Web Accessibility for Low Bandwidth Input

Jennifer Mankoff!

'EECS Dept.
UC Berkeley
{jmankoff,dey }Qcs.berkeley.edu

ABSTRACT

One of the first, most common, and most useful appli-
cations that today’s computer users access is the World
Wide Web (web). One population of users for whom the
web is especially important is those with motor disabili-
ties, because it may enable them to do things that they
might not otherwise be able to do: shopping, getting
an education, running a business. This is particularly
important for low bandwidth users: users with such lim-
ited motor and speech that they can only produce one
or two signals when communicating with a computer.
We present requirements for low bandwidth web acces-
sibility, and two tools that address these requirements.
The first is a modified web browser, the second a proxy
that modifies HTML. Both work without requiring web
page authors to modify their pages.

KEYWORDS: WWW, motor disability, low bandwidth in-
put

INTRODUCTION

The goal of universal access is to make services and in-
formation accessible to everyone. One of the first, most
common, and most useful of these is the World Wide
Web (web). Because of this, much research in accessi-
bility has focused on developing guidelines and tools in
support of universal web access. Examples include ac-
cessibility guidelines [37, 32] and numerous services for
vision-impaired users [27, BT, IR, P, BR, 9, [5, 34, [4], the
people most obviously in need of support when dealing
with the graphics and text contained in web pages.

While a few of these systems consider motor impair-
ments [[4, 05], none of the guidelines or tools address
the needs of low bandwidth users: users who can only
produce one or two signals when communicating with
a computer. For example, the W3C recommendation
for device independence [37, Guideline 9.] states that:
“Generally, pages that allow keyboard interaction are
also accessible through speech input or a command line
interface.” Although the number of low bandwidth users
is small compared to the number of people with vision
impairments, its need is great. A motor-impaired user

Melody Moore?
2Computer Information Systems Dept.
Georgia State University
moore@gsu.edu

Udit Batra3 Anind Dey!

3College of Computing
Georgia Tech
udit@cc.gatech.edu

generally has limited mobility, and access to the services
and resources on the web can give him or her increased
independence. Our goal is to improve the accessibility
of the web to people with motor disabilities who can-
not easily use a keyboard, speech, or a mouse or mouse
substitute.

More than 85% of elders (people over 65) have some
physical impairment [8]. A variety of degenerative dis-
ease and other conditions or injuries may impair motor
function for people of all ages [22]. Example disabili-
ties include cerebral palsy, late-stage ALS (Lou Gehrig’s
disease), brain stem strokes, and certain spinal-cord in-
juries. Many of these disabilities also result in impaired
speech, leaving few options for communicating with a
computer. People with motor impairments use a vari-
ety of creative solutions to control their environment and
computers. The particular ones that this work is most
applicable to are “switch” interfaces. In addition to the
traditional button-activated switches, examples include
sip-puff, or pneumatic, switches in which air is used to
flip a switch [22]; switches in which a muscle such as the
eyebrow is used as a signal [22]; and EEG or other “brain
computer interfaces” in which the user creates signals by
controlling her thoughts in different ways [G]. A user
may have one or more such switches. Unlike a mouse,
these input devices produce discrete signals. They may
be compared to a very limited keyboard, with as little
as one key.

Web browsers and pages are not built to be accessible to
such a small number of input signals. They are generally
designed with a mouse in mind, and are not very acces-
sible even to users with a standard and keyboard but
no mouse. The mouse is normally used to click on links,
move the scroll bar, and control navigation forward and
back in the history. Although all of these actions have
keyboard counterparts (for example: tab, return, page
up, page down, alt left and alt right, in Netscape™),
they are much easier to do with a mouse. For example,
the user must tab through the links in a page in se-
quence, resulting in a linear access time, often increased
by the repeating navigational links present at the top of
each page in many web sites. Suppose the user opens a
web page, uses the space bar to page down, and identi-
fies a link of interest. She will have to tab through all

of the links starting at the top of the page to get to it,
because use of the space bar does not change the current
link focus, which defaults to the first link of the page.
She may even lose her spot as the browser moves the
viewpoint to match each link she tabs through.

Support for low bandwidth users

Given the large number of web pages in existence to-
day, the most promising approach to addressing prob-
lems such as these is to automatically add accessibility
features to web pages. We have identified requirements
for users with severe motor impairments and have cre-
ated tools that automatically make the adjustments nec-
essary to provide access to the web.

In all, we have identified seven requirements for such a
tool, ranging from navigation support to dealing with
forms. We present two approaches to automating sup-
port for these requirements. One is a browser interface
that requires no changes to the HTML of web pages.
The other is a proxy server that modifies HT'ML to be
more accessible from any browser. Neither requires the
authors of web pages to make changes.

