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Abstract

Sage is a robot that has been installed at the Carnegie Museum of Natural History as a
full-time autonomous member of the staff.  Its goal is to provide educational content to
museum visitors in order to augment their museum experience.  This paper discusses all
aspects of the related research and development.  The functional obstacle avoidance
system, which departs from the conventional occupancy grid-based approaches, is
described.  Sage’s topological navigation system, using only color vision and odometric
information, is also described.  Long-term statistics provide a quantitative measure of
performance over a nine month trial period.  The process by which Sage’s educational
content and personality were created and evaluated in collaboration with the museum’s
Divisions of Education and Exhibits is explained.  Finally, the ability of Sage to conduct
automatic long-term parameter adjustment is presented.

1 Introduction

Dinosaur Hall (Figure 1) is the most popular exhibit at the Carnegie Museum of Natural
History.  Next to physically imposing specimens such as T. Rex and Apatasaurus, there
are smaller dinosaurs, such as aquatic reptiles from the Cretaceous Sea, with equally
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important lessons for the museum visitor.  However, few of the smaller exhibits attract
their due attention, and so there is a potential for a richer and more complete educational
experience.

In the hope of attracting museum visitors to less frequented exhibits, the Carnegie
Museum and Carnegie Mellon University’s Robotics Institute collaborated on the creation
of an educational mobile robot that would serve as a guide and information server in
Dinosaur Hall.  Robotic mobility presented significant advantages over a stationary kiosk
because of the desire to draw visitors to specific exhibit areas.  As a tour guide, the
robotic educator would attract visitors, then lead them to exhibits of interest, delivering a
multimedia presentation at each stop.

Figure 1: Dinosaur Hall at the Carnegie Museum of Natural History

Now, as of nine months after the start of Sage’s responsibilities in Dinosaur Hall, this
robot has provided 174 days of service to the museum, with 135 of those days consisting
of error-free, totally unsupervised operation.  Significant reliability challenges have been
surmounted to achieve this level of performance.  However, this engineering effort does
not suffice, for Sage must succeed as an educator; doing so requires solving the social
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challenge of making Sage a useful member of the staff—a problem rarely encountered by
robotics engineers.

This paper discusses Sage in light of both of these challenges.  Section 2 begins by
describing Sage’s hardware, then its underlying obstacle avoidance and navigation
software.  Long-term statistics are now available regarding navigation and obstacle
avoidance performance, and so this section concludes by presenting and evaluating those
results.  Section 3 describes the process by which Sage’s educational content and
personality were created in collaboration with the Divisions of Education and Exhibits at
the Museum of Natural History.  This section then addresses the affective aspect of Sage’s
behavior, which is intended to facilitate communication between Sage and its viewers.
Finally, the section describes the results of a summative evaluation of Sage’s efficacy as an
educator, as performed by an independent group of researchers from the Carnegie
Institute.  Section 4 discusses Sage’s ability to perform long-term parameter adaptation,
research that was only possible once the robot achieved long-term autonomy.  Finally,
Section 5 offers conclusions and a description of ongoing and future research projects
based on this platform.

2 Sage’s Prior Competence

The phrase, prior competence, was introduced by Mark Drummond to describe the
abilities of a low-level reactive system before a higher-level planner is added to the system
(Drummond 1989);(Drummond 1993).  In the case of Sage, its ability to avoid obstacles
and navigate robustly may be seen as a prior competence for Sage’s ability to serve as an
interactive educator.
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Figure 2: Sage

In this Section, Sage’s prior competence is described in a bottom-up fashion, beginning
with the underlying hardware, then moving up to the obstacle avoidance algorithms and,
finally, the navigation algorithms that have been implemented.  Because of the availability
of Sage performance data over the course of more than half a year of continuous
operation, in Section 2.4 we are able to provide an in-depth analysis of the reliability of
Sage’s hardware, obstacle avoidance algorithms and navigation algorithms.

2.1 Hardware

Shown in Figure 2, Sage is a six foot tall, three hundred pound robot comprised of more
than eight major off-the-shelf components.  The lower robot housing, extending from the
floor to the top of the second sonar sensor ring, is a modified Nomad XR4000 robot
(Nomadic Technologies, Inc. Mountain View, CA).  The drive system consists of four
wheels, each on independent, motorized casters and driven rotationally by independent
motors as well.  Eight motors drive the four wheels, rotationally and translationally,
enabling fully holonomic motion.  A common example of this configuration, in a passive
form, would be a standard office desk chair, usually with five castered wheels.  Because
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the chair can describe any two-dimensional path and, independently, can rotate around its
own axis, it is holonomic.

The XR4000 sensor system consists of rotation and translation encoders on all wheels,
touch-sensitive paneling covering the complete cylindrical surface and two rings of sonar
sensors, with 24 sonar transducers in each ring.

Computing power consists of a single on-board Pentium P166 running the Linux
operating system.  This single Pentium processor is responsible for all of the high level
functions of the XR4000 (e.g. encoder integration; motor controller communication) and
also all of the code developed for Sage (e.g. multimedia control, navigation and obstacle
avoidance, vision framegrabbing and processing).

Atop the XR4000 rests the multimedia components and housing, consisting of a
Pioneer laserdisc player, an Altec Lansing actively amplified sound system, and an NCR
fifteen inch color active matrix display.  Finally, protected by the top housing at a height of
six feet is a Toshiba KPD50 color CCD camera.  A Matrox Meteor framegrabber
interfaces this camera to the Pentium processor in the XR4000.
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Figure 3: Complete signal schematic of Sage

An emergency stop button is located on the lower surface of the camera housing,
protected by a transparent plastic cap.  Security guards at the Museum of Natural History
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are trained in the use of this panic button in case of an emergency.  As described below,
one of the early consistent causes of robot failure was the use of this button by curious
museum visitors.  As with every activity that causes the robot to cease functioning, we
term the result of such human actions as a robot failure.

The overall power consumption of the entire Sage robot is 300 watts during active
operation.  On-board battery capacity is designed to comfortably allow for eight hours of
activity with 25% charge remaining.  A complete schematic of Sage is shown in Figure 3.

2.2 Obstacle Avoidance

In order to enable Sage to achieve the desired level of autonomy, it was an explicit goal to
implement an obstacle avoidance system that is sufficiently safe to allow Sage to operate
with no supervision.  For a three hundred pound robot often surrounded by
schoolchildren, such a goal cannot be taken lightly.

In order to enable some degree of code verification, the researchers aimed to create a
functional, or completely stateless, obstacle avoidance system with as few instruction lines
as possible.  Two extremely important physical characteristics of Sage helped to make a
stateless and extremely simple obstacle avoidance program attainable:

First, Sage’s motion is truly holonomic, enabling changes in the direction of travel that
are essentially instantaneous for the purposes of this application.  Algorithms that compute
trajectories for non-holonomic systems (such as automobiles or electric wheelchairs) can
be more complex, since multi-stage maneuvers are often required for entry and egress
from confined quarters (Canny 1988; Schwartz & Sharir 1985).  In such cases, internal
state provides essential meta-level control.  For instance, in a three-point parallel parking
maneuver, each of three motion planning and control stages is guided by its own subgoal.
Taken together, the three motions result in the overall parallel parking goal.  Sage has no
need for subgoals because of its true holonomic drive system.

