ κ2(ω, F ).
The zero kernel λ(ω, F ).0 is the bottom element of this or-

der. Intuitively, the Hoare powerdomain is used for partial
correctness, in which the order is set inclusion on the lower
closures of the elements—because each downward-closed

set contains a kernel that represents nontermination (i.e.,

the zero kernel), terminating and nonterminating executions

cannot be distinguished. The Smyth powerdomain is used for

total correctness: the order is reverse inclusion on the upper
closures of the elements—nontermination is interpreted as

the worst output, and the kernel that represents nontermina-

tion does not occur in an upward-closed set that represents

the semantics of a terminating computation.

Given a probabilistic program P = {Hi }1≤i≤n , where Hi =

⟨Vi ,Ei ,ventry
i ,vexit

i ⟩, we want to define the semantics of each

node v as a set of kernels that represent the effects from v to

v4

v0 v1

v2 v3

n := n + 1

n := 0

prob[0.9]

false

false

true
n ≥ 10

true

Figure 6.Control-flow hyper-graph of the program in Ex. 3.4
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the exit node of the procedure that containsv . LetS⟨v⟩ ∈ PΩ
be the semantics assigned to the node v ; the following local

properties should hold:

• if e = ⟨v, {u1, · · · ,uk }⟩ ∈ E, S⟨v⟩ =�Ctrl(e)(S⟨u1⟩, · · · ,S⟨uk ⟩), and
• otherwise, S⟨v⟩ = 1P.

The function âct for the different kinds of control-flow ac-

tions is defined as follows:�seq[act](S1)
def

= {âct}⊗S1

�cond[φ](S1, S2)
def

= S1φ^S2�call[i](S1)
def

= S⟨ventry
i ⟩⊗S1

�prob[p](S1, S2)
def

= S1p⊕S2

n̂det(S1, S2)
def

= S1⋓S2

Lemma 3.5. The function FP defined as

λS.λv .
{ �Ctrl(e)(S(u1), · · · ,S(uk )) e = ⟨v, {u1, · · · ,uk }⟩ ∈ E

1P otherwise

is ω-continuous on ⟨V → PΩ, Û⊑⟩, which is an ω-cpo with the
least element λv .⊥P.
A dot over an operator denotes its application pointwise.

By Kleene’s fixed-point theorem, we have

Theorem 3.6. lfp
Û⊑
λv .⊥P

FP exists for all prob. programs P .

Thus, the semantics of a node v is defined as (lfp Û⊑λv .⊥PFP )(v).

4 Analysis Framework
To aid in creating abstractions of probabilistic programs, we

first identify, in §4.1, some algebraic properties that underlie

themechanisms used in the semantics from §3.3. This algebra

will aid our later definitions of abstractions in §4.2. We then

discuss interprocedural analysis (in §4.3) and widening (§4.4).

4.1 An Algebraic Characterization of Fixpoint
Semantics

In the denotational semantics, the concrete semantics is ob-

tained by composing
�Ctrl(e) operations along hyper-paths.

Hence in the algebraic framework, the semantics of prob-

abilistic programs is denoted by an interpretation, which
consists of two parts: (i) a semantic algebra, which defines

a set of possible program meanings, and which is equipped

with sequencing, conditional-choice, probabilistic-choice,

and nondeterministic-choice operators to compose these

meanings, and (ii) a semantic function, which assigns a mean-

ing to each basic program action.

The semantic algebras that we use—and the lattices used

for abstract interpretation—are pre-Markov algebras:

Definition 4.1 (Pre-ω-continuous functions). A function

f : X → Y between twoω-cposX and Y is pre-ω-continuous
if it is monotone, and for every ω-chainC ⊆ X , f (sup(C)) ≤
sup(f (C)).
Definition 4.2 (Pre-Markov algebras). A pre-Markov alge-
bra (PMA) over a set of logical conditions L is an 8-tuple

M = ⟨M,⊑, ⊗, φ^, p⊕,⋓,⊥, 1⟩, where ⟨M,⊑,⊥⟩ forms an

ω-cpo with a least element ⊥; ⟨M, ⊗, 1⟩ forms a monoid (i.e.,

⊗ is an associative binary operator with 1 as its identity ele-

ment); φ^ is a binary operator parametrized by φ which is

a condition in L; p⊕ is a binary operator parametrized by

p ∈ [0, 1];⋓ is a binary operator that is idempotent, commuta-

tive, and associative; ⊗, p⊕, φ^, and ⋓ are pre-ω-continuous;
and the following properties hold:

a φ^ b ⊑ a ⋓ b, a ⊑ a φ^ a, a ⊑ a true^ b, a φ^ b = b ¬φ^ a

a p⊕ b ⊑ a ⋓ b , a ⊑ a p⊕ a , a ⊑ a
1
⊕ b , a p⊕ b = b 1−p⊕ a

a φ^ (b ψ ^ c) = (a φ ′^ b) ψ ′^ c where φ = φ ′ ∧ψ ′,φ ∨ψ = ψ ′

a p⊕ (b q⊕ c) = (a p′⊕ b) q′⊕ c where p = p
′q′,p · q = q′

The precedence of the operators is that ⊗ binds tightest,

followed by φ^, p⊕, and ⋓.

Remark 4.3. These algebraic laws are not needed to prove
soundness of the framework (stated in Thm. 4.8). These laws
helped us when designing the abstract domains. Exploiting
these algebraic laws to design better algorithms is an inter-
esting direction for future work.

Lemma 4.4. The denotational semantics in §3.3 is a PMA
C = ⟨PΩ,⊑P, ⊗, φ^, p⊕,⋓,⊥P, 1P⟩ (which we call the con-
crete domain for our framework).

