
Combining Source and Target Level Cost Analyses for
OCaml Programs

Stefan K. Muller
Carnegie Mellon University

Jan Hoffmann
Carnegie Mellon University

Abstract
Deriving resource bounds for programs is a well-studied
problem in the programming languages community. For com-
piled languages, there is a tradeoff in deciding when during
compilation to perform such a resource analysis. Analyses at
the level of machine code can precisely bound the wall-clock
execution time of programs, but often require manual anno-
tations describing loop bounds and memory access patterns.
Analyses that run on source code can more effectively derive
such information from types and other source-level features,
but produce abstract bounds that do not directly reflect the
execution time of the compiled machine code.

This paper proposes and compares different techniques for
combining source-level and target-level resource analyses in
the context of the functional programming language OCaml.
The source level analysis is performed by Resource Aware
ML (RaML), which automatically derives bounds on the costs
of source-level operations. By relating these high-level oper-
ations to the low-level code, these bounds can be composed
with results from target-level tools. We first apply this idea
to the OCaml bytecode compiler and derive bounds on the
number of virtual machine instructions executed by the com-
piled code. Next, we target OCaml’s native compiler for ARM
and combine the analysis with an off-the-shelf worst-case ex-
ecution time (WCET) tool that provides clock-cycle bounds
for basic blocks. In this way, we derive clock-cycle bounds
for a specific ARM processor. An experimental evaluation
analyzes and compares the performance of the different ap-
proaches and shows that combined resource analyses can
provide developers with useful performance information.

1 Introduction
The programming languages community has extensively
studied the problem of statically analyzing the resource
consumption of programs. The developed techniques range
from fully automatic techniques based on static analysis
and automated recurrence solving [2, 11, 25, 38, 51, 54],
to semi-automatic techniques that check user annotated
bounds [19, 53], to manual reasoning systems that are inte-
grated with type systems and program logics [15, 20, 21, 40].
Static resource analysis has interesting applications that in-
clude prevention of side channels [46], finding performance
bugs and algorithmic complexity vulnerabilities [49] and

PL’19, January 01–03, 2018, New York, NY, USA
2019.

bounding gas usage in smart contracts [24]. More generally,
it is an appealing idea to provide programmers with imme-
diate feedback about the efficiency of their code at design
time.

When designing a resource analysis for a compiled higher-
level language, there is a tension between working on the
source code, the target code, or an intermediate represen-
tation. Advantages of analyzing the source code include
more effective interaction with the programmer and more
opportunities for automation since the control flow and type
information are readily available. The advantage of analyz-
ing the target code is that analysis results apply to the code
that is eventually executed. Many of the tools developed
in the programming languages community operate on the
source level and derive upper bounds on a high-level notion
of cost like number of loop iterations or user-defined cost
metrics [25, 40, 53]. In the embedded systems community,
the focus is on tools that operate on machine code and derive
bounds that apply to concrete hardware [9, 55].

In this paper, we study the integration of source and target
level resource analyses for OCaml programs. We build on
Resource Aware ML (RaML) [29, 30], a source level resource
analysis tool for OCaml programs that is based on automatic
amortized resource analysis (AARA) [33, 36]. AARA systemat-
ically annotates types with potential functions that map val-
ues of the type to a non-negative number. A type derivation
can be seen as a proof that the initial potential is sufficient to
cover the cost of an execution. Advantages of AARA include
compositionality and efficient inference of potential func-
tions, and thus resource bounds, using linear programming,
even if potential functions are polynomial [28]. RaML can
derive bounds for user-defined metrics that assign a constant
cost to an evaluation step in the dynamic semantics.

Our approaches to integrating source and target level anal-
yses broadly follow the idea of using RaML to derive resource
usage bounds that are parametric in the resource usages
of basic blocks, and then composing these results with a
lower-level analysis that operates on each basic block. Im-
plementing these approaches in practice requires a technical
extension of RaML: we extend RaML to enable bound in-
ference for cost metrics that contain symbolic expressions.
Instead of specifying cost 8128 at a certain spot in the pro-
gram, it is now possible to specify a cost expression such
8128a + 9b where a and b are symbolic constants. RaML
will then derive a bound that is a function of both the argu-
ments and the constants a and b. In the context of this paper,

1

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

symbolic resource analysis can be used to devise resource
metrics that are parametrized by the costs of basic blocks.
To this end, we automatically annotate the source program
with cost annotations that correspond to beginnings of basic
blocks in the compiled code. Each cost annotation is labeled
with a fresh symbol that corresponds to the, yet unknown,
cost of the corresponding basic block. A simple translation
validation procedure ensures that every block has been la-
beled with at least one cost annotation. At the target level,
we can now analyze the cost of individual basic blocks and
substitute the results for the corresponding symbol in the
high-level bound.
Our third contribution is the implementation of the de-

scribed technique for the OCaml bytecode and native-code
compilers. For the OCaml bytecode compiler, we associate
the symbolic constants with the number of bytecode instruc-
tions in their respective basic block. In this way, we derive
symbolic bounds on the number of bytecode instructions
that are executed by a function. For the OCaml native code
compiler, we use AbsInt’sWorst-case execution time (WCET)
analysis tool aiT to derive clock-cycle bounds for each basic
block for the ARM Cortex-R5 platform. Together with the
source-level bounds, this yields symbolic clock-cycle bounds
for the compiled machine code. In many cases, aiT cannot
automatically derive loop and recursion bounds. So a final
combination of source and target level analysis that we ex-
plore is to use the basic block analysis performed by RaML to
derive aiT control-flow annotations for specific input sizes.
Our technique for connecting an high-level cost model

with compiled code is similar to existing techniques that
have been implemented in the context of verified C compil-
ers [5, 15] (see Section 6). The novelty of our work is that
we implemented the technique for a functional language
and an existing optimizing compiler, support higher-order
functions, and combine compilation with AARA, and sup-
port OCaml-specific features such as an argument stack for
avoiding the creation of function closures.

We have evaluated our techniques on several OCaml pro-
grams and found them to be both practical and reasonably
precise. For example, our bytecode analysis generates asymp-
totically tight bounds on instruction counts for all of the
example programs, and exact bounds for several of them. In
addition, for several of our example programs, the control-
flow annotations derived by our analysis result in WCET
cycle counts that are identical to results from hand-written
annotations. Hand annotations require manual reasoning
about the recursive structure of the program (which is labor-
intensive and error-prone) in addition to the effort of manu-
ally inserting the annotations.
The remainder of the paper is organized as follows. Sec-

tion 2 gives an overview and description of the symbolic
resource analysis technique in RaML. In Section 3, we apply
the symbolic analysis to connect source and target level anal-
yses. Section 4 describes the application of the technique to

1 let rec fold f b l =

2 match l with

3 | [] → b

4 | x::xs → f (fold f b xs) x

5

6 let countsum1 l =

7 let count = fold (fun c _ →c + 1) 0 in

8 let sum = fold (fun s n →s + n) 0 in

9 (count l, sum l)

10

11 let countsum2 l =

12 fold (fun (count, sum) n →
13 (count + 1, sum + n))

14 (0, 0)

15 l

Figure 1. Two implementations of the countsum function

the OCaml bytecode compiler and evaluates its effectiveness
with experiments. In Section 5, we study the combination
with WCET analysis and the OCaml native compiler and
report the findings from the respective experiments. Finally,
we discuss related work (Section 6) and conclude.

2 Symbolic Resource Analysis
The first ingredient for connecting the source-level resource
analysis with compiled code is an extension of RaML we
call symbolic resource analysis. Before describing the tech-
nique, we present an overview of symbolic resource analysis
and its applications through an example. Consider the two
OCaml functions in Figure 1, defined using the auxiliary
function fold. Both take as an argument an integer list and
return a pair of the count and the sum of the elements. The
first function, countsum1, makes two passes over the list,
counting the elements, then summing them, and finally re-
turns a pair. The second, countsum2, computes both results
in one pass. RaML allows us to compare the two implemen-
tations based on how many list operations they perform by
instrumenting fold with a “tick” annotation indicating that
it performs one list operation (a pattern match).