The first approach allows finer control over modifica-
tions and provides a platform on which we can experi-
ment with different mappings between input signals and
action based on errors and fatigue. The second approach
is platform independent, and available to any user with-
out requiring that any special software be installed.

Automatic approaches are necessary because it is unre-
alistic to expect that web designers will hand-code the
necessary modifications into their websites. There is a
rich history of automatic approaches to supporting ac-
cessibility [I5, B4, 02, PR, BH, 31, 08, Z5]. In the future,
we hope to impact accessibility guidelines, so that web
pages and other applications can incorporate hooks that
will make low bandwidth accessibility more feasible.

This work has applications outside of assistive technol-
ogy. Other users with limited input capabilities include
wearable computer and mobile phone users. In sum-
mary, the contribution of our work is a set of techniques
for making the web more accessible in conditions where
input is limited to low bandwidths and errors are likely.
In contrast, past work has looked at low bandwidth or
alternative output modes, with some related input issues
that overlap and inform our work.

Overview

We start with an overview of related work. We then
discuss low bandwidth input in more depth, giving ex-
amples of current solutions to supporting direct manipu-
lation with limited input. Next, we give a set of require-
ments for low bandwidth web accessibility and discuss
two separate systems we developed to address these re-
quirements. First, we describe a modified web browser.

Second, we illustrate how a proxy server can automat-
ically apply them. An ideal interface might combine
both of these solutions, but there are trade-offs in their
portability. In our future work section, we discuss how
user modeling can enhance these tools. We conclude
with a discussion of how this work fits into our larger
accessibility agenda.

BACKGROUND

A significant body of work in web page accessibility ex-
ists, including guidelines for accessibility [37], automatic
evaluation tools [3], and transformations that help dis-
abled users to access web pages [27, B, [8, B, BR, 9, 5,
34,). However, this work was generally done with
vision impairments in mind, and assumes the use of a
mouse and keyboard, or at least a keyboard. Those sys-
tems that do support motor impaired users generally
assume some use of a mouse or keyboard [i4, 05]. In
contrast, we assume unimpaired vision, but much more
limited motor control.

Some of the problems solved by past work influence our
own. For example, the Bobby system looks at the order
in which text is read by screen readers [B]. Control of or-
der is also important as users tab through links because
it impacts the time it will take to get to different links.
Kennel et al. insert “references” to support navigation
within the current document, a technique we also use
[IR]. This allows a user to skip to portions of the docu-
ment most interesting to him, and skip over things like
long lists of links that take time to navigate through.
Navigation work outside the accessibility domain has
also informed our research. For example, Zellweger et
al. and Miura et al. have looked at ways to give visual
hints about the contents of link targets [39, 25]. This is
especially important for a user who must spend signifi-
cant time and effort performing error recover if he selects
a link and visits a page that turns out to be uninterest-
ing. Kaasinen et al. have designed tools that transform
HTML for small displays [[7]. For example, a single
document may be split into an index page and multiple
content pages (an approach also supported by Huang
and Sundaresan for users with disabilities [I&]). Our
work also involves some similar transformations, but we
have the advantage of much more screen space than the
palm and cellphone-sized displays this work usually tar-
gets. Most important for us is the work in automatic
transformations, a difficult problem sidestepped by most
commercial systems, which are hand-coded. Systems
that automatically modify visual features for low-vision
and blind accessibility helped to provide the inspiration
for this work [I&, B4, 2, PR, B4, B1, IR, 25].

Some existing work has looked at low bandwidth input
to user interfaces. For example, Colven and Lysley pro-
pose an approach to making Windows more accessible

to switch user interfaces [6]. O’Neill et al. present an
evaluation of scanning user interfaces [80]. Our own past
work proposed using logical control for low bandwidth
input [26]. Finally, much work has been done in word-
prediction, where limited signals are being mapped onto
the very large space of the English language [@, 00, 4],
or other text commands [[]. We build off of this past
work but focus on the web-browsing task in particular.

LOW BANDWIDTH INPUT

This work is an investigation into low bandwidth in-
put and the associated interface issues for web brows-
ing. User bandwidth is a measure of the information
processing rate for a human input or output channel.
Bandwidth (in bits/second) is a function of task diffi-
culty and task completion time. Difficulty is a measure
of the number of bits of information being processed. If
task completion time increases while difficulty remains
the same, bandwidth is reduced. In other words, a user
who takes longer to complete a task is said to complete
it at a lower bandwidth [I9]. Bandwidth is influenced by
a combination of the user, application and device in use,
so interface choices can affect bandwidth and hence per-
formance of a task [5]. Additionally, error rates, which
are also impacted by interface design, may increase task
completion times, and thus reduce bandwidth. One fac-
tor common to very-low bandwidth input is the use of a
dwell time for selection. For example, the system may
follow a link only after the user selects it and then does
nothing for two seconds. This further decreases band-
width by a function of the dwell time.