As is standard in abstract interpretation, the order on the

algebra should represent an approximation order: a ⊑ b iff

a is approximated by b (i.e., if a represents a more precise

property than b).

Definition 4.5 (Interpretations). An interpretation is a pair

I = ⟨M, J·K⟩, where M is a pre-Markov algebra, and

J·K : A → M, where A is the set of data actions for prob-

abilistic programs. We callM the semantic algebra of the

interpretation and J·K the semantic function.

Given a probabilistic program P and an interpretation

I = ⟨M, J·K⟩, we define I [P] to be the interpretation of

the probabilistic program. I [P] is then defined as the least
prefixed point (i.e., the least ρ such that f (ρ) ≤ ρ for a func-

tion f ) of the function F ♯
P , which is defined as

λS♯ .λv .

{ �Ctrl(e)♯(S♯(u1), . . . ,S♯(uk )) e = ⟨v, {u1, . . . ,uk }⟩ ∈ E
1 otherwise

where�seqact♯(a1)
def

= JactK ⊗ a1

�cond[φ]♯(a1,a2)
def

= a1 φ^a2�call[i]♯(a1)
def

= S♯(ventry
i ) ⊗ a1

�prob[p]♯(a1,a2)
def

= a1 p⊕a2

n̂det
♯
(a1,a2)

def

= a1 ⋓ a2

We generalize Kleene’s fixed-point theorem to prove the

existence of the least prefixed point of F ♯
P .

Theorem 4.6 (Generalized Kleene’s fixed point theorem).
Suppose ⟨X , ≤⟩ is an ω-cpo with a least element ⊥, and let
f : X → X be a pre-ω-continuous function. Then f has a
least prefixed point, which is the supremum of the ascending
Kleene chain of f , denoted by lpp

≤
⊥ f .
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We use the least prefixed point of F ♯
P to define the inter-

pretation of a probabilistic program P as I [P] = lpp
Û⊑
λv .⊥F

♯
P .

The interpretation of a control-flow node v is then defined

as I [v] = I [P](v).

4.2 Abstractions of Probabilistic Programs
Given two PMAs C and A, a probabilistic abstraction is de-

fined as follows:

Definition 4.7 (Probabilistic abstractions). A probabilistic
over-abstraction (or under-abstraction, resp.) from a PMA C
to a PMA A is a concretization mapping, γ : A → C, such
that

• γ is monotone, i.e., for all Q1,Q2 ∈ A, Q1 ⊑A Q2 implies

that γ (Q1) ⊑C γ (Q2),
• ⊥C ⊑C γ (⊥A) (or γ (⊥A) ⊑C ⊥C , resp.),
• 1C ⊑C γ (1A) (or γ (1A) ⊑C 1C , resp.),
• for all Q1,Q2 ∈ A, γ (Q1) ⊗C γ (Q2) ⊑C γ (Q1 ⊗A Q2) (or
γ (Q1 ⊗A Q2) ⊑C γ (Q1) ⊗C γ (Q2), resp.),
• for all Q1,Q2 ∈ A, γ (Q1) φ^Cγ (Q2) ⊑C γ (Q1 φ^AQ2) (or
γ (Q1 φ^AQ2) ⊑C γ (Q1) φ^Cγ (Q2), resp.),
• for all Q1,Q2 ∈ A, γ (Q1) p⊕Cγ (Q2) ⊑C γ (Q1 p⊕AQ2) (or
γ (Q1 p⊕AQ2) ⊑C γ (Q1) p⊕Cγ (Q2), resp.), and
• for all Q1,Q2 ∈ A, γ (Q1) ⋓C γ (Q2) ⊑C γ (Q1 ⋓A Q2) (or
γ (Q1 ⋓A Q2) ⊑C γ (Q1) ⋓C γ (Q2), resp.).

A probabilistic abstraction leads to a sound analyses:

Theorem 4.8. Let C and A be interpretations over PMAs
C and A; let γ be a probabilistic over-abstraction (or under-
abstraction, resp.) from C to A; and let P be an arbitrary
probabilistic program. If for all basic actions act, JactKC ⊑C
γ (JactKA ) (or γ (JactKA ) ⊑C JactKC , resp.), then we have
C [P] Û⊑C Ûγ (A [P]) (or Ûγ (A [P]) Û⊑CC [P], resp.).

4.3 Interprocedural Analysis Algorithm
We are given a probabilistic program P and an inter-

pretation A = ⟨A, J·KA ⟩, where A = ⟨MA ,⊑A
, ⊗A , φ^A , p⊕A ,⋓A ,⊥A , 1A⟩ is a PMA and J·KA

is a se-

mantic function. The goal is to compute (an overapproxima-

tion of) A [P] = lpp

Û⊑A
λv .⊥A

F ♯
P . An equivalent way to define

A [P] is to specify it as the least solution to a system of

inequalities on {A [v] | v ∈ V } (where e ∈ E in each case):

e Ctrl(e)
A [v] ⊒A JactKA ⊗A A [u1] ⟨v, {u1}⟩ seq[act]
A [v] ⊒A A [u1] φ^AA [u2] ⟨v, {u1,u2}⟩ cond[φ]
A [v] ⊒A A [u1] p⊕AA [u2] ⟨v, {u1,u2}⟩ prob[p]
A [v] ⊒A A [u1] ⋓A A [u2] ⟨v, {u1,u2}⟩ ndet

A [v] ⊒A A [ventry
i ] ⊗A A [u1] ⟨v, {u1}⟩ call[i]

A [v] ⊒A 1A if v = vexit
i

Note that in line 5 a call is treated as a hyper-edge with

the action λ(entry, succ).entry ⊗A succ. There is no explicit
return edge to match a call (as in many multi-procedure

program representations, e.g., [77]); instead, each exit node

is initialized with the constant 1A (line 6).