1 let rec fold f b l =

2 (Raml.tick (1.0);

3 match l with

4 | [] → b

5 | x::xs → f (fold f b xs) x)

When the code is analyzed with this version of fold,
RaML correctly reports that countsum1 has a cost of 2.00
+ 2.00*M where M is the length of the list, while countsum2
has a cost of 1.00 + 1.00*M, reflecting the fact that the
former processes the list twice. This analysis doesn’t tell the
whole story, though. While countsum2 performs fewer list
operations, it performs more operations on tuples because it

2

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

1 let listmatch = Raml.fresh_symb ()

2 let tuplematch = Raml.fresh_symb ()

3 let tuplecons = Raml.fresh_symb ()

4

5 let rec fold f b l =

6 (Raml.sytick(listmatch);

7 match l with

8 | [] → b

9 | x::xs → f (fold f b xs) x)

10

11 let countsum1 l =

12 let count = fold (fun c _ →c + 1) 0 in

13 let sum = fold (fun s n →s + n) 0 in

14 (Raml.sytick(tuplecons);

15 (count l, sum l))

16

17 let countsum2 l =

18 fold (fun (count, sum) n →
19 Raml.sytick(tuplematch);

20 Raml.sytick(tuplecons);

21 (count + 1, sum + n))

22 (Raml.sytick(tuplecons); (0, 0))

23 l

Figure 2. The countsum implementations with symbolic
resource annotations.

destructs and constructs a pair each time the inner function
is called. We could add tick annotations to countsum2 to re-
flect the cost of the tuple operations, but this would require
us to know a priori the relative costs of tuple and list opera-
tions. In particular, constructing a tuple, which performs an
allocation, might be more expensive in practice than pattern
matching on the head of a list.
Symbolic resource analysis allows us to analyze both im-

plementations in terms of the three types of operations of
interest (list matches, tuple matches, tuple allocations) with-
out specifying concrete costs for them. In the code in Figure 2,
we use the new built-in function Raml.fresh_symb to gener-
ate three symbols, one for each operation, and Raml.sytick
to annotate costs in terms of these symbols. Our extended
version of RaML is able to analyze both versions of the code
and report that the cost of countsum1 is
(2.0listmatch + 1.0tuplecons) + 2.0listmatch*M

and the cost of countsum2 is
(1.0listmatch + 1.0tuplecons) +
(1.0listmatch + 1.0tuplecons + 1.0tuplematch)*M

These cost bounds allow us to profile both implementations
at a glance and determine the relevant tradeoffs: countsum1
would be preferred if all three operations are equally expen-
sive, but countsum2 would be preferred if we are primarily
concerned about the cost of list operations.

In addition to allowing symbolic resource annotations
using Raml.sytick, the symbolic version of RaML allows
us to define resource metrics that themselves use symbolic
costs. In particular, we define a resource metric “symb” which
analyzes unannotated code to produce upper bounds on
how many times each type of operation (e.g., pattern match,
constructor application) is performed. Note that this analysis
is done entirely at the source level and is not to be confused
with our analysis for instructions executed at the target level,
which we discuss in Section 5. When we run RaML using
the “symb” metric on the unannotated code of Figure 1, it
reports the cost
(2Mbase + 4Mapp + 10Mvar + 4Mclos
+ 4Mlet + 2Mmat + Mtupl)

+ (Mbase + 8Mapp + 2Mopld + 2Mopev
+ 17Mvar + 2Mclos + 2Mlet + 2Mmat)*M

for countsum1 and the cost
(2Mbase + Mapp + 4Mvar + Mclos
+ Mlet + Mmat + Mtupl)

+ (Mbase + 4Mapp + 2Mopld + 2Mopev + 11Mvar
+ Mlet + Mmat + Mtupl + Mtupm)*M

for countsum2. In addition to the M + 1 additional pattern
matches and M fewer tuple allocations and matches, this
analysis also alerts us to the 4M + 3 additional function
applications, 6M + 6 additional variable accesses, 2M + 3 ad-
ditional closure allocations andM + 3 additional let bindings
performed by countsum1.
This overview has given a relatively contrived example

of using symbolic analysis for profiling, in the interest of
simplicity of presentation. Apart from connecting source and
target-level code, we anticipate that symbolic resource analy-
sis can have multiple applications, from profiling the number
of times functions are executed to determine bottlenecks, to
analyzing how the cost of a program is affected by the load
times of certain variables (which could, for instance, be used
by a compiler to optimize the layout of data in memory).

2.1 Implementation
We have implemented symbolic analysis in the RaML cost
analysis tool for OCaml. We begin with a brief overview of
the design of RaML, and then describe two implementations
of symbolic analysis.

Existing Design of Resource Aware ML RaML relies on
INRIA’s OCaml parser and type checker to generate a typed
OCaml syntax tree. Since the intermediate languages in IN-
RIA’s compiler are untyped and types are crucial to auto-
matically derive bounds that are functions of data structures,
RaML directly interfaces with the OCaml source-level syn-
tax tree. The first step in the analysis is a compilation of the
OCaml syntax tree to a typed RaML syntax tree in “share-let
normal form”. In addition to the guarantees of “let normal
form”, which requires that all intermediate sub-computations

3

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

be explicitly sequenced using “let” bindings, share-let nor-
mal form requires that each variable be used at most once.
Variables that are used twice have to be explicitly duplicated
using a “share” construct that is similar to a let binding. This
conversion step also includes a number of simplifications,
such as removal of nested patterns, as well as the introduc-
tion of a refined type derivation that corresponds to the
argument stack in RaML’s dynamic semantics.

The typed RaML expressions in share-let normal form are
subject to the actual resource bound analysis using AARA.
First, the analysis is provided with a maximal degree of the
potential functions and a resource metric that assigns a con-
stant cost to each step of the source-level operational seman-
tics. Metrics can, for example, count the number of steps
taken, the number of allocations, or ticks that can be defined
by a user using expressions of the form Raml.tick(n) for
an integer n. The intended meaning of a negative n is that n
resources become available at this point.
The type derivation is then annotated with multivariate

resource polynomials [30] that define potential functions in
the sense of amortized analysis. The multivariate resource
polynomials are non-negative linear combinations of base
polynomials that are inductively defined over types. Base
polynomials for lists include for instance binomial coeffi-
cients

(n
k

)
. They play a role that is similar to a basis in linear

algebra. The coefficients in the non-negative linear combi-
nation of the base polynomials are a priori unknown and
type (and bound) inference amounts to choosing these coef-
ficients so that the local constraints in the syntax-directed
type rules are satisfied. They ensure that potential is soundly
used to cover the resource cost and distributed correctly
during construction and destruction of data structures. A
main advantage of AARA is that these constraints are linear
inequalities even if bounds are non-linear.
To derive the non-negative rational values of the coeffi-

cients that correspond to a valid type derivation, the inequali-
ties are solved by Coin-Or’s off-the-shelf linear program (LP)
solver CLP. If the set of inequalities is infeasible then RaML
produces a message that indicates that no bound could be
found. If CLP produces a solution, RaML extracts the values
of the coefficients that correspond to the initial resource poly-
nomial. This polynomial is then simplified and presented to
the user as the worst-case bound for the program.

Symbolic ResourceAnalysis Interface Adapting Resource
Aware ML to allow symbolic resource analysis required ex-
tending the RaML parser and runtime with facilities for ma-
nipulating symbolic annotations Raml.sytick(...), devel-
oping a runtime representation of symbolic costs and ex-
tending the analysis engine itself to actually perform the
symbolic analysis.

