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Abstract

In this paper the metric and topological paradigms are integrated in a hybrid system for both localization and map building.
A global topological map connects local metric maps, alowing a compact environment model, which does not require global
metric consistency and permits both precision and robustness. Furthermore, the approach handlesloopsin the environment dur-
ing automatic mapping by means of the information of the multimodal topological localization. The system uses a 360° laser
scanner to extract corners and openings for the topological approach and lines for the metric method. This hybrid approach has
been tested in a50 x 25 m? portion of the institute building with the fully autonomous robot Donald Duck. Experiments are of
four types: maps created by acomplete exploration of the environment are compared to estimate their quality; test missionsare
randomly generated in order to evaluate the efficiency of the approach for both the localization and relocation; the fourth type
of experiments shows the practicability of the approach for closing the loop.
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1. Introduction

Research in localization and automatic mapping
has recently lead to successful approaches. However,
solutions for consistent mapping allowing precise and
robust localization in unmodified, dynamic, real-
world environments have not yet been found. The
problem is highly complex due to the fact that it re-
quiresthe robot to remain localized with respect to the
portion of the environment which has already been
mapped in order to build a coherent map.

Current research has diverged to different ap-
proaches. metric, topological or hybrid navigation
schemes have been proposed and studied. Approaches
using purely metric maps[17], [8] and [15] are vulner-
able to inaccuracies in both map-making and odome-
try abilities of the robot. Even by taking into account
all relationships between features and the robot itself,
in large environments the drift in the odometry makes
the global consistency of the map difficult to maintain
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[6]. Landmark-based approaches, which rely on the
topology of the environment [13] can better handle
this problem, because they only have to maintain to-
pological globa consistency, not metric. However
these approaches are either | ess precise than fully met-
ric approaches[16], [5] and [11], dueto the discretiza-
tion of the localization space, or computationally in-
tractable for fully autonomous robots, when fine-
grained grids are used [10]. More recently, ap-
proaches combining the topological and the metric
paradigm [18], [19] and [3] have shown that positive
characteristics of both can be integrated to compen-
sate for the weakness of each single approach.

This paper proposes a natural integration of both
the metric and topological paradigms to combine the
best characteristics of both universes. For this, the
model embodies both a metric and a topological rep-
resentation. The metric model consists of infinitelines
that belong to the same place. These places are rel ated
to each other by means of atopological map whichis
composed of nodes representing topol ogical locations
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and edges between nodes. Connections between a
node and a place are a special case: travelling along
these edges causes a switch from the topological to
the metric paradigm. The effectiveness of this method
for localization has already been shownin [20]. Inthis
paper an extension to automatic mapping which per-
mits the handling of loops in the environment is pre-
sented.

The metric approach is an Extended Kalman Filter
(EKF). This method has already proven its strength
for localization [2]. Map building can then be done
with the Stochastic Map approach [17]. Topological
navigation uses a Partially Observable Markov Deci-
sion Process (POMDP) [5] for state estimation. This
permits efficient planning in the large, has an advan-
tageous symbolic representation for man-machinein-
teraction and is robust due to its multi-hypothesis
tracking.

2. Environment modeling

The environment is described by a global topolog-
ical map, which permits moving in thewhole environ-
ment, and local metric maps which can be used by the
robot as soon asit needs further localization precision
(seeasofig. 1). The only requirement specific to this
model is to have a detectable metric feature when
travelling from a topological node to a metric place.
This permits the system to determine the transition
point where the change from topol ogical to metric has
to be executed and allows robust initialization of the
metric localization (i.e. relocation). Given this metric
feature local metric maps can be placed anywhere in
the environment.

Switching to topological does not require any spe-
cific characteristic: the robot navigates metrically to
the initialization position for the current local place
where it resumes its topological navigation.

[ S 2 T_> local metric place
t> *T i (O topological node
X/

——topological edge

gv topological to
t, metric edge

Fig. 1. The environment is represented by places given by their

metric maps and nodes representing topological locations. When

travelling from a node to a place, the system switches from topo-
logical to metric and vice-versa.

2.1. Global topological map

Landmarks, which are helpful for the topological
model, are those discriminating between locations in
the environment. In this case two different types are
chosen:

« Corners, characterized by their orientation.
 Openings, that are also used for model transition.