With low bandwidth input, there is generally a severe
mismatch between the number of input signals and the
number of interface elements the user wants to control.
A single switch is appropriate to control a single light
in a room, however, it is not well suited to controlling
an entire house of lights. An interface must multiplex
a small number of input signals onto a large number
of controls to support low bandwidth input. Unfortu-
nately, most graphical user interfaces (GUIs) are de-
signed to do the opposite: They expect a user to be
able to select any of the 800x600 (or more) pixels on
the screen, and then narrow this down to a smaller set
of functions with the use of menus, buttons, links, and
so on. There are several approaches available for ad-
dressing the mismatch between input signals and the
interface, discussed next.

One powerful tool for reducing the necessary input band-
width is logical control. Logical control refers to access-
ing the specific functions supported by an application
directly. This stands in contrast to direct manipulation,
where the user navigates across the screen to a menu, se-
lects the menu, selects an item in it, and so on. A short-
cut such as CTRL-S (to save a document) is an example

of this. Another example is a hierarchical interface in
which the user progressively chooses more specific items.
Although there are trade offs here, when mouse motion
is slow and difficult, logical control can be an impor-
tant alternative. We will focus on logical control as a
paradigm in this paper. An alternative to logical control
is physical control, in which the low bandwidth input is
being used to simulate a standard physical input device.

Even once logical control is applied, there will gener-
ally be far more elements to control than input signals.
Another tool that can help handle this mismatch is pre-
diction. Prediction refers to interfaces that infer what
the user is trying to do in order to reduce the number
of choices (and, thus, the number of inputs necessary to
select them). An example used by mobile phone users
is a “phone keyboard,” which multiplexes the entire al-
phabet onto a few keys and then uses a dictionary, bi-
grams, etc. to disambiguate as the user types [T, 20].
Word prediction, mentioned above, is another example,
developed originally for motor-impaired users, and also
applied to support those with cognitive disabilities and
users of mainstream devices and applications including
PDAs and web browsers [23, 24).

Prediction and logical control reduce the number of screen
elements that a user must interact with. T'wo other tech-
niques, scanning and wrapping, increase the number of
screen elements that a single switch can select.

Scanning interfaces move the focus of control in a grid
sequentially and automatically from item to item, with a
standard timeout between moves. The user needs only
one switch, which she triggers to execute the currently
selected item [30]. For example, the grid might contain
an alphabet, and “execution” might be equivalent to
typing a letter (like clicking on it on a soft keyboard).
This shows how scanning can be used for logical control.
A physical scanning interface might work as follows: the
mouse cursor moves horizontally until the user signals a
stop; this causes a click and then motion begins again.

Wrapping is used to halve the number of signals needed
to control a mouse or traverse a line or table of items. In
every case where the user normally needs a bidirectional
signal (such as more left and more right), wrapping al-
lows the substitution of a unidirectional signal (move
right, for example). With wrapping in place, if the user
reaches the edge of a line, the selection wraps to the
beginning of that line. She never needs to switch direc-
tions because she will eventually reach any point she has
passed again. Although this reduces the number of sig-
nals needed, it increases the average access time for any
given item. Wrapping can be used with either physical
or logical control as well. Wrapping differs from scan-
ning in that the user controls all motion. The focus (in
logical control), or position of the mouse (in physical

control), changes when the user produces a signal, and
only when the user produces a signal.

The discussion thus far has focused on issues of lay-
out and control. A separate topic that has an equally
important impact on bandwidth is error. Errors may
originate either from user difficulty in action, or from
faulty interpretation of user action by the system. An
example of the former is repeat switch triggering due to
a spasm. An example of the latter is faulty prediction
by the system.

In either case, the result is that the user must correct
the error. For most users, this is generally handled by
switching to a less error-prone modality [21]. However,
users with input bandwidth limitations do not have this
option. This means that confirmation dialogs and other
ways of avoiding errors are critical, especially when the
chance of error on the systems side is high. Since errors
are often distributed unevenly over the set of available
inputs, the mapping of signal to task can impact the
number of errors that need to be corrected, and thus
the input bandwidth. As a rule of thumb, less error-
prone signals should be mapped to more common tasks.
An in-depth example of this is given in the next section.

In this work, we focus on logical control for low band-
width web browsing. We chose this approach because
the number of interface actions is far fewer than the
number of pixels on the screen and, thus, the necessary
bandwidth for selecting an action is lower when the user
does not have to deal with all the extra pixels. We make
use of wrapping but not scanning or prediction in the
prototypes discussed below. We expect to incorporate
all four techniques in our work in the future.