We mainly use known techniques from previous work on

interprocedural dataflow analysis, with some adaptations

to our setting, which uses hyper-graphs instead of ordinary

graphs (i.e., CFGs).
4
The analysis direction is backward, and

the algorithm is similar to methods for computing sum-

mary edges in demand interprocedural-dataflow-analysis

algorithms ([44, Fig. 4], [78, Fig. 10]). The algorithm uses a

standard chaotic-iteration strategy (except that propagation

is performed along hyper-edges instead of edges); it uses a

fair iteration strategy for selecting the next edge to consider.

4.4 Widening
Widening is a general technique in static analysis to ensure

and speed up convergence [20, 22]. To choose the nodes at

which widening is to be applied, we treat the hyper-graph as

a graph—i.e., each hyper-edge (including calls) contributes

one or two ordinary edges. More precisely, we construct

a dependence graph G(H ) = ⟨N ,A⟩ from hyper-graph H =

{⟨Vi ,Ei ,ventry
i ,vexit

i ⟩}1≤i≤n by defining N
def

=
⋃

1≤i≤n Vi , and

A
def

= {⟨u,v⟩ | ∃e ∈ E.(v = src(e) ∧ u ∈ Dst(e))}
∪ {⟨ventryi ,v⟩ | ∃e ∈ E.(v = src(e) ∧Ctrl(e) = call[i])}. (2)

We then compute a setW of widening points for G(H ) via
the algorithm of Bourdoncle [9, Fig. 4]. Because of the second

set-former in Eqn. (2),W contains widening points that cut

each cycle caused by recursion.

While traditional programs exhibit only one sort of choice

operator, probabilistic programs can have three different

kinds of choice operators, and hence loops can exhibit three

different kinds of behavior.We found that if we used the same

widening operator for all widening nodes, there could be a

substantial loss in precision. Thus, we equip the framework

with three separate widening operators: ▽c , ▽p , and ▽n . Let

v ∈ W be the source of edge e ∈ E. Then the inequalities

become

e Ctrl(e)
A [v] ⊒A A [v] ▽n (JactKA ⊗A A [u1]) ⟨v, {u1}⟩ seq[act]
A [v] ⊒A A [v] ▽c (A [u1] φ^AA [u2]) ⟨v, {u1,u2}⟩ cond[φ]
A [v] ⊒A A [v] ▽p (A [u1] p⊕AA [u2]) ⟨v, {u1,u2}⟩ prob[p]
A [v] ⊒A A [v] ▽n (A [u1] ⋓A A [u2]) ⟨v, {u1,u2}⟩ ndet
A [v] ⊒A A [v] ▽n (A [ventryi ] ⊗A A [u1]) ⟨v, {u1}⟩ call[i]

Observation 4.9. Recall from Defn. 3.2 that in a proba-
bilistic program each non-exit node has exactly one outgoing

4
As mentined in §2.3, standard formulations of interprocedural dataflow

analysis [52, 57, 71, 80] can be viewed as hyper-graph analyses. In that

setting, one deals with hyper-graphs with consituent control-flow graphs.

With PMAF, because each procedure is represented as a hyper-graph, one

has hyper-graphs of constituent hyper-graphs. Fortunately, each proce-

dure’s hyper-graph is a single-entry/single-exit hyper-graph, so the basic

ideas and algorithms from standard interprocedural dataflow analysis carry

over to PMAF.
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hyper-edge. In each right-hand side above, the second argu-
ment to the widening operator re-evaluates the action of the
(one outgoing) hyper-edge. Consequently, during an analysis,
we have the invariant that whenever a widening operation
a ▽ b is performed, the property a ⊑A b holds.

The safety properties for the three widening operators

are adaptations of the standard stabilization condition: For

every pair of ascending chains {ak }k ∈N and {bk }k ∈N,
• the chain {ck }k ∈N defined by c0 = a0 φ^Ab0 and ck+1 =

ck ▽c (ak+1 φ^Abk+1) is eventually stable;

• the chain {ck }k ∈N defined by c0 = a0 p⊕Ab0 and ck+1 =

ck ▽p (ak+1 p⊕Abk+1) is eventually stable; and

• the chain {ck }k ∈N defined by c0 = a0 ⋓A b0 and ck+1 =

ck ▽n (ak+1 ⋓A bk+1) is eventually stable.

5 Instantiations
In this Section, we instantiate the framework to derive three

important analyses: Bayesian inference (BI) (§5.1), comput-

ing rewards in Markov decision processes (§5.2), and linear

expectation-invariant analysis (LEIA) (§5.3).

5.1 Bayesian Inference
Claret et al. [18] proposed a technique to perform Bayesian

inference on Boolean programs using dataflow analysis. They

use a forward analysis to compute the posterior distribu-

tion of a single-procedure, well-structured, probabilistic pro-

gram. Their analysis is similar to an intraprocedural dataflow

analysis: they use discrete joint-probability distributions as

dataflow facts, merge these facts at join points, and compute

fixpoints in the presence of loops. Let Var be the set of pro-
gram variables; the set of program states is Ω = Var → B.
Note that Ω is isomorphic to B |Var | , and consequently, a dis-

tribution can be represented by a vector of length 2
|Var |

of

reals in R[0,1]. (Their implementation uses Algebraic Deci-

sion Diagrams [2] to represent distributions compactly.)