The topological map can be viewed as agraph. To-
pological locations are represented by nodes contain-
ing the information about the way to reach the con-
nected topological location / metric place. Further-
more, the landmarks lying between two locations are
represented as a list between the two nodes. In fig. 2
the graph representing the topologica model is
viewed for a portion of the environment.

The corner extractor returns a set of (x,y, 0) pa
rameters in robot coordinates, representing the posi-
tion and orientation of the corners with respect to the
robot. Furthermore an extraction confidence parame-
ter p, iscalculated for each corner by taking into ac-
count its size. Openings are either large steps perpen-
dicular to the direction of motion in hallways or tran-
sitions from rooms to hallways. They can either be a
transition between a hallway and a room or between
two perpendicular hallways. Due to the use of a 360°
laser scanner, an observation contains many land-
marks which are transformed in a graph compatible to
the environment model, as shown in fig. 3.
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Fig. 2. (8) A portion of an hallway with the extracted corner and
opening features. (b) The topological map is represented by a
graph. It contains nodes connected to each other with the list of
corner features lying between them. Openings (topological nodes)
can either be a transition to a room or be a connection to another
hallway.
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Fig. 3. (8) Laser data and the extracted features. (b) The resulting
observation graph.

2.2. Local metric maps

The features used for metric environmental repre-
sentation are infinite lines. They are less informative
than line segments, but have a better probabilistic
model with analytical solution and permit avery com-
pact representation of structured geometric environ-
ments requiring only about 10 bytes per m? for atyp-
ical office environment. In fig. 4 a typica office is
shown with the lines used for its local metric map.
The line model is pcos(p—a)—r = 0, where
(p, ©) istheraw measurement and (o, r) the model
parameters. o isthe angle of the perpendicular to the
ling, r its length. The extraction algorithm used has
been described in [1]. Itsresult isa set of (o, 1) pa-
rameters with their 2 x 2 covariance matrix, which is
calculated by propagating the uncertainty from the la-
Ser measurements.

e
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Fig. 4. An office of the institute (a) and the lines representing it in
thelocal metric map (b). The black segments permit to see the cor-
respondence between the two figures.

3. Localization and map building

The environment models allow the use of two dif-
ferent navigation methods with complementary char-
acteristics. The metric localization permitsavery pre-
cise positioning at the goal point [2], [20] whereas the
topological one [5], [20] guarantees robustness
against getting lost due to the multimodal representa
tion of the robot’ s location.

3.1. Map building strategy

As explained in section 2., the environment model
is composed of a global topological map and a set of
local metric maps. Given a metric transition feature,
local metric maps can be everywhere in the environ-
ment. Even if the approach is applicable to any struc-
tured environment, a suitable environment-dependent
strategy has to be adopted.

For many possible application scenarios it can be
expected that the robot will have to be very precisein
rooms, where most of its tasks have to be executed
(e.g. docking for power recharging; manipulation
tasks with objects on a table; human-robot interac-
tion). While navigating in the large (i.e. hallways),
precision with respect to the featuresis|essimportant,
but robustness and global consistency take an impor-
tant role. Because of this, the two different levels of
abstraction are used in combination of the different
type of environmental structures:

» While navigating in hallways the robot firstly cre-
ates and then updates the global topological map

« When it enters aroom, it creates a new local met-
ric map

These two environmental structures are recognized
by means of the laser sensor: thin and long open
spaces are assumed to be hallways, while other open
spaces will be defined as rooms.

3.2. Exploration strategy

The proposed exploration strategy issimple: thero-
bot first exploresall the hallwaysin adepth-first way.
It then explores each room it encountered by back-
tracking. Note that, in general, for each hallway the
room exploration reduces to a linear list traversal.
Rooms with multiple openings cause two special
cases, which are treated in the next paragraphs.
Rooms with an opening to another room: The robot
continues building the current metric map. This leads
to the next case if the other room has an opening to a
hallway.