Second, Sage has sufficiently complete sensor coverage as to eliminate the robot blind
spot entirely.  Each sonar ring contains sonar transducers separated by fifteen degrees.
Each transducer has a sound half cone of approximately 22.5 degrees, leaving ample
overlap between successive sonar pings to locate obstacles that are not perfectly
perpendicular to either transducer.  The two sonar rings are also positioned along the top
and bottom of the XR4000 based, canted down and up, respectively, to provide coverage
from approximately 3 inches off the floor to four feet from the floor.  In addition,
pressure-sensitive microswitches along the entire, vertical outer surface of the XR4000
give Sage a second form of sensor coverage across the robot’s lower two-thirds.

In our community, much research has been conducted in creating both transient and
permanent environmental maps, such as occupancy grids (Moravec & Elfes 1985; Elfes
1987; Borenstein & Koren 1991), in order to augment limited field-of-view sensors.
Vision-based obstacle avoidance systems frequently suffer from a narrow field of view, as
do robots with fewer sonar sensors than Sage.  MINERVA (Thrun et al. 1999) is a
modern tour-guide robot that uses an occupancy grid to compute an obstacle-free
direction of travel due to the limited, 180 degree field of view of its SICK laser
rangefinder.  In such cases, reliable obstacle avoidance may only be possible if the robot
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constructs a local map, essentially planning its motion as a function of a history of
percepts rather than the current, instantaneous percept.

Another, more subtle issue often conflagrates the complexity of occupancy grid-based
solutions: once one embarks upon the path of environmental mapping, the differentiation
of transient, moving obstacles from sessile, permanent obstacles becomes a necessary skill.
Particularly in a dynamic and crowded environment such as the museum environment,
approximately 90% of sonar returns are from moving humans who, in the space of less
than a second, may be well outside the robot’s originally planned path.  Failure to
recognize these returns leads to overreaction by the robot, which looks random and
inexplicable to the untrained human observer.  Although many local-mapping obstacle
avoidance systems partially address this issue by virtue of short-term memory, we know of
no system that can explicitly distinguish, as humans can, between obstacles that should be
avoided due to their permanence or instantaneous speed, and obstacles that need not be
avoided because they will do much of the avoiding themselves.

Sage sidesteps these challenges by creating no internal representation of the obstacle-
ridden environment.  Every cycle, Sage computes the most free direction of travel, within
a pre-specified window of the desired direction of travel, purely as a function of the
current sensor readings.  Translational speed is computed independently from the direction
of travel, with each computation performed in a single, case-based function with the same
control structure as a cond statement in Lisp.

int calcspeed(int dir, int maxSpeed, int cycleTime)
{
  /* update virtual sonar in the travel direction */
  updateVirtualSonars(dir);

  /* if close obstacle, then stop */
  if (frontBlocked()){
    normal_acc();
    return (0);
  }
  /* else if middle distance obstacle, proportional speed */
  else if (forwardObstacle()){
    middle_acc();
    return (calcSpeedObstacle(maxSpeed-100));
  }
  /* else if NO obstacles for a long distance, full steam ahead !
*/
  else if(clearTowardGoal()){
    smooth_acc();
    return (maxSpeed);
  }
  /* finally, if path clear but far obstacle, reasonable speed */
    else return (maxSpeed - 100);
}

Figure 4: C code from the speed computation function in Sage’s low-level motion code.

Actual code taken from the forward speed computation demonstrates this approach in
Figure 4.  The function frontBlocked() returns true when any forward-facing sonar reads
a value of 15 inches or less.  Careful inspection of the frontBlocked() routine and the
code in Figure 4 can help verify that the robot will abide by this most basic level of safety.
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The simplicity seen here is representative; the entire obstacle avoidance system consists of
just 218 lines of C code.

The functional nature of this code does cause Sage’s motion to appear to be extremely
reactive to changes in its vicinity.  Museum visitors standing in its way will see a smooth
and transparently obvious response from Sage when they interact with the robot.  But,
because of the acceleration parameters set in the low-level motor controller in Sage’s
drive train, single-cycle, transient sonar returns do not have a noticeable impact on its
motion.  The obstacle avoidance code will respond, for a single cycle, to such sensor
readings; however, the low acceleration values cause a single anomalous cycle to be
virtually undetectable.  So, a person darting across Sage’s path will not cause noticeable
changes in its speed or direction of travel.

Of course, motion planning systems such as (Borenstein & Koren 1991; Simmons &
Koenig 1995; Burgard et al. 1998) have distinct advantages when unexpected obstacles
dictate changes to high-level, planned paths.  However, the nature of Sage’s venue ensures
that such obstacles are nonexistent.  Each hallway used by Sage is a public hallway used
on a daily basis by museum visitors.  Museum staff operate under a policy to keep these
hallways clear of obstacles, and therefore virtually every unknown obstacle faced by Sage
is either a pedestrian or an infant stroller.

The simplicity of Sage’s obstacle avoidance system has been an important factor in its
success: over the lifetime of its museum duties, Sage has had zero collisions in a total of
999 hours of running time in motion.

2.3 Navigation

Indoor robot navigation has been a prime research topic in the mobile robotics community
for almost three decades.  Advances within the last six years have resulted in indoor
navigation systems that are far more reliable than their predecessors (Thrun 1995;
Castellanos et al. 1997; Murray & Jennings 1997; Simmons & Koenig 1995; Nourbakhsh
et al. 1995; Horswill 1993).

Some of the most reliable of these systems have used a form of probabilistic belief
update to track the possible positions of a robot over time, thereby allowing for the false
ranging values that result from sensor errors, map inaccuracies and unmapped obstacles
(Simmons & Koenig 1995; Nourbakhsh et al. 1995; Burgard et al. 1998; Kaelbling et al.
1998; Burgard et al. 1998).  The most recent quantitative results in the aforementioned
works cite reliability values in the upper ninety percentile range.  (Burgard et al. 1998) and
(Thrun et al. 1999) describe museum tour guide robots that navigates robustly in the
dynamic, uncontrolled environment of a public museum, albeit it under supervision.  Such
high navigation reliability has been possible both because of more reliable sensing
hardware, such as the SICK laser rangefinder, and because of the robustness inherent in
probabilistic approaches.

However, such navigation systems are not yet sufficiently reliable for the long-term,
unsupervised navigation requirements of Sage.  For the purposes of this mobile robot
educator, our goal was to institute a navigation system with essentially perfect reliability,
so that the prior competence of the mobile robot at navigation could be taken for granted,
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and the energy of the research group could be devoted to higher level robot behavior and
robot-human interaction issues.

An important second goal of this research was to investigate the reliability of visual
navigation.  Our hypothesis was that probabilistic navigation is required primarily because
of the poor information content of range-finding sensors; visual landmark recognition
might obviate the dependence on probabilistic approaches, thereby introducing significant
computational and representational savings to mobile robot navigation.  The challenge,
then, was to create a reliable visual landmark recognition scenario, then test the overall
reliability of a purely discrete navigation architecture built upon that visual input alone.

To this end, two concessions were made to surmount Sage’s navigation challenge.
First, modifications to the environment were allowed, in the form of visual landmarks.
Three high-contrast pink rectangles, approximately two feet on a side, were installed on
walls terminating three of the hallways traveled by Sage.  Using a video camera able to
track these landmarks, the robot would be able to navigate those halls reliably.  Second,
the robot was limited to a predefined set of unidirectional, safe routes, so chosen because
those routes are navigable using straight-line paths.  Straight paths are followed during the
motion control process by means of straightforward, functional algorithms, eliminating the
need for more complex motion planning and route following software.

Figure 5: An overhead representation of the information stored in Sage’s navigation
map for two of its routes.  Arrows indicate specific information stored, including the
relative angle between routes, the length of each route, the width of safety zones and the
type of marker located at the end of each route.