The algorithm by Claret et al. is defined inductively on

the structure of programs [18, Alg. 2]—for example, the out-

put distribution of x ∼ Bernoulli(r ) from an input distribu-

tion µ, denoted by Post(µ,x ∼ Bernoulli(r )), is computed as

λσ ′.
(
r ·∑{σ |σ ′=σ [x←true]} µ(σ ) + (1 − r ) ·

∑
{σ |σ ′=σ [x←false]} µ(σ )

)
.

We have used PMAF to extend their work in two dimen-

sions, creating (i) an interprocedural version of Bayesian in-

ference with (ii) nondeterminism. Because of nondetermin-

ism, for a given input state the posterior distribution is not

unique; consequently, our goal is to compute procedure sum-

maries that gives lower bounds on posterior distributions.

To reformulate the domain in the two-vocabulary set-

ting needed for computing procedure summaries, we in-

troduce Var′, primed versions of the variables in Var. Var
and Var′ denote the variables in the pre-state and post-

state of a state transformer. A distribution transformer

(and therefore a procedure summary) is a matrix of size

2
|Var |×2

|Var′ |
of reals inR[0,1].We define a PMAB = ⟨MB ,⊑B

, ⊗B , φ^B , p⊕B ,⋓B ,⊥B , 1B⟩ as follows:

MB
def

= 2
|Var | × 2

|Var′ | → R[0,1]
a ⊑B b

def

= a Û≤ b a ⋓B b
def

= Ûmin(a,b)
a ⊗B b

def

= a × b ⊥B
def

= λ(s, t).0
a p⊕Bb

def

=p · a + (1 − p) · b 1B
def

= λ(s, t).[s = t])
a φ^Bb

def

= λ(s, t).if φ̂(s) then a(s, t) else b(s, t)
The use of pointwise min in the definition of a ⋓B b causes

the analysis to compute procedure summaries that provide

lower bounds on the posterior distributions.

Theorem 5.1. B is a PMA.

Let B = ⟨B, J·KB⟩ be the interpretation for Bayesian

inference. We define the semantic function as Jx := EKC =

λ(s,A).[s[x ← E(s)] ∈ A] and Jx := EKB = λ(s, t).[s[x ←
E(s)] = t], as well as Jx ∼ Bernoulli(p)KC = λ(s,A).p ·
[s[x ← true] ∈ A] + (1 − p) · [s[x ← f alse] ∈ A] and
Jx ∼ Bernoulli(p)KB = λ(s, t).p · [s[x ← true] = t]+ (1−p) ·
[s[x ← f alse] = t]).
We define the concretization mapping γB : MB → PΩ

as γB(a) = ⟨⟨{κ | ∀s, s ′.κ(s, {s ′}) ≥ a(s, s ′)}⟩⟩ where ⟨⟨C⟩⟩
denotes the smallest element in PΩ such that contains C .

Theorem 5.2. γB is a prob. under-abstraction from C to B.

We do not define widening operators for BI, because γB
is an under-abstraction and our algorithm starts from the

bottom element in the abstract domain, the intermediate

result at any iteration is a sound answer.

5.2 Markov Decision Process with Rewards
Analyses of finite-state Markov decision processes were orig-

inally developed in the fields of operational research and

finance mathematics [75]. Originally, Markov decision pro-

cesses were defined as finite-state machines with actions

that exhibit probabilistic transitions. In this paper, we use a

slightly different formalization, using hyper-graphs.

Definition 5.3 (Markov decision process). A Markov deci-
sion process (MDP) is a hyper-graph H = ⟨V ,E,ventry,vexit⟩,
where every node except vexit

has exactly one outgoing

hyper-edge; each hyper-edge with just a single destination

has an associated reward, seq[reward(r )], where r is a posi-
tive real number; and each hyper-edge with two destinations

has either prob[p], where 0 ≤ p ≤ 1, or ndet . Note that

MDPs are a specialization of single-procedure probabilistic

programs without conditional-choice.

We can also treat the hyper-graph as a graph: each hyper-

edge contributes one or two graph edges. A path through

the graph has a reward, which is the sum of the rewards that

label the edges of the path. (Edges from hyper-edges with

the actions prob[p] or ndet are considered to have reward 0.)

The analysis problem that we wish to solve is to determine,
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for each node v , the greatest expected reward that one can

gain by executing the program from v .
It is natural to extend MDPs with procedure calls and

multiple procedures, to obtain recursive Markov decision
processes. The set of program states is defined to be the

set of nonnegative real numbers: Ω = [0,∞]. To address

the maximum-expected-reward problem for a recursive

Markov decision process, we define a PMA R = ⟨MR ,⊑R
, ⊗R , φ^R , p⊕R ,⋓R ,⊥R , 1R⟩ as follows:

MR
def

= [0,∞] φ^R
def

= max ⊥R
def

= 0

⊑R
def

= ≤ a p⊕Rb
def

= p · a + (1 − p) · b 1R
def

= 0

⊗R
def

= + ⋓R
def

= max

Theorem 5.4. R is a PMA.

Let R = ⟨R, J·KR⟩ be the interpretation for a Markov deci-

sion process with rewards. We define the semantic function

as Jreward(r )KC = λ(s,A).[s+r ∈ A] and Jreward(r )KR = r .
We define the concretization mapping γR : MR → P[0,∞]

as follows: γR(a) = ⟨⟨{κ | ∀s .
∫
y · κ(s,dy) ≤ s + a}⟩⟩.