Rooms with multiple openingsto a hallway: Due to
the metric navigation mode during room exploration,
the robot knows the direction of the opening and can
therefore deduce if it opens to the same hallway, a
known one or a new one. In the case of known hall-
wayss, the robot simply goes back to the hallway it was
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coming from and continuesits exploration. Thiscould
result in two metric maps for the same metric place,
one for each opening. In the case of a new hallway,
the exploration continues in a hallway depth-first

way.
3.3. Topological localization and map building

The current experimental test bed isapart of thein-
stitute building. This environment is rectilinear and
mainly composed of offices, meeting rooms and hall-
ways. Therefore, only four directions of travel are em-
ployed: N, E, S, W. However, thisis not an inherent
loss of generality because it is not a general require-
ment of the POMDP algorithm.

Position estimator: Given afinite set of environment
states S, afinite set of actions A and a state transition
model T, the model can be defined by introducing par-
tial observability. This includes afinite set O of pos-
sible observations and an observation function OS
mapping Sinto adiscrete probability distribution over
O. T(s, a,S) represents the probability that the envi-
ronment makes a transition from state s to state s
when action aistaken. OS(o, s, a) isthe probability
of making an observation o in state s after having
taken action a. The probability of beinginstate s' (be-
lief state of s') after having made observation o while
performing action a is then given by the equation:
050, s, a) Z T(s a, S)SE((k)
— se S

SE(k+1) = Flola, SE(K) Q)
where SE(k) isthe belief state of sfor the last step,
SE(k) is the belief state vector of last step and
P(o|a, SE(k)) is a normalizing factor. The observa-
tion function OSis made robust by the fact that an ob-
servation is composed of many landmarks (fig. 3),
rising its distinctiveness. When no openings are visi-
ble, T(s,a,s) = 0.99 while T(s,a,s) = 0.01 for
s#S. When the robot encounters an opening, the
most probable state s’ is searched by comparing the
travelled distance d, measured starting from s, to the
information saved in state node s during map build-
ing. In this case T(s,a9s) =099 while
T(s,a,8") = 0.01 for s"#5.
Heading estimator: Because the position estimator
does not take into account the heading of the robot,
thisis done separately asin[11]. However in thiscase
the orientation is estimated by a weighted mean of

each observed line that is either horizontal or vertical
with respect to the environment. The success of this
method is guaranteed by thefact that, in general, lines
given by the environmental structuresare either paral-
lel or perpendicular to the direction of travel. Infinite
lines are matched by means of the validation test
(Zm_gm) S}l(zm—i[j])TSXén @

where prediction 24 is di rectly the odometry state
vector variable 6 and Xi , isanumber taken from a
x? distribution with n = 1 degrees of freedom. This
can be viewed as an EKF for heading only, where no
map is required because for prediction 6 is directly
used instead.
Control strategy: Sinceit is computationally intracta-
ble to compute the optimal POMDP control strategy
for alarge environment [5], simple suboptimal heuris-
tics are introduced. For the system presented here the
most likely state policy has been adopted: the world
state with the highest probability is found and the ac-
tion that would be optimal for that state is executed.
However it can happen that the robot is not sure about
its current state. Thisis calculated by mean of the un-
confidence function U(SE(k)), which is the entropy
of the probability distribution over the states of the
map. The POMDP is confident when

U(SE(k)) = —Z SE(K)ogSE(K) <U,.x (3

S

where U, is determined by experience. When the
robot is unconfident, it follows the hallway in the di-
rection where it expects to find more information.
Map building: Instead of using acomplex schemefor
model learning likein [12] and [19], where an exten-
sion of the Baum-Welch algorithm is adopted, here
the characteristics of the observation graph (fig. 3) are
used. When the robot feels confident about its posi-
tion, it can decide if an extracted landmark is new by
comparing the observation graph to the node in the
map corresponding to the most likely state. This can
happen either in an unexpl ored portion of the environ-
ment or in a know portion, where new landmarks ap-
pear dueto the environment dynamic. Asexplainedin
section 2.1., the landmarks have an extraction confi-
dence p, . This characteristic is firstly used to decide
if the new landmark can be integrated in the map.
When an opening landmark is extracted, it is inte-
grated in the map as a new state node (fig. 2) with a
rough measure of the distance to the last state node.
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Furthermore, for each integrated landmark, the confi-
dence p; is used to model the probability of seeing
that landmark the next time pj .., . When it is re-ob-
served, the probability in the map is averaged with the
confidence of the extracted one. If the robot does not
see an expected landmark the probability 1 —pjp,p iS
used instead.

n

(t)
plmap(ti) = szT (4)
i=1
wherep(t;) = { P (), observed )
1- P map(ti - 1), —observed

When the confidence p;,,,, decreasesand is below
a minimum, the corresponding landmark is deleted
from the map. This allows for dynamics in the envi-
ronment, where landmarks that disappear in the real
world will be deleted from the map too.