APPROACH

There are two major approaches to increasing web ac-
cessibility. The first is to make web browsers more ac-
cessible. The second is to translate HTML into a more
accessible layout. The first approach can provide better
access to browser-specific functionality while the second
is platform and browser independent. We will show ex-
amples of each approach, and discuss how they can be
automatically supported.

For both approaches, the following requirements must

be met in order to allow true web access. The minimal

requirements are that:

1. The currently selected link is visible

2. The user can read and navigate text even when it
contains no link

3. The user can traverse the history list forward and
backward

In addition to these primary concerns, there are a num-
ber of important secondary issues:

oo
Cogralp | Sulllagis s
([Computing| FTP | Feedback| Help.
<2 0 S 4 | —
browser Sotpuid 5.6, 2001 |

801 Allantic Drive, Atlanta, Geargia 30332-0280 + 404-894-3152 (shane) »
404-894-0845 (1)

Welcome to the College Academics CoC Affiliates -
preview,
ree o 13 Course Information Dean's Circle
out the College |@CtIVE i Program Industrial Partners Association | SCIEEN
e isters Prog s CoC Advisory Board
ion WEb page Ph. ro; 5 MSREC Advisory Board
o aciieg €|€MENTS |Barceln
ob Opportuniies ont ucation ik Ll
” N

Job Opportunities|
Feedbacﬂ Faculty & Staff (alpha) *!
Help| Graduate Student Web P:-
[Greetings from the Dean Undergraduate Student -

More Links

Favorite] | About the College Ph.D. Alumnij
Directions| Annual Awards|
Administration| Course Information|

Computing Facilities| Undergraduate Program|

Figure 1: A web browser modified to work with four
switch neural-signal users

4. The user can access her bookmarks and add to them

5. The user can go quickly to a point of interest with a
minimal number of signals

6. The user is given alternatives for entering text and
dealing with form elements

7. The user is given enough information about link tar-
gets to make informed decisions about whether to fol-
low them

These requirements are complementary to those recom-
mended by the W3C for supporting users with disabili-
ties. The W3C suggests providing shortcut keys to ac-
cess important links, ensuring a logical order for tabbing
through links, and ways of dealing with image maps and
scripts [37, Guideline 9], clearly identifying the target of
each link (a priority 2 item that becomes priority 1 for
our users), and providing navigation bars and grouping
related links [37, Guideline 13].

Browser redesign

Figure [shows a web browser that has been designed
with error-prone, low bandwidth input in mind. The
main screen shows HTML, rendered by a third-party
browser [[3]. This is important because the user is able
to view an identical page to that viewed by able bodied
users, a failing of the HT'ML transcoding approach dis-
cussed next. The bottom half of the window has three
major control areas: browser functionality (leftmost sec-
tion); active web page elements (middle section); and
a preview screen (thumbnail at bottom right). This
browser handles most of the issues mentioned above.

This browser was designed with a particular set of users
in mind. These are people with locked-in syndrome who
are controlling a computer with neural signals [26]. Neu-
ral control users can modify their brain signals by in-

creasing signal characteristics such as frequency or am-
plitude. Using thresholding, neural control users have
produced up to four signals, with a large error in differ-
entiating them, which we will refer to as nudge A, nudge
B, shove A and shove B [8].

In our design, the two signals with the lowest error rate
are used to move the focus forward through the current
control area (e.g. the list of URLSs in the bottom center
portion of Figure). These are nudge A, which moves
the focus forward one item inside a control area, and
shove A, which moves the focus forward one column in
a given control area. Shove B is used to switch to the
next major control area. Nudge B moves backward in
the current control area. When a link is selected, the
browser moves the visual focus so that link is visible in
the main HTML window (the top half of the applica-
tion). The history is accessible through the “Prev” and
“Next” buttons, and the bookmarks through the “Fa-
vorites” button. Previews are provided for link targets.

Consider Figure [. Suppose the user wishes to visit
the “Job Opportunities” page (top of the second col-
umn in the list of URLs), and then wishes to go back to
the page shown in the top half of Figure . She would
need to produce five nudge A’s to get from the currently
selected link (“Greetings from the Dean”) to “Job Op-
portunities.” She would then pause for two seconds, at
which point the new page would be loaded in the main
view area above. To go back a page, she would need
to generate a shove B, (moving the focus to the top of
the browser functionality area shown in the leftmost col-
umn) followed by two nudge A’s to select “Prev” After a
two second pause, the previous page would appear. Any
errors could make this process more complex.

