The Maze Display serialization (loading and saving) example

During the next two weeks (and beyond!), you will be reading in MazeWorld files that we supply (and that you create!) and, using those MazeWorld’s, you will test, tweak and show off your planning systems. It is therefore imperative that you learn how to read our standardized MazeWorld files.

A MazeWorld file is a gzipped file containing a single Java object of type MazeWorld (as is available for you perusal in SamplePlanner. It is imperative that you not change the MazeWorld class definition in the slightest.

This example project will give you a dialog for reading in a MazeWorld file and will display the maze graphically (using MazeGraphics, of course!) and even show you all the starting positions of the robots, specified for I.

There are two reasons you care about this:

	(1) It is a nice program to have, to peruse the example mazes we have for you.

	(2) You will read in MazeWorld exact in the same way we do. Read on!

So, open up the Visual Cafe project, MazeDisplay. Note that two classes in this project are MazeWorld and MazeGraphics. These are completely untouched, unmodified versions. That is especially important vis a vis MazeWorld.

Open up the Frame, Control Panel and inspect the button-click function (button1_MouseClick). When you hit the button with your mouse, we:

(1) Open up a file dialog so you can specify the name of a file to load! Try maze1, which is in this very directory. It’s the 2 x 2 maze from SamplePlanner. GetFile() is blocking and finishes the job of this file dialog off.

(2) Then we open up a stream to this file and re-create a MazeWorld object from the contents of the file- pretty cool, eh? Now, this part of the code must be wrapped in a try .. catch syntax, as shown.

(3) In that wrapped try .. catch, we also go ahead and create a graphic that shows off the MazeWorld. Simply put, we copy all the walls and the robot positions in the MazeWorld into a new MazeGraphics graphic on the frame. You can see the three code sections that copy the walls, the initial positions and the goal positions.

Now, there is one more useful item in this file. At the bottom, all commented out, there is a little chunk of code that you could run to save a MazeWorld to a file (so that you can read it later!). You can copy this and paste it into your own code, if you want to create new mazes and save them.

Final point: to do all this you need to import java.io.* and java.util.zip.*.