Theorem 5.5. γR is a prob. over-abstraction from C to R.
We use a trivial widening in this analysis: if after some

fixed number of iterations the analysis does not converge, it

returns∞ as the result.

5.3 Linear Expectation-Invariant Analysis
Several examples of expectation invariants obtained via lin-

ear expectation-invariant analysis (LEIA) were given in §2.2.

This section gives details of the abstract domain for LEIA.

We make use of an existing abstract domain, namely, the

domain of convex polyhedra [24]. Elements of the polyhedral

domain are defined by linear-inequality and linear-equality

constraints among program variables. For LEIA, we use two-

vocabulary polyhedra over nonnegative program variables.

Let x = (x1, · · · ,xn)T be a column vector of nonnegative pro-

gram variables and x ′ = (x ′
1
, · · · ,x ′n)T be a column vector of

the “primed” versions of corresponding program variables. A

polyhedron P ⊆ R2n
≥0

captures linear-inequality constraints

among x and x ′, which can be interpreted as a relation be-

tween pre-state and post-state variable valuations.

A polyhedron P = {(x ′TxT )T ∈ R2n
≥0
| A′x ′ + Ax ≤

b ∧ D ′x ′ + Dx = e}, can be encoded as the intersec-

tion of a finite number of closed half spaces and a finite

number of subspaces, where A′,A,D ′,D are matrices and

b, e are vectors. The associated constraint set is defined as

CP = {A′x ′+Ax ≤ b,D ′x ′+Dx = e}. LetP be the set of poly-

hedra; P is equipped with meet, join, renaming, forgetting,

and comparison operations.

LEIA uses expectation polyhedra. They are actually the

same as polyhedra, except that the two vocabularies are

x = (x1, · · · ,xn)T and E[x ′] = (E[x ′
1
], · · · ,E[x ′n])T . An ex-

pectation polyhedron represents a constraint set of the form

{A′E[x ′] +Ax ≤ b,D ′E[x ′] + Dx = e}. (3)

Because of the linearity of the expectation operator E, an
equivalent way to express Eqn. (3) is as follows:

{E[A′x ′] +Ax ≤ b,E[D ′x ′] + Dx = e}.
Let EP be the set of expectation polyhedra. EP is equipped

with the same set of operations as P.
We define the state space to be Ω = Rn≥0

. We then define a

PMA I with a universeMI
def

= P×EP. An element (P ,EP) ∈
I consists of (i) a set of standard constraints P ∈ P, and
(ii) a set of expectation constraints EP ∈ EP, such that

0 ⊔ P[E[x ′]/x ′] ⊒ EP holds, where 0 def

=
∧n

i=1
(E[x ′i ] = 0).

The latter property means that, if necessary, we can always

“rebuild” a pessimistic EP component from theP component

as 0 ⊔ P[E[x ′]/x ′].5
We define the concretization mapping γI as follows:

γI(P ,EP) = ⟨⟨
{
κ | ∀s .κ

(
s,

{
s ′ |

[
s ′

s

]
|= ¬P

})
= 0 ∧[ ∫

s ′κ(s,ds ′)
s

]
|= EP

}
⟩⟩.

Comparison. The comparison operation on ordinary poly-

hedra can be defined as standard set inclusion. For expec-

tation polyhedra, taking into account subprobability distri-

butions, we define EP1 ⊑ EP2 to be 0 ⊔ EP1 ⊆ 0 ⊔ EP2, so

that any element inside or below EP1 should also be inside or

below EP2. Consequently, we define (P1,EP1) ⊑I (P2,EP2)
def

=

P1 ⊆ P2 ∧ 0 ⊔ EP1 ⊆ 0 ⊔ EP2.

Composition. For ordinary polyhedra, the composition of

P1 and P2 can be defined as

(∃x ′′.CP1
[x ′′/x ′] ∧ CP2

[x ′′/x]) ⇒ CP1 ⊗ P2
,

where we introduce an intermediate vocabulary x ′′ =
(x ′′

1
, · · · ,x ′′n )T , and use it to connect P1 and P2. Consequently,

we define P1 ⊗ P2 to be ∃x ′′.CP1
[x ′′/x ′] ∧ CP2

[x ′′/x]. Opera-
tionally, composition involves first introducing a new vocab-

ulary; renaming the variables properly; performing a meet,

and finally forgetting the intermediate vocabulary.

Somewhat surprisingly, because of the tower property in

probability theory, exactly the same steps can be used to

compose expectation polyhedra. Informally, the tower prop-

erty means that E[X ] = E[E[X | Y ]], where X and Y are

two random variables, and E[X | Y ] is a conditional expec-
tation. For instance, suppose that EP1 and EP2 are defined

by the constraint sets {E(x ′) = x + 2} and {E(x ′) = 7x},
respectively. Following the renaming recipe above, we have

E(x ′′) = x + 2 and E(x ′ | x ′′) = 7x ′′. By the tower property,

we have E(x ′) = E(E(x ′ | x ′′)) = E(7x ′′) = 7E(x ′′) = 7x + 14.

Operationally, the tower property allows us to compose lin-

ear expectation invariants, and eliminate the intermediate

5
The intuition is that P represents a convex overapproximation to some

desired set of points; the expected value has to lie somewhere inside ®0 ⊔
P , where “®0 ⊔ . . .” is needed to account for subprobability distributions.