Figure 5 depicts all of the information used by Sage during navigation in Dinosaur Hall.
Each route is marked by means of one or more safety zones, a rectangular area that limits
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the freedom of movement of the robot.  This approach has been used before in (Dugan &
Nourbakhsh 1993; Knotts et al. 1998; Burgard et al. 1998) and has been shown to enable
a mobile robot to avoid static obstacles that it cannot sense, simply by choosing
dimensions for the safety zone that exclude those obstacles.

Only two pieces of geometric information are captured by the map: the relative angle
of adjacent routes, and the straight-line distance to be traveled between the two ends of a
route.  The only additional information captured in the map pertains to whether or not
there is a visual landmark at the end of each route and, if so, what type of landmark it is.

Figure 6: (left) a 2D marker; (right) a 3D marker

Two types of landmarks are used by Sage’s navigation system, shown in Figure 6.  A 2D
marker, as shown in 6a, is simply a flat, rectangular board with a homogeneous, high-
saturation color.  Such markers are placed at the end of some routes, well above the robot
and humans (Figure 7).  The exact hue of a 2D marker is not important because Sage is
trained to recognize each marker separately.  During navigation, the 2D marker conveys
simple goal direction information to the robot; by tracking the 2D marker and keeping it in
the center of its field of view, Sage is guaranteed to make progress toward the end of the
route.  Although one could use the precise shape and size of a 2D marker to infer the XY
position of a mobile robot operating on a flat surface, Sage undertakes no such
computation, instead finding an approximately rectangular region with the appropriate hue
and identifying its centroid.
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Figure 7: A marker situated at the end of a route from afar (above) and from nearby
(below)

The 3D marker, shown in Figure 6b, is born out of observations regarding the three-
dimensional markers used by airports to guide airline pilots at gates.  When such a 3D
marker is placed well above the robot, the relative position of the small black square on
the colored background provides the additional information required for the robot to
locate its exact position, provided that it can assume purely planar motion.  The vertical
displacement of the black square provides range data while its horizontal displacement
provides lateral position information.  Of course, the position of the entire 3D marker in
the camera’s field of view provides rotational information.

The 3D marker may be seen as a complete local positioning sensor, eliminating any
potential for the unchecked accumulation of error over time.  The 2D marker provides
information regarding direction of travel for individual routes; while this does not ensure
global positional accuracy, it is sufficient so long as the robot regularly uses the 3D marker
to recalibrate its encoders.

The original intention was to make a single environmental modification, installing one
3D marker to cancel cumulative encoder error.  However, empirical testing in the
Dinosaur Hall environment showed that the encoders’ error accumulation is sufficiently
severe to make traversal of more than approximately 10 meters impossible.  Further
analysis showed that while the encoders can maintain a fairly precise notion of linear
distance traveled, they are extremely susceptible to rotational errors.  The 2D markers
eliminate Sage’s reliance on encoders for rotational guidance, and so the robot’s strategy
involves the used of its camera for rotational guidance while simultaneously using pure
encoder data to compute linear distance traveled.

The work of (Lazanas & Latombe 1995) presents a formal framework for this
approach, proving that the navigation planning problem can be solved with a sound and
complete algorithm when markers exist that provide total local position information.  The
navigation system used by Sage may be viewed as an instantiation that meets the
constraints of this work.

While (not (termination())) {
if (landmarkExists()) {

/* framegrabber comm */



13

grabImage();
/* track marker based on last known position */
trackMarker();
/* rotation velocity command */
turnTowardMarker();

}
/* obstacle avoidance and goal-directed motion */
roboMotion();

}

Figure 8: Pseudocode depicting the route-following algorithm

Figure 8 shows pseudocode of Sage’s basic control loop during route navigation.
Because of the robot’s holonomic base, the task of rotating to face the 2D marker is
independent of the obstacle avoidance code, which aims to travel as much as possible in
the direction the robot is facing.

Sage’s navigation strategy is consonant with earlier work in which the task of
navigating a hallway was seen as a skill to be developed generally and applied to every
hallway in the robot’s map (Horswill 1993; Gat 1993; Kunz et al. 1999).  As with those
projects, Sage’s navigation reliability depends fundamentally on the reliability of its route-
traveling skill.  The artificial marker that Sage uses makes this route-traveling skill
extremely reliable, and therefore the navigation system as a whole is hard to defeat.

This navigation strategy is rather simple; the compromise for this simplicity is a loss of
generality.  If a landmark is dislodged and falls to the ground, for instance, this robot will
fail completely, spending approximately five minutes trying to find the landmark, then
giving up, paging us and sending email to us, and shutting itself down.  If the robot’s path
is blocked, and the only available detour involves traveling beyond the edge of the safety
zone, it will fail to use that detour.

However, the benefit of this simplicity is reliability.  Sage was unexpectedly put to task
when a tour group in the museum recognized how Sage was navigating and tried,
unsuccessfully, to confuse the robot.  What made this tour group especially daunting was
that they carried pink flags on poles in order to find one-another.  Several pink flags
waving in front of its CCD camera certainly gave Sage pause; it actually stopped and
waited for the flags to disappear before continuing.  Simple temporal filters enable Sage to
have strong expectations regarding the position, size and exact hue of the marker being
tracked.  If the marker found fails to match these expectations, Sage simply waits until it
once again does.
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Figure 9: Sage’s recharging outlet and, above it, the 3D marker used during docking.  In
this case, the 3D marker consists of an acrylic hemisphere with a black square painted
on it, encasing a flat pink 2D marker.

In order to achieve true self-reliance, Sage also must be able to recharge itself when
necessary.  This is accomplished using a miniature version of the 3D marker, aligned
precisely with a simple wall plug (Figure 9).  The original intent was to create a compliant
plug so that Sage could dock without a requirement for millimeter-level servoing accuracy
during the process.  However, once the miniature 3D landmark was built and tested, it was
found that Sage could consistently position itself using that landmark with an accuracy of
1.5 millimeters.  So, the plug that is now used is a standard, three-pronged computer plug
with no compliance laterally or vertically.  The docking process, which involves moving
from over a distance of approximately four meters while tracking and correcting using the
3D marker, takes two to three minutes.

The XR4000 base has the ability to measure the charging and discharging current of
the batteries as well as the batteries’ independent voltage levels.  Using this information,
Sage identifies the batteries’ state relative to the discharge curve and will begin the
charging process when needed.  Once docked, Sage also examines the charging current
trend to ensure that the charging circuit is indeed operational.  If it detects an error, it will
attempt several episodes of re-docking and, if the battery charge reaches a dangerous
level, it will page us and ask for urgent help (using an alphanumeric pager).

The navigation system described above has met the required goal of zero navigation
errors during Sage’s operation.  However, despite the obstacle avoidance and navigation
reliability, Sage’s overall reliability in the museum has not been 100%.  The next section
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discloses the sources of Sage’s errors over the course of the past nine months,
demonstrating the types of problems that occur when a research robot enters long-term,
unsupervised operation in the real world.

2.4 Performance

During the period from May 22, 1998 to February 2, 1999 Sage has kept a diary of its
performance, including in its records both failures and near-failure anomalies.  Table 1 was
compiled through the analysis of this eight-month diary.  Note that for three of these eight
months, covering September through November, the robot was offline due to renovations
at Dinosaur Hall.