We added the following signatures to the interface for the
Raml module, against which all RaML code is compiled:

type sycost

val fresh_symb : unit →sycost

val (++) : sycost →sycost → sycost

val (**) : float →sycost → sycost

val sytick : sycost →unit

At runtime, all of these operations are effectively no-ops,
as tick annotations have no runtime behavior. The function
signatures involving symbolic costs are designed to allow
symbolic RaML programs to parse and typecheck as valid
OCaml programs using the unmodified OCaml parser and
type-checker. When the typed OCaml syntax tree is being
converted into a RaML syntax tree, symbolic cost expressions
are handled specially by a function that converts them into
an internal representation of symbolic costs used by the
analysis engine.

Internally, our implementation represents symbolic costs
as sparse lists of coefficient-symbol pairs, sorted by the sym-
bol’s unique identifier, plus an additional constant term. In
practice, most costs manipulated by the system have few
non-zero coefficients, so this representation allows for fast
operations on costs, such as addition.

Approach #1: Orthogonal Cost Constraints One viable
approach to performing symbolic analysis is to conceptually
perform one instance of RaML’s standard analysis algorithm
for each symbol and then combine the results. This approach
is valid as long as all costs are positive (with negative costs,
costs of one type, such as tuplematch in the example above,
could be used to “pay for” costs of another type)1. Advan-
tages of this approach are that it is conceptually simple and
theoretically sound: the theorems that show the soundness
of the RaML analysis [31] can be directly applied to each of
the orthogonal analyses, although a formalization of sym-
bolic analysis and this soundness proof is outside the scope
of this paper.
A direct realization of the above technique, performing

a complete analysis for each symbol, would be relatively
simple to implement, but it would perform a great deal of
repeated work and scale linearly with the number of sym-
bols. Instead, our implementation performs a number of
optimizations that drastically improve scalability to larger
numbers of symbols. We run the RaML analysis once on
the unmodified program. The costs being manipulated are
thus symbolic, rather than concrete. The design of the type
annotation and resource analysis components of the existing
RaML codebase required relatively few changes in order to
use our representation of symbolic costs instead of floating-
point numbers. This is because those parts of the code rarely
manipulate costs directly; most of this manipulation is done
by the constraint generation and solving portions of the sys-
tem, which we modified much more heavily in ways that

1In this paper, we are primarily concerned with execution time; as time is
only ever consumed, all costs are positive.

4

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

will be described below. In places where costs were manipu-
lated directly, we modified the code to use the appropriate
operations on symbolic costs.

The new code for our symbolic analysis sits between the
analysis engine and the LP solver. Our code stores constraints
generated by the analysis engine, rather than immediately
passing them to the solver. Each constraint involving sym-
bolic costs expands to a set of numerical constraints, one
for each symbol. In practice, however, most of these con-
straints are trivial. When the analysis code wishes to invoke
the solver, we split each stored constraint into its nontrivial
components. We then invoke one copy of the Coin-Or LP
solver for each symbol that has nontrivial constraints.

Approach #2: Pure LP Solving In the approach used for
symbolic resource analysis in this paper, we extend the linear
program (LP) used in the resource analysis with an additional
variable for each symbol. When the analysis generates a
constraint on a variable in terms of a symbolic cost, e.g., x0 +
x1 ≤ a where x0 and x1 are normal variables of the analysis
and a is a symbol, we rewrite this constraint as x0+x1−xa ≤
0 where xa is the LP variable added for symbol a. It is a
pleasant consequence of the constraints generated by RaML’s
analysis that the constraints always remain linear under
this transformation (e.g., RaML does not generate symbolic
constraints of the form x0 ≤ a · x1, which could not be
rewritten into a linear constraint in terms of x0, x1 and xa).

The resulting LP appropriately reflects the constraints on
each analysis variable in terms of the symbols. However,
this format is not conducive to optimizing for a particular
analysis variable and deriving the resulting objective value
in terms of the symbols (which is howwewould, for example,
derive the symbolic bounds given in the countsum example
above). There are twoways to derive such a result. If concrete
values for the symbols are available (for example, if we have
in mind particular costs of each operation and would like to
substitute these in), we add additional constraints to the LP of
the form xa = va whereva is the concrete value for symbol a
2. If values for the symbols are unavailable and we need an
abstract result in terms of the symbols, we can derive one
as follows. First, we add constraints xs = 0 for all symbols
and solve to get the constant component of the cost. Next,
we remove these constraints and add the constraints xa = 1
and xb = 0 for all symbols b , a. Subtracting the constant
component from the resulting solution gives the coefficient
of symbol a in the cost. We then repeat this step for each
symbol to derive all of the coefficients.

2The astute reader may notice that, in this case, we could also simply sub-
stitute the concrete values for the symbols before performing the analysis.
However, in many cases, we wish to consider different possible values for
the symbols. Substituting before performing the analysis would require
us to redo the analysis, which can be quite costly, for each set of values.
Substituting after the analysis only requires re-solving the LP with the new
constraints, which can be fast with modern LP solvers.

3 Basic Block Execution Bounds
In the remainder of the paper, we focus on a particular appli-
cation of symbolic resource analysis: deriving the number
of times each basic block of an OCaml program is executed.
In this section, we describe how we perform this analysis
and ensure, in a compiler-independent fashion, that the basic
blocks of the compiled code can be matched up to the bounds
in the analysis. The following two sections combine these
bounds with low-level information about each basic block
to derive resource usage bounds on the compiled code using
what we refer to as low-level resource metrics.

The essence of the basic block analysis is examining an
OCaml program to determine which subexpressions will
correspond to basic blocks of the compiled code, creating a
unique symbol for each basic block, and inserting calls to
Raml.sytick with the appropriate symbols such that each
basic block performs at least one “tick” of its symbol. The
essence of matching the basic blocks used in the analysis to
the basic blocks of the compiled code is inserting markers
before compilation which are preserved through compilation
and can be easilymatched to the symbols used by the analysis
for each basic block. In the remainder of this section, we
detail the pipeline we have implemented to perform both of
these functions.
When RaML is invoked on an input program, we run

a program transformation to annotate each basic block of
the input program with a unique annotation, in our case a
call, using OCaml’s foreign function interface (FFI), to a C
primitive startbb using as an argument a unique integer
representing the basic block. For this transformation, we
made use of the OCaml distribution’s convenient function-
ality for implementing abstract syntax tree rewriters [42,
Ch. 27.1]. We insert annotations at the starts of function and
loop bodies, conditional and match branches, and so forth. In
addition, we insert annotations after returns from function
calls and at the join points of conditionals. In order to ensure
that the value of an expression remains unchanged, we must
occasionally introduce additional bindings to temporarily
store the result of a computation and then return it after
the annotation. For example, we would transform a function
application as follows:

f x1 ... xn
becomes

let y = f x1 ... xn in startbb k; y
where y is a new compiler-generated variable and k is a
fresh ID for the basic block. This transformation introduces
additional overhead for the binding and also hinders some
optimizations performed by the compiler, so whenever pos-
sible, we attempt to avoid performing it and instead add the
call to startbb later in the basic block.
After this transformation, RaML compiles the resulting

code using the OCaml compiler appropriate to the analysis
we are performing (in Section 4, we consider the bytecode

5

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

compiler ocamlc and in Section 5, we consider the native
compiler ocamlopt). The resulting code (bytecode or binary)
is then analyzed separately to obtain appropriate costs for
each basic block; we discuss these analyses in the coming
sections. Because C primitives are opaque to the OCaml com-
piler, these annotations are preserved through compilation;
the compiled code will include an annotation of each basic
block with a number that corresponds to the symbol used for
analysis. We then take the transformed source program and
convert the FFI calls to symbolic ticks with a symbol corre-
sponding to the number of the basic block, e.g., startbb 42
becomes Raml.sytick bb42. We then run the symbolic re-
source analysis pipeline on this program to produce a bound
on the resource usage of the program in terms of the resource
usage of each basic block or, equivalently, an upper bound
on the number of times each basic block is executed. Fig-
ure 3 illustrates the entire pipeline, from parsing the source
program, through the basic block annotations, to compila-
tion and basic block analysis. Dashed lines demarcate the
components that are part of the OCaml compiler and RaML,
as well as the end-to-end automated bytecode analysis tool
we discuss in the next section.