3.4. Model transition

Because the topological navigation method is mul-
timodal, the confidence before switching to the uni-
modal metric navigation isvery critical. In contrast to
pure topological navigation, a false state estimate
when switching to metric would cause the robot to be
in a false place when using the map describing the
goal position. If such a problem occurs a solution for
detecting this situation and exiting the current local
place would be required in order to allow the robot to
relocate itself by means of the topological approach.
To limit all this, in the current implementation, adoor
find and passing action is executed only when the es-
timator is confident (see eg. (3)).

When switching from topological to metric the
Kaman filter has to be initialized (i.e. x(k|k) and
P(k|k) are unknown). This relocation problem can
be simplified for this approach. Asexplained in chap-
ter 2., detectable metric feature (door in this case) be-
tween a node and a place permits knowing when to
switch and gives an approximation of the robot posi-
tion with respect to the local metric map. Thefirst two
moments of the measure are used to initialize the Kal-
man filter and permit afast convergence of the filter.

Changing from metric to topological reduces to a
metric navigation to the initialization position of the
current local place and the resume of the POMDP.

3.5. Closing the loop

The problem of closing the loop can be defined as
the question of how to know when a location has al-
ready been explored, meaning that the environment
contains aloop and that the loop in the map must also
be closed. In [19] this is achieved by adding a topo-
logical mapper which ensures globa consistency.
This information is then used to correct the global
metric map which eventually converges to a global
consistent map.
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Fig. 5. (& A loop in the environment. (b) Mapping with the
POMDP. 1) The map when the robot is at position 1 in the envi-
ronment. 2) The robot is re-exploring the start point. The observa-
tion function OS(o, s, a) gives high valuesfor both the new node
in the map and for the start node, but the probability distribution
has not yet diverged because the transition function T(s, a, )

gives alow probability of coming at the map start. 3) However, by
moving in the same way on the map the distribution diverges and
the POMDP becomes unconfident. 4) The distribution has
diverged and the two peaks move in the same way to 5. (c) The
mapping is stopped. Theloop is closed by backtracking.



N. Tomatis et al. / Robotics and Autonomous Systems

The current approach differsin two main aspects:

* Instead of closing the loops only by means of the
perception, loops are detected and closed by
means of the localization information.

» Loops have to be closed only in the topological
map because the metric model is represented by
many disconnected local metric maps.

Loops can aso exist in alocal metric map; how-
ever, in such small maps the drift in odometry be-
tween two updates should not cause any problem to
the local consistency, asit has been shown in [6].

The current method works as follows: the robot
doesnot try torecognizeif asingle observation hasal-
ready been seen somewhere else. However, as soon as
the robot creates the map for apart of the environment
which has already been visited, the probability distri-
bution starts diverging into two peaks: onefor the cur-
rent map position; another for the previously created
location representing the same physical place. The al-
gorithm startstracking the two highest probabilitiesas
soon as the POMPD becomes unconfident because
this is the first clue indicating a divergence of the
probability distribution. A loop can then easily be de-
tected when the distribution has converged into two
peaks which move in the same way. The position
where the loop has to be closed can be detected by
turning off the automatic mapper and backtracking
with localization until the distribution re-convergesto
asingle peak. Thisshould be the point where the robot
started mapping the loop. An example is given in
fig. 5.

3.6. Metric localization and map building

This section briefly describes the main characteris-
tics of the Sochastic Map approach [17], which per-
mits using an Extended Kalman Filter [8], [15] for lo-
calization.