For instance, for a nonnegative interval [lo, hi], we must have expected ∈
([0, 0] ⊔ [lo, hi]); i.e., 0 ≤ expected ≤ hi.
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vocabulary x ′′. Consequently, we define

(P1,EP1) ⊗I (P2,EP2)
def

= (P1 ⊗ P2,EP1 ⊗ EP2).
Conditional-choice. For the ordinary-polyhedron compo-

nent, a conditional-choice φ^ is performed by first meeting

each operand with the logical constraint φ, and then joining

the results. However, for the expectation-polyhedron compo-

nent, conditioning can split the probability space in almost

arbitrary ways. Consequently, the constraints on post-state

expectations as a function of pre-state valuations are not

necessarily true after conditioning. Thus, we define

(P1,EP1) φ^I(P2,EP2)
def

= let P = ({φ} ⊓ P1) ⊔ ({¬φ} ⊓ P2)
in (P , (EP1 ⊔ EP2) ⊓ (0 ⊔ P[E[x ′]/x ′])).

The ⊓ in the second component is performed to maintain

the invariant that 0 ⊔ P[E[x ′]/x ′] ⊒ the second component.

Probabilistic-choice. For the ordinary-polyhedron compo-

nent, we merely join the components of the two operands.

For the expectation-polyhedron component, we introduce

two more vocabularies and have

(∃x ′′,x ′′′.CEP1
[x ′′/E[x ′]] ∧ CEP2

[x ′′′/E[x ′]] ∧∧n
i=1
E[x ′i ] = p · x ′′i + (1 − p) · x ′′′i ) ⇒ CEP1 p ⊕EP2

.

Consequently, we define EP1 p⊕EP2 to be

∃x ′′,x ′′′.
(
CEP1
[x ′′/E[x ′]] ∧ CEP2

[x ′′′/E[x ′]]
∧ ∧n

i=1
E[x ′i ] = p · x ′′i + (1 − p) · x ′′′i

)
,

and (P1,EP1) p⊕I(P2,EP2)
def

= (P1 ⊔ P2,EP1 p⊕EP2).
Nondeterministic-choice. The nondeterministic-choice

operations on both ordinary polyhedra and expectation poly-

hedra can be defined as join. Hence, we define (P1,EP1) ⋓I
(P2,EP2)

def

= (P1 ⊔ P2,EP1 ⊔ EP2).
Bottom and Unit Element.We define ⊥I

def

= (false, 0), and
1I

def

= ({x ′i = xi | 1 ≤ i ≤ n}, {E[x ′i ] = xi | 1 ≤ i ≤ n}).
Semantic Function. Some examples of the semantic map-

ping J·KI
are as follows, where min(D) and max(D) repre-

sents the interval of the support of a distribution D , while

mean(D) stands for its average.

Jxi := EKI def

=

({x ′i = E(x)} ∪ {x ′j = x j | j , i},
{E[x ′i ] = E(x)} ∪ {E[x ′j ] = x j | j , i}

)
Jxi ∼ DKI def

=

({min(D) ≤ x ′i ≤ max(D)} ∪ {x ′j = x j | j , i},
{E[x ′i ] = mean(D)} ∪ {E[x ′j ] = x j | j , i}

)
JskipKI def

=1I
Note we assume all expressions in the program are linear.

For nonlinear arithmetic programs, one can adopt some lin-

earization techniques [32, 62].

Theorem 5.6. γI is a prob. over-abstraction from C to I.

Widening. Let ▽ be the standard widening operator on

ordinary polyhedra [42]. Recall from Obs. 4.9 that whenever

a widening operation a▽b is performed, the property a ⊑A b
holds. There is a subtle issue with expectation invariants

when dealing with conditional or nondeterministic loops.

Observation 5.7. In a conventional program, if you have a
loop “while B do S od,” and I is a loop-invariant, then I ∧
¬B (which implies I ) holds on exiting the loop. In contrast,
for a conditional or nondeterministic loop in a probabilistic
program, a loop-invariant that holds at the beginning and end
of the loop body does not necessarily hold on exiting the loop.

Example 5.8. Consider the following program:
while ¬(x = y) do
if prob( 1

2
) then x := x + 1 else y := y + 1 fi od

For the loop body, we can derive an expectation invariant
E[x ′ − y ′] = x − y; however, for the entire loop this prop-
erty does not hold: at the end of the loop x = y must hold, and
hence E[x ′ − y ′] should be equal to 0.

Because of this issue, we use a pessimistic widening oper-

ator for conditional-choice and nondeterministic-choice: the

widening operator forgets the expectation invariants and

rebuilds them from standard invariants.

(P1,EP1) ▽c (P2,EP2)
def

= (P1 ▽ P2, 0 ⊔ P2[E[x ′]/x ′])
(P1,EP1) ▽n (P2,EP2)

def

= (P1 ▽ P2, 0 ⊔ P2[E[x ′]/x ′])
We do not have a good method for (P1,EP1)▽p (P2,EP2). We

found that the following approach loses precision:

let P = (P1 ▽ P2) in (P , (EP1 ▽ EP2) ⊓ (0 ⊔ P[E[x ′]/x ′]))
In our experiments, we use (P1,EP1) ▽p (P2,EP2)

def

= (P1 ▽
P2,EP2), which does no extrapolation in the EP component.

6 Evaluation
In this Section, we first describe the implementation of PMAF,

and the three instantiations introduced in §5. Then, we eval-

uate the effectiveness and performance of the three analyses.

6.1 Implementation
PMAF is implemented in OCaml; the core framework con-

sists of about 400 lines of code. The framework is imple-

mented as a functor parametrized by a module representing

a PMA, with some extra functions, such as widening and

printing. This organization allows any analysis that can be

formulated in PMAF to be implemented as a plugin. Also,

the core framework relies on control-flow hyper-graphs, and

provides users the flexibility to employ it with any front

end. We use OCamlGraph [19] as the implementation of

fixed-point computation and Bourdoncle’s algorithm.