Table 1: Sage performance resulted for the period 05/22/98 - 02/03/99

Total number of days in the period (save renovation): 174
Total number of totally error-free days 135
Total number of errors 41
Total number of days Sage was down all day 7

Total number of hours Sage is operational 4,008 h
Total number of hours Sage is in motion, giving tours 999
Uptime, last 30 days 97.5%
Mean time between failure, hours 97 (4 days)
MTBF, most recent 30 days (3/15/99 - 4/14/99) 224 (9 days)
Mean time to repair, hours 1

Average linear distance traveled by Sage per error free day 1.3 km
Approximate distance covered by Sage for the period 226

Total number of collisions (obstacle avoidance failures) 0
Total number of navigation failures 0

For the purposes of this paper, an error is defined as any event that causes Sage to lose its
self-reliant ability to provide tours.  Therefore, even blatant human mistakes that cause
Sage to fail are considered errors.  As a matter of both autonomy and convenience, it is
important that Sage ask for help whenever a failure does occur.  Using an alphanumeric
pager and standard email, it will request help in the case of every failure.  Indeed, in recent
history the only case in which Sage failed without actively requesting our help was an
operating system crash on January 11, 1999.

The mean time between failure (MTBF) provides an indication of the frequency with
which researchers’ attention was required at Dinosaur Hall in order to recover from any
Sage error.  As of April 1999, one can expect human intervention with Sage
approximately once every nine days.

Despite the long duration of this project, failures nevertheless continue to occur at a
relatively rare rate.  Because of the small number of total failures encountered by Sage, it
is possible to inspect the complete list of failures, which may lead to insights regarding
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reliability in long-term autonomous robot projects.  Table 2 lists every failure encountered
by the mobile robot system.  In italics the solution, if applicable, is noted.

Table 2: A comprehensive list of errors.  Responses are written in italics.

05/25 Guards turn the lights in Dinosaur Hall off before the robot docks for the night. Lecture.
05/28 Robot is herded into and stuck in a concavity. Narrowed width of the virtual hallway.
06/02 A 68HC11 sonar controller resets unexpectedly, crashing the robot controller thread.
06/04 Sonar controller resets again. No solution. Just rebooted.
06/05 Someone moves the CCD camera’s focusing ring, eventually Sage stops. Lexan cover.
06/06 Sonar controller resets again.

Robot halts mid-tour.  Bug found from yesterday’s coding and corrected.
06/07 Sonar controller resets again. Adjusted voltage regulator from 5.0 to 5.25 volts and

added huge capacitors on the sonar controllers’ power lines.
06/18 Sonar controller resets again. New thread added that restarts controller process.
06/20 Sonar initialization fails in mid-tour. Cause unknown at the time.
06/21 Relay board (controls power to laserdisc player and monitor) fails. Remove relay board.
06/23 Sonar initialization fails. Bug found: it’s the new thread that was added on 6/18. Fixed.
06/28 Sage is discovered facing completely wrong direction. Cause unknown.
06/30 Relay board was reintroduced and fails again. Changed relay board driver code.
07/01 Sage faces totally wrong direction again. Cause unknown. In an attempt to identify

cause
all bells and whistles are turned off or removed.

07/03 Sage faces totally wrong direction again, but this time prints out garbage, too.  Code
pored over.  Several small coding bugs found and corrected. One is a memory leak.

07/09 Sage faces wrong direction. Again. More poring over of code. Fantastically major
malloc() coding error found that explains everything.

07/18 Sonar initialization fails after sonar controller resets, during error recovery routine.
Bug found in the error recovery routine in the case when the framegrabber also fails.

07/22 Sonar initialization fails after sonar controller resets, during error recovery routine.
Another bug found in the corrections to the error recovery routine. This time, tested!

07/22 Break-beam sensor IR transmitter fails. Replaced.
07/23 Robot down all day. UPS lost the new break-beam sensor until evening.
07/30 Robot stops and shuts down at the Apatasaurus. Cause unknown.
08/01 Robot stops at 3D landmark. Voice synthesizer malloc bug found, explains both errors.
08/07 Noontime lunch break failure: robot didn’t fully connect to wall plug. No action taken.
08/10 Wall plug fails completely. Batteries drained. Wall plug worn out. Replaced.
08/15 Sonar board failure. Reset fails again.  Back to old Nrobot version.
09/01 Robot calls for help. Laserdisc player accidentally turned off by me the night before.
09/08 Renovation of Dinosaur Hall begins. Robot goes on 3 month vacation.
12/02 Robot resumes operation.
12/04 Sudden battery failure causes automatic robot shutdown. Robot recharged.
12/05 Same battery fails again, causing shutdown. Batteries rotated.
12/10 Robot halted near an obstacle. Cause unknown.
12/11 Laserdisc failure. Laserdisc power cycled.
12/12 Motor controller board failure. No action taken.

Battery problem reappears, charging circuit not functioning correctly.
12/15 Sage is giving tours, but charging rate is questionable. Much testing ensues.

On 12/16, charging software bug was discovered by Nomadics and corrected.
12/19 Motor controller board failure. Only hard reboot corrects the problem.
12/20 Sonar board failure.
12/29 Robot halted near an obstacle. Cause unknown.
12/30 Robot halted near an obstacle. Cause unknown.
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01/11 Linux kernel operating system crash.
01/12 Motor controller board failure.
01/15 Sonar board failure. Problem board identified and replaced.
01/21 Software update introduced a bug yesterday. Identified and fixed.
01/23 Motor controller board failure.
01/25 Robot halted near an obstacle. Cause of all 4 cases discovered: software bug!
01/30 Motor controller board failure.

The 41 total failures reported in Table 2 can be classified as 13 unique errors, several of
which have recurred.  The recurrence has had two causes: in some cases, the source of the
error was not identified correctly at first, and so multiple diagnostic cycles were required
to correct the error properly.  In other cases, the error was identified successfully;
however, the correction process introduced a secondary error that then needed to be
found and corrected.  Statistically, this latter procedure has been the norm and not the
exception when software bugs have been discovered on Sage.

A further breakdown of the 13 unique errors indicates that 3 are the results of
unexpected human actions (the guard turns the lights off; a visitor defocuses the CCD
camera, visitors press the emergency stop).  4 are the result of straightforward software
programming errors.  Finally, 6 errors are due to stereotypical robotic errors: insufficient
agility of the obstacle avoidance module; relay board communication difficulties; failure of
the wall plug and the break-beam wheel position sensor; motor controller failures and one
operating system crash.

A reassuring trend is that the precipitous drop in the number of new, unique errors
over these eight months.  Before renovation, a total of 11 unique errors occured.  During
the two months following renovation, only 2 additional, unique errors have appeared.

Table 2 is equally instructive in identifying what failures have not occurred.  Despite
Sage’s simple obstacle avoidance module, which does no global path re-planning, Sage
has never encountered unforeseen obstacles in a route and thereby failed.  Despite the
well-known inaccuracy of robot encoders, Sage’s encoders have never performed
sufficiently poorly to inhibit Sage’s ability to travel a subsequent leg of its tour.  Sage has
never failed to plug itself successfully into its wall socket for recharging, although the
noted failure involved a poor connection between that wall socket and Sage due to a worn
plug.

Lessons to be learned may be distilled to two important points: The first is that,
whenever a software fix is introduced, we should generally expect that a secondary error
will result within the subsequent 24 hours.  Only after the second software debugging
session can the system be reasonably expected to perform without error.

Second, the hardware failures that occur are generally those failures that are not even
imagined beforehand.  If our research group had designed a diagnostic engine for Sage,
failures would have included sonar transducer failures, stuck-on skin micro-switches, and
encoder failures.  However, we would never have imagined that the 6811 controlling the
sonar transducers would spontaneously reset, causing the motor controller to block; or,
that the break-beam wheel position detector’s IR emitter would fail (infrared emitters are
notoriously reliable).  This second lesson learned is somewhat foreboding when one
considers automated diagnostic tools for long-term robotic applications.  Capturing such
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“unimaginable” errors by default would have required an arcane representation of the
robot’s architecture.