With this approach both the robot position
X = (XY, 0) andthefeatures x; = (o, r)" arerep-
resented in the system state vector:

Xy Crr Crl Crn
x = %1 cx) = Cyr Cip oo Cyy (6)
Xn Cnr Cnl Cnn

This represents the uncertain spatial relationship

between objectsin the map, which ischanged by three
actions:
* Rabot displacement
» Observation of a new object
» Re-observation of an object already existing in
the map

Robot displacement: When the robot moves with an
uncertain displacement u given by its two first mo-
ments (u, C,) , which are measured by the odometry,
therobot stateisupdated to g(x,, u) . Theupdated po-
sition and uncertainty of the robot pose are obtained
by error propagation on g:

x(k+1) = gx(K,u) = x(K&u  (7)

C”(k+ 1) =G Crr(k) Cru(k) GT (8)
Cu(k)y C,
where @ is compounding operator and G is the Jaco-
bean of g with respect to x, and u.
New object: When anew object isfound, a new entry
must be made in the system state vector. A new row
and column are also added to the system covariance
matrix to describe the uncertainty in the object’sloca
tion and the inter-dependencies with the other objects.
The new object (Xnew, Chew) Can beintegrated in the
map by computing the following equations of uncer-
tainty propagation:
XN+ 1(k) = g(Xr(k)a Xnew) = Xr(k) @ Xnew (9)
CN +1IN+ 1(k) = Gx,Crr( k)(-:’;(rr + GxnewcneWG;(rneW (10)
Cn+1i(k) = G, Cri(k) (1)
Re-observation: Let x,,,, be the new observation in
the robot frame. The measurement equation is defined
as.
zZ= h(xr’ Xnews Xi) = g(xr’ Xnew) =X (12)
Xnhew 1S temporarily included in the state to apply
the EKF. However, if prediction x; satisfiesthe vali-
dation test

(Know=X) Shewi Cnew=%) < %5 (13)
where Snewi = Cnewnew + Cii - Cnewi - Cinew' X;n
isanumber taken froma y 2 distribution with n = 2
degrees of freedom and o the level on which the hy-
pothesis of pairing correctness is rejected, then x
isare-observation of x; .

Extended Kalman Filter: When a spatia relationship
isre-observed, the updated estimate is aweighted av-
erage of the two estimates calculated by means of an

new
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EKF. It permits to update a subset of the state vector
while maintaining the consi stency by means of the co-
variance matrices. A measurement equation
z = h(xy, X.X;;,) isconsidered as afunction of mre-
lationships included in x. All of the n estimates x; of
the state vector x are updated by avalue whichis pro-
portional to the difference & = z—z between the
ideal measurement z and the actual measurement z:
X(k+1) = x(K) + T}, (14)

1Z° 2z

M
I, = E[x8'] = ijlcinIj (15)

T, = E[88'] = zj“”:lsz:lHchijIk (16)

where Hy is the Jacobean matrix of h with respect to
X; .
j
The variance and covariance C;; are also updated:

Cjj(k+1) = Cy(k) ~T;, ;T (17)

4. Experimental results

The approach has been tested in the 50 x 25 m? por-
tion of theinstitute building shown in fig. 7 with four
different types of experimentsfor atotal of morethan
1.5km.

For the experiments, Donald Duck has been used
(fig. 6). It is a fully autonomous mobile vehicle run-
ning X0O/2, adeadline driven hard real-time operating
system [4]. Donad navigates locally by means of a
motion control algorithm, which playstherole of both
position control and obstacle avoidance: it reachesthe
given (x,y, 0) or (x,y) goa by planning a collision
free path (with respect to the current local data), and
reacting to the dynamic environment either by merely
replanning the path or by changing heading direction
and replanning when an object appearsin front of the

robot.

Fig. 6. The fully autonomous robot
Donald Duck. Its controller consists
of aVME standard backplane with a
Motorola PowerPC 604 micropro-
cessor clocked at 300 Mhz running
XO/2. Among its peripheral devices,
the most important are the wheel
encoders, a 360° laser range finder
and agrey-level CCD camera.

4.1. Map building

In this section the automatic mapping capabilities
of the presented approach are evaluated. Note that the
environment is arbitrarily closed (fig. 7), so that the
exploration procedure is finite. Furthermore local
metric maps are taken from the a priori map used in
[2], because the stochastic map is not yet imple-
mented on the robot and runs, therefore, only off-line.