The plugin for Bayesian inference is about 400 lines

of code, including a lexer and a parser for the impera-

tive language that we use in the examples of this paper.

We use Lacaml [70] to manipulate matrices. The plugins

for the Markov decision problem with rewards and linear

expectation-invariant analysis are about 200 lines and 500

lines, respectively. We use APRON [45] for polyhedron op-

erations. Most of the code in the plugins is to implement the

PMA structure of the analysis domain.
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Table 1. Linear expectation-invariant analysis
Program Expectation invariants #loc rec? #call time

2d-walk E[x ′] = x , E[y ′] = y, E[dist ′] = dist, E[count ′] ≤ count + 1, E[count ′] ≥ count 47 n 0 0.24

aggregate-rv E[2x ′ − i ′] = 2x − i, E[x ′] ≤ x + 1

2
, E[x ′] ≥ x 11 n 0 0.06

biased-coin E[x ′] ≤ x + 1

2
, E[x ′] ≥ x − 1

2
25 n 0 0.06

binom-update (p= 1

4
) E[4x ′ − n′] = 4x − n, E[x ′] ≤ x + 1

4
, E[x ′] ≥ x 14 n 0 0.06

coupon5 E[count ′ − i ′] = count − i (1st), E[4count ′ − 5i ′] = 4count − 5i (2nd), E[3count ′ − 5i ′] = 3count − 5i (3rd), 58 n 0 0.07

E[2count ′ − 5i ′] = 2count − 5i (4th), E[count ′ − 5i ′] = count − 5i (5th)
dist E[x ′] = x , E[y ′] = y, E[z ′] = 1

2
x + 1

2
y 5 n 0 0.05

eg E[x ′ + y ′] = x + y + 3, E[z ′] = 1

4
z + 3

4
, E[x ′] ≤ x + 3, E[x ′] ≥ x 8 n 0 0.89

eg-tail E[z ′] ≥ 1

4
z, E[x ′] ≥ x , E[y ′] ≥ y, E[x ′ + y ′] ≥ x + y + 3

4
11 t 1 0.13

hare-turtle E[2h′ − 5t ′] = 2h − 5t , E[h′] ≤ h + 5

2
, E[h′] ≥ h 15 n 0 0.06

hawk-dove E[p1b′ − count ′] = p1b − count, E[p2b′ − count ′] = p2b − count, E[p1b′] ≤ p1b + 1, E[p1b′] ≥ p1b 29 n 0 0.08

mot-ex E[2x ′ − y ′] = 2x − y, E[4x ′ − 3count ′] = 4x − 3count, E[x ′] ≤ x + 3

4
, E[x ′] ≥ x 16 n 0 0.06

recursive E[x ′] = x + 9 13 r 2 0.37

uniform-dist E[n′] ≤ 2n, E[n′] ≥ n, E[д′] ≤ 2д + 1

2
, E[д′] ≥ д 14 n 0 0.06

Because of the numerical reasoning required when an-

alyzing probabilistic programs, we need to be concerned

about finite numerical precision in our implementations of

the instantiations (although they are sound on a theoretical

machine operating on reals). In our implementation, we use

the fact that ascending chains of floating numbers always

converge in a finite number of steps. The user could use the

technique proposed by Darulova et al. [26] to obtain a sound

guarantee on numerical precision.

6.2 Experiments

Evaluation Platform. Our experiments were performed

on a machine with an Intel Core i5 2.4 GHz processor and

8GB of RAM under Mac OS X 10.13.4.

Table 2. Top: Bayesian inference.

Bottom: Markov decision problem

with rewards. (Time is in seconds.)

Program #loc rec? #call time

compare 17 n 0 2.22

dice 12 n 0 0.02

eg1 10 n 0 0.02

eg1-tail 16 t 2 0.02

eg2 10 n 0 0.02

eg2-tail 16 t 2 0.01

recursive 14 r 1 0.01

binary10 184 n 90 0.03

loop 10 n 0 0.03

quicksort7 109 n 42 0.03

recursive 13 t 1 0.03

student 43 t 8 0.03

Bayesian Infer-
ence and Markov
Decision Problem
with Rewards.
We tested our

framework on

Bayesian inference

and Markov deci-

sion problem with

rewards on hand-

crafted examples.

The results of the

evaluation of the

two analyses are

described in Tab. 2.

The tables contains the number of lines; whether the

program is non-recursive, tail-recursive, or recursive; the

number of procedure calls; and the time taken by the

implementation (measured by running each program 5

times and computing the 20% trimmed mean).

Our framework computed the same answer (modulo

floating-point round-off errors) as PReMo [84], a tool for

probabilistic recursive models. We did not compare with

probabilistic abstract interpretation [25] because its seman-

tic foundation is substantially different from that of our

framework—as we mentioned in §1, the order for resolv-

ing probabilistic behavior and nondeterministic behavior is

different.

The analysis time of Bayesian inference grows exponen-

tially with respect to the number of program variables.
6
The

time cost comes from the explicit matrix representation of do-

main elements. One could use Algebraic Decision Diagrams

[2] as a compact representation to improve the efficiency.

