Property Mapping: a smpletechnique for mobile robot programming

Illah R. Nourbakhsh
The Robotics Institute, Carnegie Mellon University
Pittsburgh, PA 15213
illah@ri.cmu.edu

Abstract

The mobile robot programming problem is a software
engineering challenge that is not easily conquered using
contemporary software engineering best practices. We
propose robot observability as a measure of the diagnostic
transparency of a situated robot program, then describe
property mapping as a simple, language-independent
approach to implementing reliable robot programs by
maximizing robot observability. Examples from real-
world, working robots are given in Lisp and Java.

I ntroduction

The recent availability of inexpensive, reliable robot
chassis (e.g. ActivMedia Pioneer, |S-Robotics Magellan,
Nomad Scout) has broadened the accessibility of mobile
robotics research. Because these robots consist of fixed
hardware out-of-the-box, this technology is shifting the
emphasis of mobile robot research from a joint hardware
and software design process toward hardware-unaware
mobile robotprogramming.

This is a software design problem, and yet software
engineering best practices are not very helpful. Mobile
robots suffer from uncertainty in sensing, unreliability in
action, real-time environmental interactions and amost
non-deterministic world behavior.

New programming languages and architectures have
been born out of projects to create reliable, real-world
robots (Bonasso and Kortenkamp, 1996), (Brooks, 1986),
(Firby, 1987), (Horswill, 1999), (Simmons, 1994).
Severa have demonstrated their efficacy in working
mobile robots (Horswill, 1993) Krotkov et al., 1996).

These existing solutions all effectively constrain the
programmer during the process of robot programming, but
none provide satisfactory guidance regarding the
incremental process of constructing and debugging robot
programs. We suggest that one reason the best
implementations in these languages succeed is because
they facilitate robot debugging. Even more so than with
non-robotics systems, diagnosis and subsequent
modification of robot software is the chief time sink of
robot programming. We believe there is a single key
requirement for making robot programming tractable:
maximize run-time diagnostic transparency.

Copyright © 2000 American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

In this paper we present robot observability as a
predictor for diagnostic transparency. Then, we present a
language-independent technique called property mapping
for constructing robot programs that are diagnostically
transparent and thereby achieve high degrees of
reliability.

The Robot Programming Problem

A mobile robot is a situated automata, or a module that
comprises one part of a closed system together with the
environment. Fig. 1 shows the standard depiction of a
robot, with its outputs labeled as actions and the outputs
of the environment in turn labeled psrcepts.

E

actions| A P | percepts

R

Figure 1: The standard view of an embedded robot

This view can be confusing, as the module R is not meant
to depict the physical robot, but rather the automata
implemented by the robot algorithm (Halperin, Kavraki
and Latombe, 1998). The physical robot is a component
of the environment, and it is the interface through which
the robot automata receives percepts and acts

E

outputs Sensors

" Physical |
Robot

Pr[Y]=*Ar[Y] P,LY] =Pr [Y]
. Control() -Pr I E—

Robot Program
Figure 2: A detailed view of the robot-environment system

In Fig. 2, we depict the standard view in greater detail.
Without loss of generality, we conceptually decompose
the automata, or robot program, into a perceptual
partitioning module and a control module. Partition() is

simply a function that may implement perceptual
abstraction by mapping various percepts in P to the same
abstract percept in Pr. Control() is a Moore automata, or
afunction from the perceptual input (and possibly internal
state) to an output (and possibly a new internal state). We
use the set Ar, which is a subset of A, to denote the range
of Control().

The robot programming problem can be posed as
follows. The mobile robot software designer is given an
environment E with state set S including a physical robot
with fixed sensors, outputs, a set of possible sensor value-
vectors P and a set of possible output vectors A. The
designer creates the Robot Program, and in so doing
chooses the effective output range Ar, the perceptual
partitions Pr and the internal state set Y, together with the
mappingsP,Y =+ Pr,Y; Pr,Y = Ar,Y .

Sensor noise is a significant problem in mobile robot
programming, and so the separation of the robot program
into a perceptual partition followed by state and action
update follows the natural course of most robot
programming solutions. This is particularly the case in
functional programs where state is not used and therefore
the robot program simply maps the current perceptual
input to an outputP =* Pr = Ar.