For this evaluation, five maps generated by com-
plete explorations of the environment shown in fig. 7
are compared to evaluate their quality with respect to
consistency and completeness. In order to evaluate
the topological mapper first, maps are compared be-
fore the backtracking step. By knowing which door is
open during the exploration, it can be extrapolated
how many state nodes should be extracted (see the
black dots in fig. 7). Their position (odometry) and
type (opening or hallway) are stored during explora-
tion to check whether the resulting model is consistent
with the real environment. For the other features (cor-
ners), each resulting map is compared to the othersto
calculate the average amount of differences between
apairs of maps. The results are presented in table 1.

Number of explorations 5
Total travelled distance 343 m
Number of statesin the environment 13
Mean detected states 12.8/98%
Mean confused hallway/opening 12/9.2%
Mean detected features 78
Mean different features 18/23%

Table 1. Comparison of five maps generated by complete
explorations of the environment shownin fig. 7.

One of the problems encountered during the explo-
ration is the difficulty of distinguishing between
openings and hallways. This leads to a mean of 1.2
false detections for each experiment. Neverthel ess by
visiting all the openings when traversing the environ-
ment by backtracking to add the local metric maps,
these errors are detected and corrected. In one experi-
ment a state (opening) was not extracted at all.

For the corner featuresit is more difficult to define
which features really exist in the environment. What
is easy to seeisthe difference between two maps. The
mean amount of extracted cornersin amap is 78; an
average of 18 of these are noisy features that are not
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always extracted. Thismeansthat 77% of the features
are constant in the five maps showing that the percep-
tion delivers valuable information to the mapper.

4.2. Localization

The quality of amap can also easily be estimated by
testing it for localization. For this, two types of local-
ization experiments are performed: one for localiza
tion (position tracking) and the other for relocation.

To test the topological localization, 25 randomly
generated test missions for atotal of about 900 m and
28000 estimates are performed. The robot knows in
which dtate it is at the start point. A mission is suc-
cessful when the robot reaches its goal location, isin
front of the opening and is confident about its posi-
tion. Thereit switchesto the metric approach. To have
more information about the experiments, each state
transitionisstoredinalogfilewith all theinformation
permitting to determine if each state transition de-
tected by the localization took place physically. The
results are presented in table 2. Even if al the mis-
sions are successful the log file permits to detect 21
false state transitions that caused 404 false estimates
inBand B’ (fig. 7), where the peak probability moved
forward and backward between two neighbor states.
These false estimates represent only 1.4% of thetotal,
meaning that the system recovers quite fast from these

—=r—dg

%Uﬂﬂﬂ%

Fig. 7. The test environment. It is complex, dynamic and artifi-
cialy closed in A so that the exploration procedureisfinite. Black
dots are the places where the automatic mapper is expected to
extract state nodes (the other doors are closed). In B and B’ the
robot had problems distinguishing between the two neighbour
locations. C and D are detected as rooms and represented by asin-
gle loca metric map. A large loop does not exist in this environ-
ment. Therefore, for the experimentsin section 4.3., aloop is“arti-
ficially created” by starting the exploration in 1, stopping it in 2,
taking the robot manually to 3 and resuming.

errors. Nevertheless the robot had also confident false
estimates (0.5%) that can cause amission failureif the
goal state is estimated when the robot isin front of a
another opening.

Number of missions 25
Success 25/ 100%
Total travelled distance 899 m
Mean travel distance 36m
Mean travel speed 0.31m/s
Total real state transitions 181
False state transitions 21/ 12%
Total estimates 27870
Unconfident states 3413/ 12%
False estimates 404/ 1.4%
Confident fal se estimates 149/ 0.5%

Table 2: Localization experiments. All the test missions have
been successfully performed. However the robot also made false
state transitions that caused some false estimates (1.4%). This
happened only by B and B’ in fig. 7. The reason that lead to a
success rate of 100% is that the system always recovered from its
error without estimating the goal location in front of a fase

The second type of test is focused on recovering
from alost situation (rel ocation). Ten experiments are
started from arandomly defined position in the envi-
ronment with a uniform belief state distribution (i.e.
lost situation). The goal isto measure which distance
or amount of state transitions are required in order to
converge to a correct confident state estimate. To
avoid false interpretations, the robot is required to
travel 3 state nodes further without estimate errors to
fulfill the test. In table 3 the ten tests are briefly re-
sumed.