Table [shows a confusion matrix describing the com-
mon mistakes that occur: an entry at row m, column n
indicates how often the signal at row m is mistaken for
the signal at column n. This table was generated based
on many hours of observation of our users with locked-
in syndrome. We used it to help inform our decisions
regarding the mapping of signals to actions. Suppose
the user is attempting a shove B in order to move from
the URL window to the browser window. The entries in
the shove B row indicate that an attempt to generate a
shove B will commonly generate a nudge B or a shove B,
but rarely a nudge A or shove A or timeout. Since nudge
B simply changes which URL is selected, the most com-
mon error associated with shove B does not need to be
undone, considerably reducing the impact of that error.
Conversely, the user will only occasionally switch tasks
when a simple URL selection is all that was intended
(since a nudge A almost never generates an unintended
shove B). Similarly, since our interface supports wrap-
ping, if a user is having trouble generating the signal for
“back” (nudge B), she may generate the forward signal

instead (nudge A), an action that still helps her reach
her goal, albeit more slowly.

The preview window also helps with errors by showing
the user more information about her intended destina-
tion before she makes the choice to follow a link. This
is because the cost, in number of steps, of backing out
of a wrong choice is very high, requiring four separate
actions, one of which is a dwell of two seconds. They
are shove B, nudge A, nudge A, and a timeout to select.
Because link following is by far the most difficult act to
reverse if it is done in error, we chose to use the slower
but more reliable timeout signal for this task instead of
a nudge or a shove.

In summary, we redesigned a web browser to be more
accessible to a specific type of low bandwidth input, neu-
ral control. The browser can be used by anyone who can
generate four signals, plus pause for selection. However,
considerable thought went into mapping the signals in
such a way that the impact of errors would be mini-
mized. The type of errors that occur may be very user-
specific, with the result that the browser needs to be
redesigned for each user, or automatically adapted to
the specific requirements of each user.

This design is a first step in increased accessibility. First,
it is not a complete solution because it does not address
requirements two, four, and six. Second, it is only useful
to a small and unique group of users. Third, it cannot
track or adapt to changes that occur as users fatigue,
such as the need for a longer timeout. Finally, it cannot
be used with less than four available inputs.

HTML Redesign

In addition to the browser redesign presented above, we
also developed a set of techniques for modifying HTML.
As stated in the introduction, a browser can be con-
trolled by a user who can generate six separate signals.
However, many of our target users may not have control
of six separate signals. Even for those who do, there re-
main some usability issues, particularly the linear time
to reach URLs at the end of the page, and the lack of
visibility of which link is selected.

Figure P shows some of the Bobby web pages [8]. Bobby
is a program that checks web pages and gives advice
about potential accessibility issues. The Bobby pages
are designed to be accessible for people with disabilities,
in line with mission of the site. On the left is the front
page for the Bobby web site, on the right is one of the
sub-pages, a page of frequently asked questions (a FAQ).

Figure B shows the same pages after they have been
modified to be accessible with a two-switch interface.
This is the minimal input set that can be supported if
modifications are only made to HTML.

timeout | nudge A shove A nudge B shove B
timeout | common | occasional | rare occasional | rare
nudge A | never common occasional | occasional | never
shove A | never common common rare occasional
nudge B | never common never common occasional
shove B | never rare occasional | common common

Table 1: A confusion matrix for the four signals used to control the browser. An entry of p at mn indicates the chance that
an attempt to generate the signal in row m will result in the signal in column n with a frequency of p

Welcome to Bobby WorldWide: CAST - Microsoft Internet Explorer
e

Edt Wiew Favorites Took Help

aBack v = - (@ (2] A | @earch [EFavorkes (FHstory | B Sh W - =] ¥

| B Frequently Asked Questions: Documentation: Bobby: CAST - Microsoft Internet Expl

Ble Edt View Favorkes Toos Help |

GaBack @D [G| @Eeach GFavortes (HHstory | BN ST - 5]

Havigator @0 @ | Welcome to Bobby WorldWide

About Bobby | Terms of Use | Advanced Options | FAQ Support | Approved Sites } Online

@ Discussions
Subrnit

. URLfe
@& Web Content Accessibility Guidelines 1.0
1.8, Section 508 Guidelines

[Bobby
@ Customization
Options
@ Pricing Options
@ About Biobby
@ Sponsarship
- = Al dahin rsanninn Af Babkh

Enter the URL of the page that you want Bobby to examine and click Submit. This
dialog tests only one page at a time. Bobby limits the number of pages it checks in

adress [€] hitp: uww cast orgfbobby] =l Pe Hum >| Adress [€] hitpsjfuan.cast.org /bbby index cmi=428 =] P |Jmk5 »
= How can | match the line numbers in the report to my actual B

CAST Bobby [Text version] HTML page?

Ste Tosls: = Take Hotes |Provide Feedback |Change Interace |Get Langusge Help. The online version can show the html source line where the error occurs by

checking the "Show full HTML source for lines" option on the Custornization
Options page. The download version can show the htm] source line for errors by
checking the "Show HTML source for lines” box in the Preferences dialog. These
line numbers correspond to line numbers of the HTML source, which most
authoring tools can present, and some also present the line numbers directly. The
line nurmbers will not correspond to the internal data used by some authoring tools
before they generate an HTML page, such as templates or active server pages.