In the remainder of the paper, we explore various ways to
combine the resulting analysis with information about each
basic block (derived from a lower-level resource analysis per-
formed on the compiled, annotated code) to predict resource
usage properties of the whole program. The soundness of
these analyses makes some assumptions about the compiler,
for example that it does not introduce additional basic blocks
not present in the annotated source code. In the remainder of
this section, we formalize the assumptions and discuss how
reasonable they are in the context of real-world compilers.

3.1 Soundness Assumptions
Formalization of Assumptions We formalize several as-
sumptions about a compiler by assuming evaluation models
for both source and target code, and modeling a compiler as
an abstract transformation between source and target pro-
grams. We relate the source- and target-level evaluations
using traces, which record the operations performed using a
set of labels. Assume we have a set of labels Labels contain-
ing, at a minimum, {jump} ∪ {tick(s) | s ∈ S}, where jump
records a jump instruction and tick(s) records a tick annota-
tion of a symbol s drawn from a global set S of symbols. A
trace is a sequence of labels l1 :: . . . :: ln−1. We use metavari-
ables of the form l for labels and T for traces.
We write e ⇓ T to indicate that the source expression e

evaluates, under an unspecified semantics, with a traceT . We
model the evaluation of compiled code using an abstract ma-
chine model. Amachine consists of a set of machine statesD
together with a labeled transition relation 7→: D×D×Labels.
An execution of a program on a machine consists of a se-

quence of transitions D1
l17→ . . . ln−17→ Dn where D1, . . . ,Dn ∈

OCaml Parser

Input
Code

Basic Block
Annotation

Type inference

Symbolic Resource
Analysis

Annotated
Binary

OCaml compilation

Annotated
Bytecode

Low-level Resource Analysis

Basic
Block
Counts

BB
Cycle

Counts

BB
Inst.

Counts

Total
Cycle
Count

Total
Inst.

Count

OCaml
RaML

End-to-end bytecode
Tool (Section 3)

Figure 3. A diagram of the analysis pipeline showing the
basic block analysis as well as the low-level analyses of Sec-
tion 4 (inside our tool, on OCaml bytecode) and Section 5
(external to our tool, on native ARM code).

D and l1, . . . , ln−1 ∈ Labels. For such an execution, we can
take the sequence of labels T = l1 :: . . . :: ln−1 to be a trace.
We will write a machine definition as a triple (D, Labels, 7→)
of its state set, its label set and its transition relation. Given
a machine (D, Labels, 7→), we model a compiler as a func-
tion JeK : D from source expressions to machine states.

6

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

Let e { e ′ | S denote that e ′ is the source program ob-
tained by annotating the basic blocks of e using the procedure
described in this section, where S is the set of basic block
symbols used in the process. The correctness of our annota-
tion procedure implies that if e { e ′ | S and e ′ ⇓ T , thenT =
T0 :: jump :: . . . :: Tn−1 :: jump :: Tn where T0, . . . ,Tn
contain no jump instructions and each Ti contains at least
one tick instruction. In other words, every basic block of the
program contains an annotation. Note that we do not assume
here that the basic blocks of source-level program evaluation
correspond to basic blocks of the compiled program; this will
be explicitly formalized as a compiler assumption below.
Finally, we assume a resource metric M : Labels → Costs

that records the cost of an operation. Resourcemetrics extend
naturally to traces: K(l1 :: . . . :: ln) =

∑n
i=1 K(li) .

Using the above definitions, we formalize the compiler
assumptions made by our analyses. We first assume that,
for any expression e , the trace of an execution of JeK can be
matched up to the execution trace of e so that tick annota-
tions instructions in the source-level execution correspond
one-or-more-to-one to tick annotations in the low-level exe-
cution. This implies that each basic block is executed at most
as many times in the compiled program as in the source
program.

Definition 1. A compiler J·K is annotation-preserving if for
any expression e , if

e ⇓ T1 :: tick(s1) :: T2 :: . . . :: Tn−1 :: tick(sn) :: Tn
then

JeK
l17→ D1

l27→ D2 7→∗ Dm−1
lm7→ Dm

and
l1 :: . . . :: lm = T ′

1 :: tick(s1) :: T ′
2

:: . . . :: T ′
n−1 :: tick(sn) :: T ′

n

where T ′
1 , . . . ,T

′
n contain no ticks of symbols in {s1, . . . , sn}.

A compiler is block-preserving if, for any expression e
the trace of an execution of JeK can be matched up to the
execution trace of e so that jump instructions and tick anno-
tations instructions in the source-level execution correspond
one-to-one to jump instructions and tick annotations in the
low-level execution. Basic blocks are defined by the locations
of jumps and annotated by ticks, so this implies that the basic
block structure is the same between the two executions and
that the tick annotations are preserved by the compiler.

Definition 2. A compiler J·K is block-preserving if for any
expression e , if

e ⇓ T1 :: tick(s1) :: T2 :: jump ::
. . . :: jump :: T2n−1 :: tick(sn) :: T2n

where T1, . . . ,T2n contain no jump instructions then

JeK
l17→ D1

l27→ D2 7→∗ Dm−1
lm7→ Dm

and
l1 :: . . . :: lm = T ′

1 :: tick(s1) :: T ′
2 :: jump

:: . . . :: jump :: T ′
2n−1 :: tick(sn) :: T ′

2n

where T ′
1 , . . . ,T

′
2n contain no jump instructions.

We also require that the compiler is bounded, meaning that
there is a finite bound on how many steps the execution of a
single basic block is allowed to take. This does not require
that a compiled program terminates—indeed, if an expres-
sion e is non-terminating then under any block-preserving
compiler, JeK is required to not terminate. The boundedness
requirement simply means that any unbounded execution is
executing basic blocks an unbounded number of times, not
a single basic block of unbounded length.

Definition 3. A block-preserving compiler J·K is bounded
if for any expressions e and e ′ such that e { e ′ | S and any
low-level cost metric K , there exist costs Cs for each s ∈ S
such that if

Je ′K
l17→ D1

l27→ D2 7→∗ Dm−1
lm7→ Dm

and
l1 :: . . . :: lm = L1 :: tick(s1) :: L2 :: jump1

:: . . . :: jumpn−1 :: L2n−1 :: tick(sn) :: L2n
whereL1, . . . ,L2n contain no jump instructions, thenK(L2n−1)+
K(L2n) ≤ Csn and for all i ∈ [1,n − 1], we have K(L2i−1) +
K(L2i) + K(jumpi) ≤ Csi

Finally, we require that the annotation algorithm can only
increase the cost of the code.