As expected the robot can always recover. Its pol-
icy issimple: go forward until recovery or end of hall-
way; If end of hallway, turn. The system requires a
minimum of 1 and a maximum of 4 states to recover.
The interesting point is that this difference in the re-
sultsis position dependent and repeatable. For exam-
ple the crossing between the two hallways permits re-
covery with asingle state transition because it is glo-
bal distinctive for the environment in fig. 7. On the
other hand, the right part of the horizontal hallway
seems to be more distinctive than the left one where
the robot require the maximum amount of statesto re-
cover.
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Number of experiments 10
Total travelled distance 250 m
Mean distance for recovering 13.7m

Min / max distance for recovering | 1.21/20.31 m

Mean number of state for recovering 21

Min / max state for recovering 1/4

Table 3: Recovering from a lost situation (i.e. overall constant
belief state). The robot reguires from 1 to 4 states to recover,
depending on the distinctiveness of the part of the environment
whereit ismoving.

The metric localization is used but not explicitly
tested here, because the used EKF has already been
extensively tested in [2] with atotal of 6.4 km. The
mean 2c -error bounds are approximately 1 centime-
terinxandyand 1 degreefor 6 . Furthermorethe met-
ric localization approach has al so been tested with this
hybrid method for localization on the same robot in
[20], where ground truth measurements at goal posi-
tion resulted in an average error of lessthan 1 cm.

4.3. Closing the loop

In the test environment there are no large loops. In
order to test the proposed approach a loop is artifi-
cialy created by displacing the robot during the ex-
ploration as shown in fig. 7. As explained in section
3.5, it can be assumed that when two peaks appear
and move in the same way for three subsequent state
transitions aloop has been discovered. In all the other
experiments this has effectively never appeared,
showing that this a good test for loops. This experi-
ment has been performed three times. Each time the
probability distribution has effectively diverged into
two peaks allowing the detection of the loop. In order
to close the loop the rabot has turned off the mapping
algorithm and has gone back until the distribution has
converged to a single confident peak. Thistook place
where the map has been started (1 in fig. 7) proving
that the loop could be closed correctly.

5. Related work

Successful navigation of embedded systems for
real applications relies on the precision that the vehi-
cle can achieve, the capacity of not getting lost and the
practicability of their algorithms on the limited re-
sources of the autonomous system. Furthermore the

fact that a priori maps are rarely available and, even
when given, not in the format required by the robot,
and that they are mainly unsatisfactory due to impre-
cision, incorrectness and i ncompl eteness, makes auto-
matic mapping areal need for application-like scenar-
ios.

Simultaneous localization and map building re-
search can be divided into two main categories: met-
ric and topological. Metric approaches are defined
here as methods, which permit therobot to estimateits
(%Y, 0) position, while topologica are those where
the position is given by a location without precise
metric information.

After the first precise mathematical definition of
the stochastic map [17], early experiments [8], [15],
have shown the quality of fully metric simultaneous
localization and map building: the resulting environ-
ment model permits highly precise localization,
which is only bounded by the quality of the sensor
data [2]. However these approaches suffer of some
limitations. Firstly they rely strongly on odometry.
For automatic mapping this makes the global consis-
tency of themap difficult to maintaininlarge environ-
ments, where the drift in the odometry becomes too
important. Furthermore they represent the robot pose
with a single Gaussian distribution. This means that
an unmodeled event (i.e. collision) could cause a di-
vergence between the ground-truth and the estimated
pose from which the system is unable to recover (lost
situation). In [6] it has been shown that by taking into
account all the correlations (off-diagonal cross-cova-
riancesin eg. 6), theglobal consistency isbetter main-
tained. However thisis not sufficient, as confirmed by
arecent work [7], where a solution is proposed by ex-
tending the absolute localization to include alocaliza
tion relative to local frames.