Why does www.cast.org/bobby get a long report of errors for
itself?

A long Bobby report does not necessarily indicate failure of a site since there are
manv subiective itemns (User Checks) Bobby will bring to the users attention for

order to keep the server available to all. To teat an entire site as a batch, use the &
4

Eloone [[[ttemet

3] I

NI Kl

[treeme

Figure 2: Sample pages from the Bobby web site [3]

One signal is used to move the focus from link to link,
the other to follow a link. If a user has only one switch
available, and wishes to use a timeout for selection, our
modifications would have to include strategically placed
“null” links where the user can safely pause to read.

Figure P(a&b) is a case study to illustrate how the
seven requirements given could be solved without mod-
ifications to a browser. Figure P(a) shows a modified
version of the Bobby front page coded by hand to illus-
trate solutions to almost all of the requirements. Fig-
ure B(b) shows the FAQ page after it has been auto-
matically modified by a proxy to include solutions to
requirements one, two and three. We give details below.

1. The currently selected link is visible We modi-
fied the HTML to highlight each link as it is selected.
This required the use of javascript.

2. The user can able to read and navigate text
that contains no links This was only an issue for the
FAQ page. We added links that support navigational
control (up page and down page) at each paragraph
break.

3. The user can traverse the history list Our so-
lution was to add “Back” and “Forward” links to the
page that call corresponding javascript functions. In
Figure f(a), we replace the less common “Forward”
with “Control”, which links to a page with a variety
of control features including forward, bookmarks, and

so on. Only forward and back are implemented in the
proxy.

4. The user can access bookmarks and add to
them This requires proxy support. Web browsers al-
ready save bookmarks in HTML form which makes
access fairly simple. Adding a bookmark may be sup-
ported by putting a file as bookmark link at the top
of every page. Selecting this sends the user to a page
that allows him to select a folder, in which to place
the bookmark. This is not fully implemented in the
hand-coded version and not supported at all by the
proxy.

5. The user can quickly access text and links of
interest We use several techniques here. First, we
add links for skipping unwanted text. Navigation bars
are a good example of text that should be skippable.
By adding one link, we allow the user to skip four
or more links on various portions of the Bobby web-
site. Many other sites have significantly larger nav-
igation bars, making this approach even more bene-
ficial. The hand-coded page (Figure B(a)) illustrates
this (the Skip button in the navigation bar).

6. The user is given alternatives for form ele-
ments Forms may be handled with link-based widgets
if necessary. Unlike many of the previous changes,
this could negatively impact usability for able bod-
ied users. For example, our redesigned front page in-
cludes a pointer to a soft keyboard for URL entry.
This shows why a proxy may be a better solution here

%) Welcome to Bobby 3.2: CAST - Microsaft Internet Explorer

=

Edic Wew Favories ook e

SBack - & - @ [4| Qoearch GlFevortes istory |2 Sl - B v

i Frequently Asked Questions: Documentation: Bobby: CAST - Microsoft Internet Explarer

Fle Edt Vew Favortes Took el

Eosck - = - @ 2 | Qoewch [Favertes ristory | By Sl F =

agdress [@] hitp:) berkeley. el =] &e H Links »‘ agdress [@] hitp:fervw.cs.berkeley eduf~jmankof{bobbyfag bt | #eo |J Links »‘
Back | Convole | BookmerkPage Skip to Cantent | 2|]|
How can | match the line numbers in
. C ST Bobb [Text version] the report to my actual HTML page?
Site Tools: Take Notes [Frovide Feedback | Change Interface | Get Langusge Helo PageDown | Page Up
n The online version can show the html source |
Havigaior ©G@ | Welcome to Bobby 3.2 line where the error ocours by checking the
@) "Show full HTML source for lines" option on the
| —— About Bobby | Terms of Use | Advanced Options! FAG Custernization Options page. The download
Skip version can show the html source line for errors
Bobby is a free service provided byCAST to help Web page authors identifyand by checking the "Show HTML source for lines"
- repair significant barriers toaccess by individuals with disabilities.For directions on box in the Preferences dialog. These line
=3 @ getting Bobby Approval see our Approval (1. Bobby Approval is self-certifying...") numbers correspond to line numbers of the
s [page. HTML source, which most authoring tools can
[Bobby . present, and some also present the line
@ Advanced URL: |htp 7 numbers directly. The line numbers will not
_ Oations “SeedtiomBookmarks | Erterwh Keyboan | | correspond to the internal data used by some.
[E5] Dane, bt with errors on page. || |4 mtemat 7 @] Opering berkeley, il [[[[Unknown 2one Y

Figure 3: The same web pages modified to be accessible to low bandwidth users (a) The front page, hand-coded for

accessibility. (b) The FAQ page, accessed through our proxy.

than a universal redesign. Some other possible form
substitutions include a list of links instead of a menu
and a reduction in free form text entry where possible.
Where text is constrained (e.g. numeric) this can be
used to reduce the number of keys presented. We have
not implemented this yet.