A recent, particularly troublesome error consisted of Sage reporting an inability to
move, and eventually timing out and performing a shutdown after signaling its situation to
us.  This has happened on 1/25, 12/30, 12/29 and 12/10.  After many hours of diagnosis, it
was discovered that a bug in the original obstacle avoidance code was responsible.  The
function, UpdateVirtualSonars() (Figure 4) contained a bug that would create this error
condition when the robot is closer than one meter to its goal position and there are
significant numbers of obstacles blocking the robot’s path.  This bug dodged discovery
over approximately seven months of continuous operation.

This concludes the discussion of Sage’s prior competence and its reliability during its
first nine months of operation.  But this competence only serves as the point of departure
for the research projects that make use of Sage.  Next, Section 3 addresses the
architecture and processes that led to the development of Sage’s core activity as an
affective robot educator.

3 The Affective Educator

The social challenge of this project was to create an educator that engages its audience,
then effectively provides educational information.  The presentations would focus, not
only on several of the most popular exhibits (T. Rex; Apatasaurus), but also on several
smaller and, thus, less frequented exhibits (Aquatic reptiles, Camarasaurus).

This presents challenges both in terms of educational content development and
educator-visitor interaction.  As mobile robot designers and programmers, the researchers
at The Robotics Institute are certainly not qualified to address these issues alone, and so
the educational and affective portions of Sage were designed and developed in
collaboration with the Education and Exhibits Divisions at the Carnegie Museum of
Natural History.

One of the goals of this article is to describe that collaboration, and thereby
demonstrate the fruitful results possible through collaboration between the robotics and
the education communities.  For this reason, this Section elaborates on the collaborative
style used during the design and evaluation cycles of Sage.  Section 3.1 describes the
creation of Sage’s educational multimedia content, then Section 3.2 details the formative
evaluation cycle used on Sage.  Section 3.3 describes the creation of an affective
architecture for Sage; and, finally, Section 3.4 discusses evaluation techniques used to
measure the educational efficacy of the overall system.

3.1 Educational Content

Sage’s original job description called for it to provide an informative 30 minute tour of
Dinosaur Hall, taking visitors to a number of exhibits throughout the hall and providing a
narrative at each stop.  The tour chosen by the Education Division consisted of six tour
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stops, each with a five minute presentation.  Table 3 lists the six stops that were chosen
for development.

Table 3: A list of Sage’s tour stops and topic sentences.

Tour stop title Content summary
Introduction Provide historical context on the age of dinosaurs.
Tyrannosaurus rex Demonstrate the ferocity and weaknesses of  T rex.
Kansas sea monsters Introduce visitors to the Cretaceous Sea.
Why are dinosaurs so big? Present several theories regarding dinosaur size.
Two-headed Apatasaurus Summarize the Apatasaurus skull controversy.
Extinction Present and discuss extinction theories.

In developing a script for each tour stop, the Education Division selected content and
created a narrative that would engage and educate viewers across a broad age range.
Humor was used effectively, as shown in Figure 10, which contains an excerpt from the
script written for the Kansas Sea Monsters stop.

...Are you wondering how these huge marine reptiles ended up in the American
Midwest?  I mean, when was the last time someone in Kansas had to swerve to avoid
hitting a halibut?  Actually, during the Cretaceous period, warm shallow seas covered a
wide path of North America from the Arctic Circle to the Gulf of Mexico.  Rich in life,
the sea was home to huge marine reptiles, ammonites, and prehistoric fish.  Some were
larger than school buses!  The most familiar Cretaceous critters under the sea were
plesiosaurs and ichthyosaurs, fully aquatic animals who had some similarities to modern
mammals, such as dolphins and whales.  Some had large flippers and shark-like tails.
Many sported nostrils on the tops of their heads.  Think of that swimming around
Kansas!  The floodplain that bordered the continental sea offered an ideal subtropical
climate—sort of a Cretaceous Club Med.  Dinosaurs shared their digs with a
kaleidoscopic array of present-day creatures such as crocodilians, salamanders, turtles
and gars....

Figure 10: A segment of the educational script recorded for Sage.

Next, multimedia presentations that accompany the narrative were produced by the
Exhibits Division of the Museum of Natural History.  A variety of source material was
used, including computer animation, stock footage of paleontologists, re-creations, sound
effects and still images.

The script was narrated by a well-known public television personality, and the video
and audio were finally assembled and pressed onto a 30-minute optical laserdisc.  This
technology was chosen because of its extremely high output video quality and random
access capability.

Multimedia production is an involved process, both in terms of time spent on research
and editing as well as money spent acquiring rights to stock footage and pressing the
laserdisc.  Months can easily be spent on this process, which costs tens of thousands of
dollars.  Because of these costs, the multimedia component of Sage can only be revised
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rarely and with a significant lead time.  Therefore the onus is on the evaluation process,
described in the next section, to ensure that recommendations for change are considered
and backed up by strong evidence.

At the same time, the software design of Sage is faced with the responsibility of being
robust and flexible to changes in the educational presentations, in terms of the duration of
presentations, the number of tour stops and the tour path.

3.2 The Formative Design Cycle

Formative evaluation is the process by which a work in progress may be evaluated based
on observations made before product completion.  This activity contrasts with summative
evaluations, which are conducted at the completion of the project in order to ascertain the
product’s final performance.

  

Figure 11: Museum visitors of all ages interact with Sage.

In the case of Sage, a design cycle was instituted, in which formative evaluations by the
Education Division served as feedback to Sage’s engineers, who then implemented
recommended changes to its behavior and personality, and the cycle repeated.  The
evaluation period consists of two different observation types.  One type, Robot
Observation, involves continuous tracking of the Sage robot during its tours of Dinosaur
Hall, recording what is taking place at two minute increments (Figure 11).  The second
type, Dinosaur Hall Observation, identifies and tracks groups throughout all of their
activities in the hall.

Once the observations are complete, notes are compiled and conclusions may be
drawn regarding the overall impact of Sage on the museum experience.  Figures 12 and 13
contain unmodified excerpts of the notes resulting from a Robot Observation session and a
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Dinosaur Hall Observation session.  Read Figure 12 carefully.  The “adult male (CMU?)”
individual is an example of some of the dangers awaiting unsupervised, autonomous
robots.  Happily, Sage appears to have emerged from this brush with a local roboticist
unscathed.

2:04 3 adults & 1 child watch monitor
2:06 Same group watching, child follows robot as it moves
2:08 3 children & mother watch. Adult male (C.M.U. student?) touches robot to see

if anything happens
2:10 Children lose interest. Adults & kids walk away. CMNH employee & 3 other

adults watch robot. Adult male (CMU?) still following.
2:12 Robot moves to next station, family watches closely.
2:14 Adult male (CMU?) gets on the floor to look underneath the robot. 2 children

& parents watch and try to guess its name. Adult male (CMU?) drops a pen in
front of the robot to see if it is affected by it.

2:16 Robot moves around hall. Adult male (CMU?) follows. Older woman and 2
children follow the robot to the next station. Adult male looks in the “head” of
the robot.