On the other hand topological approaches[13] can
handle multi-hypothesis tracking and have a topolog-
ical global consistency, which is easier to maintain.
The robustness of such approaches has firstly been
proven by the application of the state set progression
[16], which has then been generalized to the POMDP
approach [5], [11]. For automatic mapping in [12] the
Baum-Welch algorithm has been used for model
learning. In contrast to the above mentioned topol og-
ical approaches, [14] proposes a topologica ap-
proach, which heavily rely on odometry in order bet-
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ter to handle environment dynamics. All these ap-
proaches are robust, but have the drawback of losing
in precision with respect to the fully metric ones: the
robot poseis represented by alocation without precise
metric information. To face this, Markov localization
[10] has been proposed: a fine-grained grid guaran-
tees both precision and multimodality. However, this
approach remains computationally intractable for cur-
rent embedded systems. A more efficient aternative
has recently been proposed, but the Monte Carlo lo-
calization [9] has not yet been extended for simulta-
neous localization and mapping.

Metric and topological approaches are converging,
like[7],[9] and [10], to hybrid solutions by adding ad-
vantageous characteristics of the opposite world. Go-
ing in this direction, in [18] the approach consists of
extracting a topological map from a grid map by
means of a Voronoi based method, while [19] pro-
posesto use the Baum-Welch algorithmasin [12], but
to build a topologically consistent global map which
permitsclosing theloop for the global metric map too.
In[3] adiscrete Markov Model is used to generate hy-
potheses, which are then tracked by multiple Kalman
trackers.

In contrast to the above mentioned approaches, for
this system a natural integration of the metric and to-
pological paradigm is proposed. The approaches are
completely separated into two levels of abstraction.
Metric maps are used only locally for structures
(rooms) that are naturally defined by the environment.
There, afully metric method isadopted. Asit hasbeen
shownin[6], for such small environments, where the
drift in the odometry remains uncritical, stochastic
map allows for precise and consi stent automatic map-
ping. The topological approach is used to connect the
local metric maps that can be far away from each
other. With this the robot can take advantage of the
precision of a fully metric EKF navigation added to
the robustness in the large of the POMDP approach.
All this by maintaining a compactness of the environ-
ment representation and a low complexity, which al-
lows an efficient implementation of the method on a
fully autonomous system. This hybrid approach
shows also its practicability for environments with
loops. In this case the loop is closed in the global to-
pological map based on the information from the to-
pological localization, while the metric information

remains local and does therefore not require further
processing, contrasting to [19], where the topol ogical
information is used for mapping only, to close the
loop in the metric map correctly.

6. Conclusions and outlook

This paper presents a hybrid approach for both lo-
calization and map building. The metric and topolog-
ical parts are completely separated into two levels of
abstraction. Together they allow a very compact and
computationally efficient representation of the envi-
ronment for mobile robot navigation. Furthermore
this combination permits both precision with the non-
discrete metric estimator and robustness by means of
the multimodal topological method.

The approach is validated empirically by extensive
experimentation for atotal of more than 1.5 km. Map
building istested by performing five complete explo-
rations of the environment and comparing the result-
ing maps. This comparison demonstrates that the
maps are consistent with respect to the environment
and that the perception permits to extract precious in-
formation. For localization, the success rate over the
0.9 km of the 25 tests missionsis 100%. Nevertheless
a precise analysis of the state transitions shows that,
between neighbor states, false state estimate occurs
(1.4%) and sometimes are even treated as confident
(0.5%). Therelocation performance of the topol ogical
method has been shown with 10 successful experi-
ments where the belief state converges with 1 to 4
state transitions depending on the distinctiveness of
the part of the environment where the robot is navigat-
ing. It has been shown how loops can be closed on the
localization level instead of the perception level. This
is easily done by using the multi-hypothesis tracking
characteristic of the POMDP for detection and back-
tracking for closing the loop.

These experiments show that the presented ap-
proach is mature and appropriate for real applications
in office-like environments. Further research will
therefore focus on long term experimentation in large
indoor environments presenting other different and
challenging characteristics. Nevertheless, the prob-
lem of switching from topological to metric remainsa
non neglectable limitation to the generality of the ap-
proach. A solution facing this limitation hasto beim-
plemented as proposed in section 3.4.
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