Definition 4. A compiler J·K is expanding if, for any e and e ′
such that e { e ′ | S, if

Je ′K
l17→ D1

l27→ D2 7→∗ Dn−1
ln7→ Dn

and
l1 :: ... :: ln = L1 :: tick(s1) :: L2 :: ... :: Lm−1 :: tick(sm−1) :: Lm
where L1, . . . ,Lm contain no tick annotations then

JeK
l ′17→ D ′

1
l ′27→ D ′

2 7→∗ Dk−1′
l ′k7→ D ′

k

where for any K ,

K(l ′1 :: . . . :: l ′k) ≤
m∑
i=1

K(Li)

Discussion of Assumptions We have found the assump-
tions describe in the previous subsection to hold in practice
on the two compilers we have examined, and believe them
to hold for many other real-world compilers as well. The
soundness of the analysis is surprisingly robust to compiler
optimizations, including those that would appear to disrupt
the basic block structure of the code. For example, if the
body of a function is annotated as bb25 and this function is
inlined into several other basic blocks by the compiler, the
low-level analysis will correctly find the cost of those basic

7

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

blocks including the inlined function body. The annotation
for bb25 will appear within each of these basic blocks, but
having additional annotations in a basic block is not harmful.
Furthermore, the low-level analysis will find bb25 itself to
have no cost, so the cost of the function will not be double-
counted. Some compiler transformations may, however, in-
troduce some imprecision into the analysis. For example,
if bb38 corresponds to the body of a loop with M instruc-
tions that is unrolled by the compiler, the low-level analysis
might find bb38 to have 2M instructions. The basic block
analysis, however, will still believe that the loop runs for N
iterations rather than N /2. For the compilers we examine in
this paper, we have found such imprecisions to be small, as
we demonstrate in the evaluations of the individual analyses.
We additionally assume that the annotation process does
not result in code with a shorter execution time than the
unannotated code. This is a broadly reasonable assumption
for most compilers, as we only add code and we do so in
such a way that should not enable new optimizations (indeed,
as discussed above, some of our annotations inhibit certain
optimizations, but through careful engineering of the anno-
tation process, we have kept to a minimum the overhead
that results from these lost optimizations).

4 Case Study: OCaml Bytecode Compiler
This section presents the first of two case studies in com-
bining the basic block execution counts from the previous
section with low-level information about each basic block. In
this first study, we use the analysis to estimate the number of
instructions executed by the OCaml virtual machine on a pro-
gram compiled with the OCaml bytecode compiler ocamlc.
We focus on ocamlc in this section because it generates eas-
ily machine-readable code for which we could easily develop
tooling to analyze the basic blocks. A similar analysis would
be possible for the native compiler (e.g., for counting x86
instructions), but would require tools to parse and analyze
the binaries for the desired target platform.
The soundness of the analysis in this section depends

on the assumptions described in Section 3.1. Although we
have not formally proven that these assumptions are valid
for ocamlc, we believe this to be the case based on extensive
experience with the compiler and hand-examination of the
compiler source code.

As part of this case study, we implemented a tool that ac-
cepts a compiled OCaml file, parses the bytecode instructions,
splits the instructions into basic blocks and applies a “low-
level resource metric” to each basic block, outputting the re-
sulting cost for each basic block. A low-level resource metric
for OCaml bytecode is a function from bytecode instructions
to (possibly symbolic) costs. We have implemented two such
resource metrics. The first, vmsteps, counts the instructions;
the resulting bound is an upper bound on the number of
steps taken by the virtual machine during execution. In case

instructions do not take equal time to execute, it may be help-
ful to break this count down by type of instruction; as an
example, we provide a second resource metric, vmap, which
returns the number of function applications.

Combining the above analysis with the basic block analy-
sis of the previous section results in a full end-to-end system
that accepts an OCaml program and reports the resource
usage based on the chosen low-level resource metric. RaML,
and thus our extended analysis tool, is able to report costs
both for a whole program and for individual functions; the
latter are parametrized by the size and structure of the func-
tion arguments. After basic block instrumentation, the in-
strumented program is passed through the RaML compiler
pipeline, followed by the symbolic resource analysis. The
result of this analysis is an upper bound on the number of
executions of each basic block. Separately, our pipeline com-
piles the instrumented program using ocamlc and interprets
the compiled program using the tool described above and an-
alyzes the basic blocks, which are annotated in the compiled
program, using the chosen low-level resource metric.

We evaluated our end-to-end resource analysis for OCaml
bytecode programs on a number of RaML benchmarks, mostly
adapted from the benchmark suite available on the RaML
website [27]. The benchmarks used, with brief descriptions,
are listed in Table 1. The table also shows the number of ba-
sic blocks annotated by our program transformation for the
example program. For each benchmark, we analyze the cost
of the “main” function of the benchmark, parametrized by
the program inputs (e.g., the cost of the Quicksort function
in terms of the size of the list).
Tables 2 and 3 give the analysis results for the example

functions, in terms of the input size parameters. The tables
also give the analysis time for each analysis. We also com-
piled each example file (instrumented with the basic block
annotations) with the unmodified ocamlc compiler, and ran
the compiled files using INRIA’s standard ocamlrun byte-
code interpreter. When run in debug mode with the proper
options, ocamlrun produces a trace of the instructions ex-
ecuted. We then processed this trace using standard GNU
utilities to determine the actual values of each of the low-
level resource metrics for the execution. The results in the
two tables show that the analysis is quite precise; in many
cases it predicts the cost exactly.

5 Case Study: Combining with WCET for
Basic Blocks

In this case study, we use worst-case execution time (WCET)
analysis for the low-level analysis of the compiled code. We
discuss WCET in more detail in Section 6. Briefly, WCET
tools analyze programs, generally at the level of machine
code, to derive sound upper bounds on execution time. These
tools use detailed hardware models to simulate the behavior

8

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

Benchmark Input Size Parameters Blocks Description

append |L1 |, |L2 | 9 Append lists L1 and L2 (with lengths |L1 | and |L2 |)
calculator X ,L,N ,K 21 Evaluate a symbolic arithmetic expression with X subtractions, L addi-

tions and N unary numbers ≤ K .
isort M 27 SortM integers using insertion sort
quicksort M 34 SortM integers using Quicksort
Table 1. Example programs used for evaluation, along with the number of basic blocks in the instrumented code.

File Analysis Result (instructions) Actual Cost (instructions) Analysis Time (s)

append 8 + 20|L1 | 8 + 20|L1 | 0.06
quicksort 7 + 33.5M + 32.5M2 7 + 32.5M + 32.5M2 1.04
isort 7 + 13M + 18M2 7 + 13M + 18M2 0.07
calculator 8 + 46KLN + 30.5KN + 33L + 33X 8 + 33L + 33X + 30.5KN + 6KLN 12.18

Table 2. Analysis results and times for low-level metric vmsteps in terms of input size.

File Analysis Result (applications) Actual Cost (applications) Analysis Time (s)

append |L1 | |L1 | 0.06
quicksort 3M +M2 3M +M2 1.01
isort 1.5M + 0.5M2 1.5M + 0.5M2 0.08
calculator 2KLN + 1.5KN + 2L + 2X 11.94

Table 3. Analysis results and times for low-level metric vmap in terms of input size.

of memory, caches and instruction pipelines to predict pre-
cise wall-clock times for execution on real-time hardware. In
general, these tools are quite good at deriving timing bounds
for straight-line code but struggle with features such as indi-
rect jumps, loops and recursion, which are present in many
real-world programs but especially prevalent in functional
languages such as OCaml. These tools often require users
to annotate targets of indirect jumps as well as bounds on
the number of iterations of a loop or recursive instances
of a function. Conversely, the extension of RaML we devel-
oped (Section 3) derives upper bounds on the number of
executions of each basic block, which implies a great deal of
information about loop and recursion bounds.

The above discussion suggests twoways to combineWCET
information with our basic block analysis. First, we can use
a WCET tool to derive upper bounds on the execution time
of each basic block and substitute these times into the basic
block analysis results, much as we did with the instruction
counts in the previous case study. Second, we can use the
basic block execution counts derived by our analysis to au-
tomatically generate annotations that can be used to guide a
WCET tool, allowing it to generate more precise results. In
the remainder of this section, we explore both approaches,
and compare the two quantitatively and qualitatively.

For the WCET analyses in this section, we use the aiT
static timing analysis tool developed by AbsInt Angewandte
Informatik GmbH. This is a commercial-grade, state-of-the-
art tool used widely in industry, including for the analysis of
real-time safety-critical software. The aiT tool targets many
platforms; we use the version for the 32-bit ARM architecture.
To apply this tool to our example programs, we compile the
(basic-block-annotated) programs for a 32-bit ARM target
using OCaml’s native code compiler ocamlopt 3.