2:18 New child approaches the robot, taps the screens & then walks away
2:20 2 children watch robot. Others approach. Adult male (CMU?) still there poking

& prodding the robot.
2:22 1 teenage male & 3 younger children watch monitor. Other [sic] walk by

curiously but do not stay for long. Adult male still there.
2:24 Father while busily talking on cell phone is drawn to the robot. 2 children

watch. Teenage male still watching. Small crowd gathers.
2:26 Robot does not move (has stopped to rewind?). People are still gathered around

it.
2:28 Robot begins again. Mother and 3 children, 2 adult males watch, as well as the

other adult male (CMU?).
2:30 Two adults watch monitor. Adult male (CMU?) leaves after repeatedly trying to

block the path of the robot with his briefcase. He observes how the robot moves
around it.

Figure 12: Excerpt from a Robot Observation session.

2:37 Mother (M) and 2 brothers about 4 years (YB) and about 8 years (OB)

“Ah huh. Neat.” From YB as the family entered the hall.  They moved between
Stegosaurus and Allosaurus with OB pointing to Allosaurus. OB then headed to T. rex
and bowed down to it making gestures with his arms. M and YB followed. (No one
stopped until they got to T. rex.) Both boys pointed up at T. rex. OB asked M question.
“Oh, I see. Come over here.” Said M. Moved under Dippy [Diplodocus] to the T. rex
tooth and all touched it. OB spotted Triceratops and said its name. M looked back over
the hall pointing toward something in the area of Apatosaurus. They all began walking
around the mural and M said, “Look at that guys.” pointing to the turtle skeleton. Then
said, “Hey guys, here it is.” about the robot which was behind the mural. (A woman and
young girl were at the robot but they left soon after this group moved to the robot.)
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2:40 M pointed at the screen, “He’s going to take us. Don’t touch him. It’s going.” They
followed the robot. The YB talked but I couldn’t hear what he was saying. The boys
were smiling when the robot stopped and turned the corner and started moving. The
boys imitated the robot which said “bye, bye.” (As the robot moved along it was joined
by 2 older men who left soon after the program began.) The family looked over to T. rex
as the program began. They watched silently and the OB looked over at T. rex when the
program said, “Check out those teeth.” M also looked up at T. rex then. M and OB
laughed out loud at the tooth fairy reference. OB read aloud the please follow message.
All followed and looked at Camarasaurus on the way. OB and M looked at
Camarasaurus when the program began. M said, “This one here, honey” to YB pointing
to Camarasaurus. (YB asked a “how” question about the robot, but I couldn’t hear it.) M
put arm around YB as they watched. (Some others, 4 females, passes [sic] by and
stopped and YB watched them, not the screen.) OB and M continued watching.

2:46 OB and M smiled at the ‘cave man’ picture. They all followed along with the robot
and were joined by another 2 moms and 3 kids. The boys sat at the corner of
Apatosaurus exhibit to listen to the video. Boys stood up after a short while. YB looking
around hall, looking at other kids, talked to other kids. M and OB watched the screen.
M rubbed YB’s head. “Is this one about that one?” YB asked pointing to Apatosaurus.
M shook head yes.

Figure 13: Excerpt from a Dinosaur Hall Observation session

The first recommendation tendered by the evaluators concerned Sage’s captioning system.
In accordance with the American Disabilities Act, Sage offered close-captioned text to
viewers, who would signal their request by pressing an appropriately labeled button next
to Sage’s LCD screen.

The Education Division noted in its first Robot Observation that the button was
constantly being pushed by children and adults alike, since it was an obvious mode of
interaction with the robot; so, it was not being used for the intended purposed by any
means.  Worse yet, pushing the button so frequently had no noticeable, physical impact on
the robot.  Even captioning was almost continuously on because the button was a timed
‘on’ switch, not an on-off toggle.

The Education Division’s recommendations were twofold.  First, modify Sage so that
it always plays the captioned video.  Second, modify Sage’s tour (and the button’s label)
so that the robot greets visitors beneath the neck of the Apatosaurus and invites visitors to
push its button for a tour.

Once the two changes were implemented, further observation revealed that Sage’s
interaction with museum visitors improved markedly.  First, the tour was given a clear
beginning and end from the visitors’ perspective, owing to its additional tour stop under
the Apatosaurus neck.  Second, visitors receive an immediate visual and audio queue from
the robot when they request the tour.  As a result, visitors imbued Sage with a greater
sense of awareness, and found themselves more engaged and invested in the tour, as they
were partially responsible for its launch.

Table 4 provides details of suggestions and modifications that have resulted from this
formative evaluation and redesign cycle.
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Table 4 –A list of observations and modifications based on the evaluation cycle.

Observation Modification
Tour has no clear beginning Sage waits for a request under Apatasaurus neck.
Captioning button is virtually useless Change the role of the button.
The audience wanders away as presentation spins
up

Begin presentation as robot slows down.

Confusion about robot’s intentions when docking Robot tells visitors what it’s doing during docking
Robot continues a tour after the people have left Use the sonar detect visitors’ arrival and

departure.
The audience attention span is too short Decrease tour stop presentation durations.
The speech synthesizer is difficult to understand Replace the synthesizer with digitized sounds
Some visitors ‘abuse’ the robot by playing with it The robot expresses its awareness of their actions.

The last item in Table 4 requires elaboration.  In one rather common mode of interaction,
museum visitors were often observed standing in the robot’s path, attempting to either
disorient the robot or frustrate its planned direction of travel.  In some cases, individuals
would even jump up to cover the CCD camera with their hands.  This behavior is
predictable when directed against a robot; however, it is inappropriate when directed
against an educator.  Obviously, visitors perceived the robot simply as a robot, not
recognizing its educational aspect as a primary identity.

In order to counteract this tendency to treat Sage inhumanely, a decision was made to
change the robot’s basic architecture to make it an affective robot.  The idea was that a
robot that expresses its goals in an emotive manner may garner greater respect from
museum visitors.  For instance, a robot that expresses frustration when its educational
goals are blocked by pranks may be able to convince those pranksters to treat it as an
educator and allow it to fulfill its mission.  The goal was not to humanize the robot in
order to confuse the distinction between machine and man; rather, the goal was to give
Sage the affective tools to communicate successfully with humans, so that it would
operate in an atmosphere more conducive to its educational mission.

3.3 The Creation of an Affective Robot

The observations of the Education Division offer clues as to how people interact with
a robot in a public place.  It was clear that the robot’s behavior may impact this
relationship between humans and machine.  The fascinating question that emerged was:
How can one engineer the behavior of a machine in order to establish a new mode of
interaction between the untrained public and an autonomous robot?

An affective robot personality was hypothesized as the answer to this question.
Establishing this personality would be a team effort of the engineers and the
educator/evaluators.  First, the engineers created a general architecture that served as a
mood transition schema.  A fuzzy state machine model was chosen, whereby external
events would gradually trigger transitions from one state, or mood, to another.  The
particular implementation fits in the class of ongoing research on the computational
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modeling of emotion (Ushida et al. 1998; Velasques 1998; Hayes-Roth & van Gent 1997).
Similar to (Ushida et al. 1998), where emotional intensities are computed based on
sequences of events, the transition model scores the activation level of each emotion based
on events perceived by the robot.  As with the Cathexis model (Velasquez 1997), emotion
is used primarily to advise the robot’s action selection.  An improvement over some
models involves the blending of multiple emotions, as described in (Velasquez 1998).  This
blending approach, which leads to smoother transitions in the robot’s behavior, is also
implemented on Sage.

Once the architectural effort was complete, the Education Division was briefed on the
mood mechanism and on Sage’s ability to use its sensors to detect events in the Hall.
Then, the engineers posed three questions to the educators:

1. What set of moods should Sage have?
2. What events should cause Sage to change its mood?
3. How should Sage manifest its emotional state?