7. The user is given information about link tar-
gets Links may be annotated with brief descriptions of
their targets. Other researchers are investigating tech-
niques for solving this automatically [39, 25]. It could
also be facilitated by something akin to the author-
provided alternate tag for images. Figure § (a) illus-
trates our solution to this, that of displaying the first
few words from a target link in parentheses after the
link.

FUTURE WORK AND CONCLUSIONS
Our larger goal is to develop a user model that incorpo-
rates information about fatigue, cognition, and a wider
variety of input devices. The question of how to trans-
late this model into interface modifications is nontrivial.
We will approach it iteratively by designing user inter-
faces for specific instances and looking for useful pat-
terns. We plan to use this model to develop a general
tool in support of automatic modification of a variety
of interfaces beyond just web browsers. Examples in-
clude drawing programs, spreadsheets, email, and other
commonly used applications.

In order to address fatigue and error rates, we plan to
model the user’s capabilities as a state machine that en-
codes the number of available signals and the difficulty
of moving between them. State machines have been
used in the past to describe an input device [d] and to
model errors [I6]. We are combining the two approaches.
This is functionally equivalent to a confusion matrix.
We propose to develop a set of rules that can map this
user model into interface modifications. One approach
would be to model the interface as a state machine as
well, and then compute the potential bandwidth of dif-

ferent mappings. Rudnicky and Hauptmann used a sim-
ilar technique to develop visualizations that could help
in identifying optional interfaces in a more constrained
domain (mediation techniques) [83]. Trewin and Pain
show that statistics about users (such as those in our
confusion matrix) can be used to successfully adapt an
interface to be more accessible [35, Bf|.

The resulting system will automatically adapt to differ-
ent users’ capabilities, including number of signals and
error rates. We also plan to investigate techniques for
dynamically updating our model as users fatigue.

Our plan is to develop a system that can be used by
anyone with one or more signals at his or her disposal.
This system will be expanded to make use of scanning
and prediction, and will meet all seven requirements.
Scanning will be turned on at user request. Prediction
will be used to help the user when filling out forms.
The expanded browser will also handle frames and other
common HTML usages robustly.

In conclusion, we have shown two approaches to increase
web accessibility in the face of low bandwidth input and
demonstrated how they can address a host of problems.
In the future, we hope to combine these fairly synergistic
approaches (browser and HTML redesign).

Acknowledgements
Thanks to Susanne Jul for her characterization of direct ma-

nipulation as navigating through individual pixels on the
screen. This work was supported by NSF award 11S-0118917.

REFERENCES
1. J. L. Arnott et al. Prediction and conversational mo-

mentum in an augmentative communication system.
CACM, 35(5):46-57, May 1992.

2. C. Asakaw and A. Itoh. User interface of a home page
reader. In Proc. of ASSETS’98, pp. 149-156, 1998.

3. Center for applied special technology (CAST), Bobby

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

service. Web Page. Available at:

org/bobby/.

W. A. S. Buxton. A three-state model of graphical in-
put. In Proc. of INTERACT’90, pp. 449-456, 1990.

S. K. Card et al. A morphological analysis of the design
space of input devices. ACM TOIS, 9(2):99, 1991.

D. Colven and A. Lysley. Designing and using efficient
interfaces for switch accessibility. In Proc. of the 6th
ERCIM Workshop on ‘User Interfaces for All’, p. 2,
2000.

J. Darragh and I. Witten. The reactive keyboard. Inter-
national Journal of Man-Machine Studies, 39(3):521—
528, 1993.

Developments in aging: 1981. U.S. Printing Office, U.S.
Senate Special Committee on Aging, 1982.

T. Ebina et al. Fast web by using updated content
extraction and a bookmark facility. In Proc. of AS-
SETS’00, pp. 64-71. ACM, 2000.

N. Garay-Vitoria and J. Gonzalez-Abascal. Intelligent
word-prediction to enhance text input rate. In Proc. of
IUT’97, pp. 241-244, 1997.

D. L. Grover et al. Reduced keyboard disambiguating
computer. Patent No. US5818437, 1998. Tegic Commu-
nications, Inc., Seattle, WA.

http://www.cast.

V. L. Hanson et al. Transcoding web pages for users
with vision disabilities. In Conference and Workshop
on Assistive Technologies for Vision and Hearing Im-
pairment: Support Technologies for Independent Living
and Work, August 2001.

H. Heistermann. The webwindow home page. Product
Web Page. Available at: http://home.earthlink.net/

hheister.