In our timing analyses, we assume that all memory alloca-
tions succeed and that garbage collection is never invoked.
Timing analysis for garbage collection is an interesting re-
search question in itself and is outside the scope of this paper.
We also do not compute the cost of the FFI calls that are used
to annotate basic blocks, instead replacing this cost with a
small, fixed number of cycles. As a result, the WCET analysis
we perform is sound for a version of the annotated binary
that has been altered (using standard binary rewriting tech-
niques) to not perform the FFI calls. We also note that we are
unable to actually run the example programs on the hard-
ware targeted by aiT’s analysis, as the timing analysis tool

3The aiT software officially only supports a fixed set of C compilers. How-
ever, ocamlopt follows relatively standard conventions and emits code that
largely resembles the output of standard compilers such as gcc, so we are
able to apply the aiT analysis after a handful of manual annotations.

9

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

targets only very basic microcontrollers; porting the OCaml
ecosystem to such hardware poses substantial challenges.

5.1 Worst-case Execution Time for Basic Blocks
In our first set of experiments, we used aiT to derive WCET
bounds for each basic block of our example programs. For
each example, we manually examined the disassembled ARM
binaries and compiled a list of basic blocks. For each basic
block, we annotated the memory addresses of the start and
end of the block, as well as any additional user annotations
that would be necessary to help aiT analyze the code for
the basic block (e.g., indicating that allocations succeed).
Compiling this data took approximately 5-15 minutes per
example and likely could be largely or entirely automated.
From this basic block data, we used a custom-made script to
automatically set up an aiT analysis for each basic block. We
ran the resulting analyses (the analysis of each basic block
took under 1 second) and parsed the results into worst-case
cycle counts for each basic block.

We ran the basic block analysis of Section 3 on each exam-
ple, this time instructing it to output the execution counts for
each basic block (rather than preemptively substitute instruc-
tion costs, as in the previous case study) and substituted the
cycle count for each basic block into the result. Table 4 shows
the results of the analysis, in terms of the input sizes, as well
as the time taken by the basic block analysis. These times
are greater than those of Table 2 because of the additional
cost of determining the coefficients for each symbol.
To put these results into context, we paired each bench-

mark program with a concrete input and ran the aiT tool
on the whole program (aiT is not able to reason about costs
symbolically in terms of input size), with manual control-
flow annotations to inform aiT of branch information and
recursion bounds (information which our basic block anal-
ysis derives automatically). The results, including the size
of the input and the instantiation of the bounds of Table 4
to these input sizes, are shown in Table 5. Figure 4 shows a
more detailed plot for the function quicksort that compares
the symbolic bound with the aiT result for different input
sizes. The cycle counts predicted by our analysis comewithin
30% of the whole-program aiT results. We find this accuracy
acceptable, given that the whole-program aiT analysis is able
to make use of information such as what data remains in
cache between basic blocks. Our analysis, by contrast, must
assume the worst-case time for each instance of each ba-
sic block. Still, the analysis provides a similarly precise and
much less effortful alternative to manual annotations, which
can be time-consuming and error-prone to provide.

The soundness of the above analysis depends on the same
assumptions as the analysis from the previous section. Again,
we believe that these assumptions hold for ocamlopt.

Figure 4. Concrete aiT clock-cycle bounds (red points) for
different input sizesand the symbolic bound derived by the
combined resource analysis (blue line) for quicksort.

5.2 Deriving Flow Constraints from Basic Block
Analysis

As we discussed at the end of the previous subsection, aiT
(andWCET tools in general) work better on a whole program,
assuming jump targets and loop bounds are predictable, than
on individual basic blocks because they can make use of ad-
ditional cache and pipeline information. This motivates our
next set of experiments, in which we use the information
returned by the basic block analysis to generate aiT annota-
tions (of the form we manually inserted for the comparison
in Table 5) automatically. Recall that our basic block analy-
sis generates an upper bound on the resource usage of the
program in terms of the resource usage of each basic block.
In this bound, the coefficient of each basic block is an upper
bound on the number of times that basic block executes. We
use these bounds, together with the code addresses of each
basic block, to generate, for each benchmark, a set of “flow
constraints” that indicate to aiT how many times execution
passes a particular program point. We then ran the aiT tool
on each benchmark with the generated constraints in order
to obtain upper bounds on the number of cycles for each
program execution.

Table 6 shows the results of these analyses for the problem
sizes given in Table 5, together with the aiT results with the
manual annotations derived for the previous set of experi-
ments. In each case except calculator (for which we were not
even able to obtain tight bounds manually), our tool automat-
ically generated constraints that resulted in identical WCET
bounds. Thus, in these benchmarks, by using the results of
the basic block analysis, we were able to match the results
obtained with hand calculations and manual annotations,
which are tedious and error-prone.

4Using the default analysis parameters, the WCET calculation for the cal-
culator example runs out of memory, so we ran it using a limited call

10

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

Benchmark Analysis Result (cycles) BB Analysis Time (s)

append 357 + 687|L1 | 0.19
quicksort 1109M2 + 855M + 323 1.95
isort 468.5M2 + 734.5M + 327 0.21
calculator 1472KLN + 1018KN + 1533L + 1024.5X + 402 89.69

Table 4. Analysis results and times for substituting basic-block cycle counts.

File Input Size Instantiation (cycles) WCET w/ manual annotations (cycles)

append |L1 | = 5 3792 3112
quicksort M = 3 12869 10065
isort M = 3 6747 5456
calculator (X ,L,N ,K) = (1, 3, 5, 2) 60365.5 29950

Table 5. Instantiations of the cycle count results to concrete inputs, compared to aiT results with manual annotations.

WCET with... (cycles)
Benchmark Automatic Constraints Manual Constraints

append 3112 3112
quicksort 10065 10065
isort 5456 5456
calculator 554544 29950

Table 6.WCET using basic block results as flow constraints.

5.3 Comparison of the Two Approaches
In this section, we have presented two ways of combining
our basic block analysis for OCaml programs with theWCET
analysis provided by the aiT tool. In the first subsection, we
gathered WCET bounds for each basic block and substituted
these into the basic block analysis results to obtain upper
bounds on cycle count for each example in terms of the
input size. In the second subsection, we used the basic block
analysis to bound the number of times each basic block is
executed and used these results as annotations for aiT in
computing a WCET bound for the cycle count of the whole
program. For reference, the bounds resulting from the two
approaches (“substitution” and “constraints”, respectively)
are listed in Table 7.
As discussed earlier, the constraint-generation approach

results in tighter bounds. On the other hand, the substitution
approach is able to produce bounds that are parametrized
by the input size while WCET, at least with the tool used in
this paper, is constrained to consider a particular input. In
addition, the substitution approach required minimal human
effort: we took under approximately 15 minutes per exam-
ple to generate the input required for the WCET analysis

string length and aiT’s “local worst-case” option, which is faster and less
memory-intensive but does not guarantee soundness.

of the basic blocks, and believe this effort could be largely
automated. On the other hand, even using the automatically
generated flow constraints, analyzing a whole program using
a WCET tool requires some manual effort to provide targets
of indirect jumps, sanity-check the results of the analysis
and add more annotations as necessary to guide the analysis.
This effort corresponded to approximately 15-30 additional
minutes per benchmark.

An additional advantage of the constraint-generation ap-
proach is that it requires fewer assumptions on the compiler:
the compiler need only be annotation-preserving, i.e., the
predicted upper bound on the number of executions of each
basic block must be sound. This assumption guarantees that
the generated flow constraints are sound, and so we then
simply need to trust the WCET analysis is sound (which is
proven in the case of many WCET tools).