The moods chosen by the Education Division were happy/busy, lonely, tired, frustrated
and confused.  The educators also presented scenarios that should cause transitions
between moods.  For instance, in the case of transitions between happy and frustrated,
one scenario involved the robot’s behavior when, mid-tour and with several visitors in
tow, another visitor blocks its path.  If the person persists in blocking Sage’s path, it
should transition to a frustrated temperament, at which point it might increase its voice
level and pitch and deliver stern requests for the person to stand down: “I am giving a
tour to these visitors right now.  Please let me continue!”  In contrast, when a lonely Sage
is confronted by a visitor blocking its path, it will be both playful and enticing, engaging
the visitor and inviting the person on a tour of Dinosaur Hall.

Sage’s affective architecture has been operational as of July 1, 1998.  Before this time,
it was frequently observed that Sage would be blocked by visitors of all ages, individuals
who were essentially testing their ability to influence Sage’s behavior.  Such blockage
would last quite long, sometimes even triggering visitors following Sage to ask the person
to step aside.  This form of interaction has been noticeably reduced, both in frequency and
duration.  In particular, when an individual blocks Sage, they are quickly made aware of
its intentions as it requests them to step aside.  Rather than finding this level of awareness
surprising, visitors often accept Sage’s requests in stride.

Further evaluations have indicated that the modifications made to Sage have been at
least partially successful; visitors appear to be paying greater attention to the educational
films and, in some cases, visitors have clearly made the visual connection between the
educational material on-screen and the details in the hall that are being discussed.
However, the current effort to produce new educational content in the form a greater
number of shorter presentations will radically alter Sage’s behavior.  This milestone will
serve as the beginning point for the next evaluation cycle.

3.4 Measuring Sage’s Educational Efficacy
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In late Fall 1998, individuals from outside of this project conducted an evaluation of
Sage’s effectiveness (Roehrig and Stockdale 1998).  The formal focus of this project was
to answer the following question:

Is Chips [Sage’s museum name] an effective vehicle to educate visitors in Dinosaur
Hall when compared with a docent? Effectiveness is defined as being accessible,
educational, entertaining, and appealing to a broad range of visitors.

The Sage project has no intention of replacing docents with robotic tour guides.  In our
view and in the view of the docents at the Carnegie Museum, their presentations and
interactions with museum visitors are complementary.  However, for the purposes of
measuring educational efficacy, the evaluators required a baseline, and the docent tour
provided such quantifiable statistics.

The evaluators chose two methods for collecting data: Robot Observation studies and
Questionnaires.  Results of the observation studies and questionnaire forms were analyzed
with respect to the four effectiveness objectives identified by the team: accessibility,
educational efficacy, entertainment and appeal to a broad audience range.

Quantitative measurements of accessibility provide evidence for a general conclusion,
that visitors will tend to stay with Sage for a shorter total duration but may return later,
whereas visitors tend to follow a docent for the entire tour loop.  The team found that
40% of visitors remained with the docent tour for 30 minutes or more, whereas only 4%
of visitors remained with Sage for the same duration.  However, 74% of visitors remained
with Sage for between 5 and 15 minutes, compared with 24% in the case of docent tours.
The most significant differences between Sage and docents based on questionnaire results
involved tour speed and sound level.  Sage’s overall speed was viewed more favorably
while the docents were rated as easier to hear.  Interestingly, these results held for
questionnaires returned from both adults and children.

Educational efficacy was measured by asking adults and children knowledge-testing
questions both before and after tours.  The questions for adults and the success rates
before and after robot tours are shown in Table 5.

Table 5: Educational concept questions: success rates before and after robot tours
Question <before> <after>

All dinosaurs lived during the same time period 50% 92%
All dinosaurs were huge animals 50% 72%
Other animals lived on the Earth with dinosaurs 50% 76%
All dinosaurs were carnivorous 48% 80%
All scientists agree on how to put dinosaur bones together 40% 76%
All bones in Dinosaur Hall are real 36% 52%

In the case of the robot’s entertainment value, results from both observations and
questionnaires rate Sage slightly inferior to the docents.  For instance, every visitor rated
their enjoyment of docent tours as ‘A lot,’ and would recommend the tour to a friend with
a rating of ‘Definitely.’  In the case of Sage, the rating was evenly split between ‘A lot’
and ‘Pretty good,’ with the recommending Sage to a friend scoring an even split of
‘Definitely’ and ‘Probably,’ with a single lukewarm ‘Maybe.’
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The appeal of Sage to a broad range of audiences was measured primarily by
collecting demographic details on museum visitors.  On a hopeful note, 20% of Sage’s
visitors were minorities, whereas the museum-visiting population in Pittsburgh consists of
roughly 11% minorities.  Peak age groups represented were 5-12 year olds and 25-34 year
olds for Sage, while the peak age group for docent tours was 35-44 years of age.  Gender
differences were also measured, and the results were interesting.  Although boys
outnumber girls over all tour types, almost by a ratio of 2:1, in the case of Sage, girls were
approximately 20% above average and boys were 10% below their average, closing the
gender gap somewhat on robot-guided tours.

The results summarized above include a very small portion of the outside evaluation.
For the complete, detailed results, refer to the original study (Roehrig and Stockdale
1998).

4 Long-term Parameter Adaptation

A long-term, autonomous robot such as Sage is a prerequisite technology for life-long
learning research.  In early July 1998, once Sage’s autonomy and reliability were
established, this project began such a research project in earnest.

As a first step, the goal was set forth to identify performance elements of the robot
that would benefit measurably from long-term parameter adjustment.  Parameter search is
a simple learning process that has the potential for significant gains in performance (Moore
et al. 1998), and so it serves as a high payoff first step in lieu of addressing \ more general
life-long learning problems.

In the case of Sage, a large number of preset parameters are direct attempts to
estimate the values of external world features.  Such values can be easy to view as
parameter search problems because discrepancies between the external world feature
values and Sage’s internal parameter settings can often be measured directly using Sage’s
sensors.  Furthermore, many of Sage’s parameters are wholly independent, applicable to
only one navigable route, and so the computational dangers of joint multiple parameter
search can be avoided.

Section 4.1 describes Sage’s general framework for defining and evaluating adjustable
parameters.  Then, Section 4.2 lists the exact parameters on Sage that were expressed as
search problems, known as soft constants, then adjusted over time.  Over the course of
several weeks, as Section 4.2 will show, quantifiable improvements in Sage’s performance
were noted, due to the parameter adjustment module.

4.1 Soft Constants

A soft constant is a limited type of automatically adjustable parameter.  The following
basic requirements must be met for a candidate in the robot code to be converted to a soft
constant:

• The candidate must be treated as a constant in the code.



27

• There must be some fixed, optimal value for the candidate.
• The transient optimum should be estimable based on the current value and the

robot’s measured performance.
• A simple mathematical function (e.g. minimum; maximum; mean) should, when

applied to a set of transient, estimated optima, approximate the fixed optimal
value.

For instance, Sage’s navigation map contains information on the relative angles of
adjacent routes.  These relative angles are treated as constants, and are used to control the
robot’s rotation when transitioning from one route to the next route.  A fixed optimum for
the angle exists, and is determined by the ground truth of the actual angles between those
routes, compensating for systematic encoder drift errors on the robot.

Each time Sage turns a corner, it locates a new landmark and can thereby estimate the
discrepancy between its turning angle and the theoretically correct turning angle, based on
the offset of the landmark from the center of its field of view.  Therefore, transient
measurements of the optimal turning angle can also be computed.  Based on these
qualities, route relative angles would qualify as good candidates for soft constant
instantiation.