D. Hermsdorf. Webadapter: A prototype of a WWW
browser with new special needs adaptations. In Proc.
of ICCHP 98, pp. 151-160, 1998.

A. W. Huang and N. Sundaresan. A semantic transcod-
ing system to adapt web services for users with disabil-
ities. In Proc. of ASSETS’00, pp. 156-163, 2000.

S. E. Hudson and G. L. Newell. Probabilistic state ma-
chines: Dialog management for inputs with uncertainty.
In Proc. of UIST’92, pp. 199-208, 1992.

E. Kaasinen et al. Two approaches to bringing internet
services to WAP devices. In Proc. of the WW W9, 2000.

A. Kennel et al. WAB: W3-access for blind and visu-
ally impaired computer users. SIGCAPH Bulletin, June
1996.

I. S. MacKenzie. Fitts’ law as a research and design
tool in human-computer interaction. Human-Computer
Interaction, 7(1):91-139, 1992.

I. S. MacKenzie et al. Letterwise: Prefix-based disam-
biguation for mobile text input. In Proc. of UIST 01,
2001.

J. Mankoff et al. Interaction techniques for ambiguity
resolution in recognition-based interfaces. In Proc. of
UIST’00, pp. 11-20. ACM Press, November 2000.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. W. C. Mann and J. P. Lane. Assistive Technology for
Persons with Disabilities. The American Occupational
Therapy Association, Inc., 2nd edition, 1995.

T. Masui. An efficient text input method for pen-based
computers. In Proc. of CHI’98, pp. 328-335, 1998.

A. McKinlay et al. Augmentative and alternative com-
munication: The role of broadband telecommunica-
tions. IEEE Transactions on Rehabilitation Engineer-
ing, 3(3), September 1995.

M. Miura et al. inlineLink: Inline expansion link meth-
ods in hypertext browsing. In Proc. of the International
Conference on Internet Computing (IC 2001), pp. 653—
659, 2001.

M. Moore et al. Nudge and shove: Frequency threshold-
ing for navigation in direct brain-computer interfaces.
In Proc. of CHI’01, pp. 114-120, April 2001.

S. Morley et al. Auditory navigation in hyperspace: De-
sign and evaluation of a non-visual hypermedia system
for blind users. In Proc. of ASSETS’98, pp. 100-107,
1998.

E. D. Mynatt and W. K. Edwards. Mapping GUIs to
auditory interfaces. In Proc. of UIST’92, pp. 61-70,
1992.

Netscape communications corporation. Product Web
Page. Available at: http://www.netscape.com.

P. O’Neill et al. Evaluation of scanning user interfaces
using real-time-data usage logs. In Proc. of ASSETS 00,
pp. 137-141, 2000.

T. Oogane and C. Asakawa. An interactive method for
accessing tables in HTML. In Proc. of ASSETS 98, pp.
126-128, 1998.

M. Rowan et al. Evaluating web resources for disability
access. In Proc. of ASSETS’00, pp. 80-84, 2000.

A. I. Rudnicky and A. G. Hauptmann. Models for eval-
uating interaction protocols in speech recognition. In
Proc. of CHI’91, pp. 285-291, 1991.

H. Takagi and C. Asakawa. Transcoding proxy for non-
visual web access. In Proc. of ASSETS 00, pp. 164-171,
2000.

S. Trewin and H. Pain. Dynamic modelling of keyboard
skills: Supporting users with motor disabilities. In Proc.
of the 6th International Conference on User Modeling
(UM-97), pp. 135-146, 1997.

S. Trewin and H. Pain. A model of keyboard configu-
ration requirements. Behaviour and Information Tech-
nology, 18(1):27-35, 1999.

Web access initiative (WAI): World wide web consor-
tium (W3C). Consortium Web Page. Available at
http://www.w3.org/WAI/ and http://www.w3.org/TR/
WAL=WEBCUNTENT.

M. Zajicek et al. A web navigation tool for the blind.
In Proc. of ASSETS’98, pp. 204-206, 1998.

P. T. Zellweger et al. Fluid links for informed and in-
cremental link transitions. In Proc. of Hypertext’98, pp.
50-57, 1998.

http://www.cast.org/bobby/
http://www.cast.org/bobby/
http://home.earthlink.net/~hheister
http://home.earthlink.net/~hheister
http://www.netscape.com
http://www.w3.org/WAI/
http://www.w3.org/TR/WAI-WEBCONTENT
http://www.w3.org/TR/WAI-WEBCONTENT

	INTRODUCTION
	Support for low bandwidth users
	Overview

	BACKGROUND
	LOW BANDWIDTH INPUT
	APPROACH
	Browser redesign
	HTML Redesign

	FUTURE WORK AND CONCLUSIONS
	Acknowledgements