6 Related Work
AutomaticAmortizedResourceAnalysis Automatic amor-
tized resource analysis (AARA) has been developed by Hof-
mann and Jost [33] to automatically derive linear heap-space
bounds for first-order functional programs. It has subse-
quently been extended to linear bounds for higher-order
functional programs [36], polynomial bounds for first-order
programs [28, 32], and polynomial bounds for higher-order
programs [30]. AARA has also been applied beyond purely
functional programming. For instance, it has been integrated
with separation logic [6] and type systems for object-oriented
languages [34]. Moreover, AARA has been applied to derive
resource bounds for programs with references [43], impera-
tive integer programs [16, 17], term rewrite systems [35], and
probabilistic programs [45]. These works focus on bounds
on the source level that are not connected to the compiled
code. Their cost models are also not symbolic.

11

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

WCET with... (cycles)
File Substitution Automatic Constraints Manual Constraints

append 3792 3112 3112
quicksort 12869 10065 10065
isort 6747 5456 5456
calculator 60365.5 55454 29950

Table 7. A comparison of the two approaches to combining WCET with the basic block analysis.

Previous work on the Hume language in the EmBounded
project [26, 36, 37] shares some of the goals this paper. Hume
is a functional programming language that is equipped with
a linear AARA that can derive bounds on the compiled code.
The key idea is to identify snippets of machine code that
correspond to high-level language constructs and represent
the cost of these snippets through constants in a source-level
cost model. The approach presented in this paper is more
flexible and can link entire basic blocks in the compiled code
with source-level cost annotations. As a result, it can take
into account compiler optimizations and derive bounds that
apply to custom target-code resource metrics. Additionally,
we implemented our technique for OCaml, a real-world opti-
mizing compiler, instead of a research prototype like Hume.

Source-Level ResourceAnalysis Source level resource anal-
ysis has been extensively studied. Apart from AARA, there
are techniques based on sized types [52], linear dependent
types [40, 41], refinement types [18, 19, 53], other annotated
type systems [20, 21], and defunctionalization [7]. Other
techniques rely on extracting and solving recurrence rela-
tions [1, 2, 11, 22, 23, 38, 39, 54], abstract interpretation [12,
25, 51, 56], and techniques from term rewriting [8, 13, 48]. In
contrast to our work, all of these techniques derive bounds
that apply to abstract source-level cost models and do not
consider compilation.

Worst-Case ExecutionTime (WCET)Analysis There has
also been a large body of work on WCET analysis that oper-
ates directly on the machine code [55]. In contrast to source-
level analyses, WCET analyses do usually not yield sym-
bolic bounds but focus on modeling caches and instruction
pipelines of specific hardware. However, there are techniques
that can yield symbolic bounds using a polyhedral abstrac-
tion [14, 44]. Altmeyer et al. [3, 4] reported a similar approach.
Recently, Ballabriga et al. [9] introduced a method based on
symbolic computation over the control flow graph. Since
these techniques operate on low-level code, the control flow
is more difficult to analyze and type information that can
guide the analysis is missing. As a result, these techniques
cannot derive bounds for functions or loops that traverse
data structures and are less scalable and compositional than
source-level techniques.

Resource Preserving Compilation There has been little
previous work combining source-level and target-level re-
source analysis during compilation. Bedin França et al. [10]
have described and implemented a verified compiler tech-
nique for the sound transport of source-level annotations to
compiled code. However, these annotations are limited to
memory assertions and cannot directly include loop bounds
or other quantitative properties.
Closer to our work is previous work on resource aware

compilation for C programs. Carbonneaux et al. [15] have
described and implemented a verified technique for compil-
ing stack-space bounds from the C level to assembly code.
Similarly, the Certified Complexity (CerCo) project [5] has
developed a C compiler that can transport resource bounds
from the source to the target level. Our work uses similar
techniques to the aforementioned projects. However, we im-
plemented the technique for a functional language and an
existing optimizing compiler, support higher-order functions,
and combine compilation with a sophisticated source-level
cost analysis that can automatically derive symbolic bounds.
Paraskevopoulou and Appel [50] showed that an implemen-
tation of closure conversion (in a compilation pipeline from
a functional language to a subset of C) preserves space and
time guarantees, but their approach does not extend to other
phases of compilation nor other resource metrics.

7 Conclusion
In this paper, we described a technique for deriving resource
bounds of compiled code by combining resource bounds
inferred at the source level with bounds inferred at the target
level. This combines the best of both worlds between using
type information at the source level tomake sound inferences
about the control flow of the program and using precise
timing information available at the target level to produce
bounds that match real-world executions. Our experiments
indicate that it is possible to derive useful symbolic and
concrete performance information at compile time.
There are several promising avenues for future work in

integrating compilation, source level resource analysis, and
target level resource analysis. An area that we plan to study
is compiler optimizations and their effect on high-level re-
source bounds. Moreover, we plan to take into account auto-
matic memory management following previous results [47].

12

Combining Source and Target Level Cost Analyses for OCaml Programs PL’19, January 01–03, 2018, New York, NY, USA

References
[1] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa,

and Germán Puebla. 2012. Automatic Inference of Resource Con-
sumption Bounds. In Logic for Programming, Artificial Intelligence, and
Reasoning, 18th Conference (LPAR’12). 1–11.

[2] Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Díez.
2015. Non-cumulative Resource Analysis. In Tools and Algorithms for
the Construction and Analysis of Systems - 21st International Conference,
(TACAS’15). 85–100.

[3] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. 2011. Precise
and Efficient Parametric Path Analysis. In Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’11). 141–150.

[4] Sebastian Altmeyer, Christian Humbert, Björn Lisper, and Reinhard
Wilhelm. 2008. Parametric Timing Analysis for Complex Architec-
tures. In 4th IEEE Internationl Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’08). 367–376.

[5] Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender,
Brian Campbell, Ilias Garnier, Antoine Madet, James McKinna, Do-
minic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas,
Claudio Sacerdoti Coen, Ian Stark, and Paolo Tranquilli. 2014. Certified
Complexity (CerCo). In Foundational and Practical Aspects of Resource
Analysis, Ugo Dal Lago and Ricardo Peña (Eds.).

[6] Robert Atkey. 2010. Amortised Resource Analysis with Separation
Logic. In 19th European Symposium on Programming (ESOP’10). 85–
103.

[7] Martin Avanzini, Ugo Dal Lago, and Georg Moser. 2012. Analysing the
Complexity of Functional Programs: Higher-Order Meets First-Order.
In 29th International Conference on Functional Programming (ICFP’15).
152–164.

[8] Martin Avanzini and Georg Moser. 2013. A Combination Framework
for Complexity. In 24th International Conference on Rewriting Tech-
niques and Applications (RTA’13). 55–70.

[9] Clément Ballabriga, Julien Forget, and Giuseppe Lipari. 2017. Symbolic
WCET Computation. ACM Trans. Embed. Comput. Syst. 17, 2 (Dec.
2017), 39:1–39:26.

[10] Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy,
Marc Pantel, and Jean Souyris. 2012. Formally Verified Optimizing
Compilation in ACG-based Flight Control Software. In Embedded Real
Time Software and Systems (ERTS 2012).

[11] Ralph Benzinger. 2004. Automated Higher-Order Complexity Analysis.
Theoretical Computer Science 318, 1-2 (2004), 79–103.

[12] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura
Kovács. 2010. ABC: Algebraic Bound Computation for Loops. In
Logic for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference (LPAR’10). 103–118.

[13] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jürgen Giesl. 2014. Alternating Runtime and Size Complexity Analysis
of Integer Programs. In Tools and Algorithms for the Construction and
Analysis of Systems: 20th International Conference (TACAS’14). 140–
155.

[14] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. 2009. An Efficient
Algorithm for Parametric WCET Calculation. In 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’09). 13–21.