In order to transform a constant into a soft constant, the user must provide the
following data and routines:

1. an initial value and allowable range for the soft constant
2. a function estimate for estimating the transient optimum value based on recent

robot performance
3. memory store length specification l
4. an update function update, specifying minimum, maximum or mean
5. a deviation filter value c

Figure 14 depicts the flow of information throughout the parameter adjustment process.
The confidence filter is initialized wide open, allowing all estimates to be appended to
memory.  Once the memory is saturated (i.e. filled with l estimates), then the soft
constant’s value is updated using the update function.  For instance, in the case of a mean
update function, the values of the l estimates are simply averaged, and the soft constant’s
value is set to this result.

estimate memory store update value

update confidence

parameter
value

Robot Controller

confidence
filter

Rejected estimates
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Figure 14: The adjustment process makes changes to the parameter value after every
measurement cycle, using a simple hill-climbing strategy as defined by the update
function.  In addition, the confidence measure is updated every cycle, then used to filter
out anomalous estimates from the incoming stream.  If this anomaly detection and
rejection frequency increases to a user-specified threshold, an error is reported by the
soft constant mechanism.

Modifications to the parameter value cause changes to the robot’s behavior via the Robot
Controller, and thus the feedback loop is closed for parameter adjustment.

An additional, second loop is designed to filter out anomalous measurements.  Once
the memory store is saturated, it simply operates as a FIFO queue, retaining only the last l
accepted measurements.  At each cycle, the confidence filter is narrowed based on the
standard deviation of those l estimates and the user-specified value, c.

Over time, if the parameter adjustment process increases measurement stability, the
confidence filter tends to narrow correspondingly, more stringently rejecting anomalous
readings that occur, for instance, when a particularly troublesome teenager keeps Sage
busy for several minutes.  In such a high traffic situation, the robots travels in sufficient
lateral motions to introduce significant rotational encoder error, making the error
measurement at the end of the hall unrepresentative of the robot’s general error
accumulation.

4.2 Parameter Search Performance

The soft constant architecture was implemented for approximately 60 constants in the
Sage code.  Many navigation routes contain similar sets of constants; factoring in this
redundancy leads to a count of 13 unique types of soft constants.  Table 6 lists these types
of soft constants along with the update function chosen for each.

Table 6: Sage parameters implemented as soft constants and their associated update
functions.

Soft constant type Update function
Relative angles of adjacent routes mean
Landmark position for first acquire (x1, y1, x2, y2 ) mean
Left and top edges of search window for acquisition minimum
Right and bottom edges of search window maximum
Search window expansion for marker tracking (top,
bottom, left, right)

maximum.

Beginning on July 20, 1998, the 60 soft constants were introduced in a staggered fashion,
with parameter adjustment experiments extending through September 2.  Figures 15 and
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16 depict the measured improvements of two forms of parameter adjustment: one for
image acquisition at the beginning of a navigation route, the other for image tracking
during motion through a route.  As shown in Figure 15, the miss rate for image acquisition
decreased considerably over the test period.  This resulted primarily from more precise
hallway angles and more accurate position expectations for the markers during the
acquisition process.
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Figure 15: The improving miss rates for static acquisitions and marker tracking over the
course of 6 weeks of automatic parameter adaptation.
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Figure 16: Comparison of the tracking window size before (left) and after (right) 6
weeks of adaptation.

Note that the miss rate for image tracking (Figure 15) actually increased somewhat over
the same period.  The reason for this trend can be observed in Figure 16, which shows that
the window size being used during tracking has shrunk over the same period.  This trend
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was to be expected, as c was set sufficiently small to allow the tracking window to
decrease in size rather than become inflated to capture the rare large changes in the
tracked marker position resulting from large lateral motions of the robot due to obstacle
avoidance.  Thus the compromise lies between the safety of a small window for tracking,
to eliminate the chance for incorrect tracking due to external influences, and the number of
tracking misses, which demand a broad and slow search of a much larger portion of the
visual field to relocate the marker.  This setting is directly related to the length of the
memory store.

The quantitative improvements gradually made over the course of six weeks of
adaptation is pleasing.  However, the soft constants architecture is perhaps the simplest
form of parameter adjustment possible.  In future steps, we intend to apply search
techniques for multiple dependent parameters to Sage.  One robot competency that stands
to gain significantly in this regard is Sage’s docking procedure, which currently requires
approximately three minutes for three meters of visual servoing.  With careful tuning of
the velocity and timing parameters, it should be possible to servo into the wall plug in one
smooth motion, reducing the docking time by as much as 150 seconds.

5 Conclusions

Throughout this paper there have been references to RHINO and MINERVA, two other
museum tour-guide robots (Burgard et al. 1998; Thrun et al. 1999).  The recent
introduction of three such robots, all in the same venue, begs comparison.  The first
distinction that should be drawn involves the research goals of each project.  Both RHINO
and MINERVA use a probabilistic approach to navigation.  These applications
demonstrate that the methods used are extremely reliable in spite of the dynamic nature of
a public museum space.  The Sage project is fundamentally an attempt to create a truly
lifelong robot, in answer to the challenges posed by Nils Nilsson in (Nilsson 1996).  Our
success criteria is a robot that operates without human intervention over the long term,
where our goal is expressed in terms of months and years of autonomous interaction with
the public.

This difference in goals gives rise to a bias in our work towards simplicity in all
aspects of the architecture.  This bias is evident in many aspects of Sage: its single-
threaded control code; the case-based obstacle avoidance strategy; a topological world
representation; et cetera.

The most unconventional manifestation of this bias is Sage’s use of artificial visual
landmarks to enable a discrete navigation system employing color vision alone.  This
approach stands in contrast to MINERVA and RHINO, both of which navigated with no
special modifications to their venues.  Our conjecture is that the computationally
expensive process of probabilistic navigation may be obviated by vision-based sensing.
The Sage robot lends credence to this, providing an existence proof that perfectly reliable
navigation is possible using vision alone, albeit in conjunction with artificial landmarks.

How far are the algorithms of the computer vision community from enabling such a
navigation system without environmental modifications- by recognizing natural visual
landmarks?  (Takeuchi & Hebert) demonstrates a vision system capable of discriminating
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several robot locales using image sequences.  Such research in place recognition is sure to
mature quickly, for the underlying algorithms have already been developed by the image
retrieval community (IEEE 1998).  We are hopeful that the visual tools that soon result
will significantly lower the computational overhead of mobile robot navigation.

In conclusion, Sage is inspiring as an integration project, a quest for reliability, a
human-computer interaction challenge and an educational endeavor.  There is a popular
stereotype that a project of this size forces the integration and reliability engineering
efforts to overshadow all else.  To the contrary, this project demonstrates that there is
tremendous value in expending the energy to create long-term robotics applications.

Two important examples are born out by the Sage project.  First, the existence of a
situated, social robot led naturally to fruitful collaboration between engineers and experts
in education and interaction.  Roboticists do not have the training to solve social robotics
problems alone; this paper aims to demonstrate a process by which roboticists can join
forces with non-robotics experts to refine solutions at the formative level.

Second, the completion of a long-term robot application immediately opened new
research avenues to the team; the long-term parameter adjustment research described
above is an example of such research.  Future plans for Sage also involve further use of
the robot as a research platform.

Another research project soon to begin will imbue Sage with greater sensory and
effectory richness to effect more meaningful interaction between the robot and museum
visitors.  The ultimate goal is to achieve two-way conversations between Sage and
museum visitors.  We look forward to the collaboration that will be required between The
Robotics Institute and the museum’s Divisions of Education and Exhibits in making this a
reality.
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