The analyzer for the Markov decision problem with re-

wards works quickly and obtains some interesting results.

quicksort7 is a model of a randomized quicksort algorithm

on an array of size 7 (obtained from [84]), and our analysis

results are consistent with the wost-case expected number

of comparisons being Θ(n logn).7 binary10 is a model of

randomized binary search algorithm on an array of size 10,

and our analysis results are consistent with the worst-case

expected number of comparisons being Θ(logn).
Linear Expectation-Invariant Analysis. We performed

a more thorough evaluation of linear expectation-invariant

analysis.We collected several examples from the literature on

probabilistic invariant generation [14, 49], and handcrafted

some new examples to demonstrate particular capabilities of

our domain, e.g., analysis of recursive programs. For the ex-

amples obtained from the loop-invariant-generation bench-

mark, we extracted the loop body as our test programs. Also,

we performed a positive-negative decomposition to make

sure all program variables are nonnegative. That is, we rep-

resented each variable x as x+ − x− where x+,x− ≥ 0, and

replaced every operation on variables with appropriate op-

erations on the decomposed variables.

6
One should not assume that exponential growthmakes the analysis useless;

after all, predicate-abstraction domains [40] also grow exponentially: the

universe of assignments to a set of Boolean variables grows exponentially

in the number of variables. Finding useful coarser abstractions for Bayesian

inference—by analogy with the techniques of Ball et al. [3] for predicate

abstraction—might be an interesting direction for future work.

7
The analysis computes worst-case expected number because

the underlying semantics resolves nondeterminism first and

probabilistic-choice second, and thus the analysis computes

max
nondet. resolution

E[#comparisons under resolution].
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The results of the evaluation are shown in Tab. 1, which

lists the expectation invariants obtained, and the time taken

by the implementation. In general, the analysis runs quickly—

all the examples are processed in less than one second. The

analysis time mainly depends on the number of program

variables and the size of the control-flow hyper-graph.

As shown in Tab. 1, our analysis can derive nontrivial ex-

pectation invariants, e.g., relations among different program

variables such as E[x ′ +y ′] = x +y + 3, E[2x ′ −y ′] = 2x −y.
In most cases, our results are at least as precise as those

in [14, 49]. Exceptions are biased-coin and uniform-dist, col-
lected from [49], where their invariant-generation algorithm

uses a template-based approach and the form of expecta-

tions can be more complicated, e.g., [P1] · E1+ [P2] · E2 where

P1, P2 are linear assertions and E1, E2 are linear expressions.

Nevertheless, our analysis is fully automated and applicable

to general programs, while [49] requires interactive proofs

for nested loops, and [14] works only for single loops.

7 Related Work
Static Analysis for Standard Programs. Our framework

is an extension of interprocedural dataflow analysis [52, 57,

71, 80] to probabilistic programs, but it does not support

some language features that standard dataflow analysis has

been used to address, e.g., calls through function pointers.

Compared to the Galois connections that are ordinarily

used in abstract interpretation [21, 23], our definition of

probabilistic abstractions is based on just a concretization

function, so PMAF does not have the full power of standard

abstract-interpretation machinery.

Static Analysis for Probabilistic Programs.Most closely

related to our work is probabilistic abstract interpreta-

tion [25, 67–69], which is discussed in the introduction.

There is a long line of research on manual reasoning tech-

niques for probabilistic programs [33, 48, 56, 59, 72]. The

main difference to this work is that we focus on the design

and implementation of automatic techniques that that rely

on computing fixed points.

Other work focuses on specialized automatic analyses for

specific properties. Claret et al. [18] proposed a dataflow

analysis for Bayesian inference on Boolean programs that

we reformulate in PMAF to lift it to the interprocedural level.

There are different techniques for automatically proving ter-

mination, such as probabilistic pushdown automata [10, 11]

and martingales and stochastic invariants [16, 17]. Mar-

tingales for automatic analysis of probabilistic programs

have been pioneered by Chakarov et al. [13]. Compared

with existing techniques for probabilistic invariant genera-

tion [4, 13, 14, 17], the expectation-invariant analysis pro-

posed in §5.3 is designed as a two-vocabulary domain utiliz-

ing the well-studied polyhedral abstract domain.

Semantics for Probabilistic Programs. There is a long

tradition of using probability kernels to define the semantics

of probabilistic programs. Kernels were used by Kozen [56]

to give a semantics for Probabilistic Propositional Dynamic

Logic (PPDL), a probabilistic generalization of PDL. Kozen

considers well-structured programs with sequencing and

conditional-choice, but without non-deterministic choice.

He does not consider reasoning methods that use abstract

interpretation of his PPDL semantics. There are a list of

domain-theoretic studies on probabilistic nondeterminism

[27, 46, 47, 64, 65, 82], which develop powerdomain con-

structions over probability distributions, but do not consider

powerdomains over kernels. Borgström et al. [8] have used

kernels to define the operational semantics of a probabilis-

tic lambda calculus. The main novelty of our denotational

semantics in §3.3 is that it is defined for control-flow hyper-

graphs, based on kernels.

Other Analyses Based on Hyper-Graphs. Hyper-graph-
based analyses go back to the join-over-all-hyper-path-

valuations of Knuth [53]. Other analyses based on hyper-

graphs includes Möncke and Wilhelm’s [66] framework for

finding join-over-all-hyper-path-valuations for partially or-
dered abstract domains. In the hyper-paths in this paper,

we use binary hyper-edges to model calls, as well as condi-

tional, probabilistic, and nondeterministic choice. For acyclic
hyper-graphs, Eisner has considered semirings for comput-

ing expectations and variances of random variables [58]. He

works with a discrete sample space: all hyper-paths in a given

hyper-graph, and the value of a random variable for a given

hyper-path is built up as the sum of the values contributed

by each hyper-edge. In our work, we consider cyclic hyper-
graphs, and the nature of the computation that a hyper-path

represents is more complex than that considered by Eisner.
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