[15] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and
Zhong Shao. 2014. End-to-End Verification of Stack-Space Bounds for
C Programs. In 35th Conference on Programming Language Design and
Implementation (PLDI’14). Artifact submitted and approved.

[16] Quentin Carbonneaux, Jan Hoffmann, Thomas Reps, and Zhong Shao.
2017. Automated Resource Analysis with Coq Proof Objects. In 29th
International Conference on Computer-Aided Verification (CAV’17).

[17] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compo-
sitional Certified Resource Bounds. In 36th Conference on Programming
Language Design and Implementation (PLDI’15). Artifact submitted

and approved.
[18] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan

Hoffmann. 2017. Relational Cost Analysis. In 44th Symposium on
Principles of Programming Languages (POPL’17).

[19] Ezgi Çiçek, Deepak Garg, and Umut A. Acar. 2015. Refinement Types
for Incremental Computational Complexity. In 24th European Sympo-
sium on Programming (ESOP’15). 406–431.

[20] Karl Crary and Stephanie Weirich. 2000. Resource Bound Certification.
In 27th Symposium on Principles of Programming Languages (POPL’00).
184–198.

[21] Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complex-
ity Analysis for Purely Functional Data Structures. In 35th Symposium
on Principles of Programming Languauges (POPL’08). 133–144.

[22] Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. 2012. Denota-
tional Cost Semantics for Functional Languages with Inductive Types.
In 29th International Conference on Functional Programming (ICFP’15).
140–151.

[23] Antonio Flores-Montoya and Reiner Hähnle. 2014. Resource Analysis
of Complex Programs with Cost Equations. In Programming Languages
and Systems - 12th Asian Symposium (APLAS’14). 275–295.

[24] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-gas
Conditions in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2,
OOPSLA, Article 116 (Oct. 2018), 27 pages.

[25] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009.
SPEED: Precise and Efficient Static Estimation of Program Computa-
tional Complexity. In 36th Symposium on Principles of Programming
Languauges (POPL’09). 127–139.

[26] Kevin Hammond and Greg Michaelson. 2003. Hume: A Domain-
Specific Language for Real-Time Embedded Systems. In Generative
Programming and Component Engineering, 2nd Int. Conf. (GPCE’03).
37–56.

[27] Jan Hoffmann. 2018. Resource Aware ML. http://www.raml.co
[28] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivari-

ate Amortized Resource Analysis. In 38th Symposium on Principles of
Programming Languages (POPL’11).

[29] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource
Aware ML. In 24rd International Conference on Computer Aided Verifi-
cation (CAV’12).

[30] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards
Automatic Resource Bound Analysis for OCaml. In 44th Symposium
on Principles of Programming Languages (POPL’17).

[31] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards
Automatic Resource Bound Analysis for OCaml. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2017). ACM, New York, NY, USA, 359–373. https:
//doi.org/10.1145/3009837.3009842

[32] Jan Hoffmann and Martin Hofmann. 2010. Amortized Resource Anal-
ysis with Polynomial Potential. In 19th European Symposium on Pro-
gramming (ESOP’10).

[33] Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap
Space Usage for First-Order Functional Programs. In 30th Symposium
on Principles of Programming Languages (POPL’03). 185–197.

[34] Martin Hofmann and Steffen Jost. 2006. Type-Based Amortised
Heap-Space Analysis. In 15th European Symposium on Programming
(ESOP’06). 22–37.

[35] Martin Hofmann and Georg Moser. 2015. Multivariate Amortised
Resource Analysis for Term Rewrite Systems. In 13th International
Conference on Typed Lambda Calculi and Applications (TLCA’15). 241–
256.

[36] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hof-
mann. 2010. Static Determination of Quantitative Resource Usage for
Higher-Order Programs. In 37th Symposium on Principles of Program-
ming Languages (POPL’10). 223–236.

13

http://www.raml.co
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/3009837.3009842

PL’19, January 01–03, 2018, New York, NY, USA Stefan K. Muller and Jan Hoffmann

[37] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife,
and Martin Hofmann. 2009. Carbon Credits for Resource-Bounded
Computations using Amortised Analysis. In 16th Symp. on Form. Meth.
(FM’09). 354–369.

[38] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and
Thomas W. Reps. 2017. Compositional recurrence analysis revisited.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017. 248–262.

[39] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps.
2018. Non-linear reasoning for invariant synthesis. PACMPL 2, POPL
(2018), 54:1–54:33.

[40] Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and
Relative Completeness. In 26th IEEE Symposium on Logic in Computer
Science (LICS’11). 133–142.

[41] Ugo Dal Lago and Barbara Petit. 2013. The Geometry of Types. In
40th Symposium on Principles of Programming Languages (POPL’13).
167–178.

[42] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. 2018. The OCaml system release 4.07.
INRIA.

[43] Benjamin Lichtman and Jan Hoffmann. 2017. Arrays and References
in Resource Aware ML. In 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD’17).

[44] Björn Lisper. 2003. Fully Automatic, Parametric Worst-Case Execution
Time Analysis. In 3rd International Workshop on Worst-Case Execution
Time Analysis (WCET’03). 99–102.

[45] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018.
Bounded Expectations: Resource Analysis for Probabilistic Programs.
In 39th Conference on Programming Language Design and Implementa-
tion (PLDI’18).

[46] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan
Hoffmann. 2017. Verifying and Synthesizing Constant-Resource Im-
plementations with Types. In 38th IEEE Symposium on Security and
Privacy (S&P ’17).

[47] Yue Niu and Jan Hoffmann. 2018. Automatic Space Bound Analysis
for Functional Programs with Garbage Collection. In 22nd Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’18).

[48] Lars Noschinski, Fabian Emmes, and Jürgen Giesl. 2013. Analyzing
Innermost Runtime Complexity of Term Rewriting by Dependency
Pairs. Journal of Automated Reasoning 51, 1 (2013), 27–56.

[49] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of
Asymptotic Performance Bugs in Collection Traversals. In Conference
on Programming Language Design and Implementation (PLDI’15). 369–
378.

[50] Zoe Paraskevopoulou andAndrewW. Appel. 2019. Closure Conversion
is Safe for Space. Proc. ACM Program. Lang. 3, ICFP, Article 83 (July
2019), 29 pages. https://doi.org/10.1145/3341687

[51] Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A Simple and
Scalable Approach to Bound Analysis and Amortized Complexity
Analysis. In Computer Aided Verification - 26th International Conference
(CAV’14). 743–759.

[52] Pedro Vasconcelos. 2008. Space Cost Analysis Using Sized Types. Ph.D.
Dissertation. School of Computer Science, University of St Andrews.

[53] Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional
Language for Practical Complexity Analysis with Invariants. In OOP-
SLA.

[54] Ben Wegbreit. 1975. Mechanical Program Analysis. Commun. ACM
18, 9 (1975), 528–539.

[55] Reinhard Wilhelm et al. 2008. The Worst-Case Execution-Time Prob-
lem — Overview of Methods and Survey of Tools. ACM Trans. Embed-
ded Comput. Syst. 7, 3 (2008).

[56] Florian Zuleger, Moritz Sinn, Sumit Gulwani, and Helmut Veith. 2011.
Bound Analysis of Imperative Programs with the Size-change Ab-
straction. In 18th International Static Analysis Symposium (SAS’11).
280–297.

14

https://doi.org/10.1145/3341687

	Abstract
	1 Introduction
	2 Symbolic Resource Analysis
	2.1 Implementation

	3 Basic Block Execution Bounds
	3.1 Soundness Assumptions

	4 Case Study: OCaml Bytecode Compiler
	5 Case Study: Combining with WCET for Basic Blocks
	5.1 Worst-case Execution Time for Basic Blocks
	5.2 Deriving Flow Constraints from Basic Block Analysis
	5.3 Comparison of the Two Approaches

	6 Related Work
	7 Conclusion
	References