Fig. 3 shows a working example of a functiona
program. This program is designed for a differential-
drive robot with a sixteen-sonar radial ring. It indefinitely
servoes the robot to face the closest object. If one walks
around the robot, the robot spins in place, attempting to
face the person.

Public void turnClosest
(java.awt.event.MouseEvent event)

int shortestDirection; int speed;
boolean flag = true;
RC.turnSonarsOn();
while (flag) {
RC.GetState();
shortestDirection=calcShortestDirection() -1;

RC.GetState();

if (shortestDirection > 8)
shortestDirection -= 16;
if (Math.abs(shortestDirection) > 2)

RC.setVel(-(shortestDirection*40),
(shortestDirection*40));

else RC.setVel(-(shortestDirection*20),
(shortestDirection*20));
Yy turnClosest() //

int calcShortestDirection()

int minVal = 255; int minindex = 0;
for (int i=1; i<17; i++)
if (RC.stateArray[i< minVval) {
minVal = RC.stateArray[i, minindex= " i;}
return minindex;
i calcShortestDirection() //

Figure 3: Java code for the Turn-Closest program
This code shows the separation of the software into a
perceptual reduction, “what direction is the closest
object?’ in cal cShortest Direction() followed by action
selection, “which way should | turn and how hard?’ in the
remainder of theurnClosest() method.

When students of Mobile Robot Programming’ do the
turnC osest assignment on their Nomad Scout robots,
the two most common reasons for poor behavior
correspond to errors in the perceptual partition step and
the control step. In the former case, the P =* Pr mapping
fails because students use algorithms that are too complex
in determining the location of the closest object (e.g.
minimum of adjacent n sonar readings). In the latter case,
the robot successfully determines the direction to the
closest object but the speeds chosen in Pr =* Ar are too
high and so the robot overshoots and oscillates
(particularly when the student is unfamiliar with control
theory).

The challenge of robot diagnosis is that the same poor
robot behavior may be caused by either a bug in
Partition() or a different bug in Control(). Diagnosis
would be easier if the robot program were written in a
way that enables the history of values for the internal
variables of the Robot Program to be observable. In the
case of a state-less, functional program, the only internal
variable is the abstract percept. We denote the value of
the abstract percept over time Rs.

Robot Observability

State observability is defined as the ability of a robot to
acquire the value of the state s of the Environment E (see
Fig. 2). A robot in a fully observable world can acquire
the trajectory of environmental state values over tilge:
We define the term, robot observability, as an analogue
to state observability, where the target is not the
Environment but its companion, the Robot Program.

E
-

P, A Ar r __I
Partition() AN
Control() Robot Program

Figure 4: The addition of an observer to the robot system

Suppose that an observer is added to the closed system of
Figures 1 and 2. This observer is given a description of
the sets P and A as well as full knowledge of the static
robot program, including Partition() and Control() (See
Fig. 4). During run-time, the observer only directly sees
the Environment module, but perceives changesin E only
to a finite level of acuity.

We define robot observability as the degree to which
the observer can identify the trajectory of the internal
values of the Robot Programr* andY*.

A robot program that is fully observable has transparent
internal values. Of course, this depends not only on the
structure of the robot program but also on the

! ¢s224] at Stanford University; 16x62 at Carnegie Mellon
University; CS1699 at University of Pittsburgh.

observability of the Environment. Consider a caterpillar
robot with a single forward-facing sonar sensor. The
robot program partitions the set of possible sonar values
into two possible values that comprise Pr: {close, far}.
The Control() algorithm is functional, smply mapping
close to zero motion and far to positive speed. Lisp code
for the robot program is shown in Figure 5.

(defun caterpillar-control ()
(loop
(r-move (if (close-obstacle) O
forward-speed) 0)))
(defun close-obstacle ()
(< (get-sonar) 6))

Figure 5: Code for the caterpillar robot program.

This system has full robot observability for any observer
who can reliably discriminate the robot’s motion.

It can be shown that for any functional robot program
with a bijective mapping from Pr to Ar, the robot is fully
observable if the actionsin Ar can be discriminated by the
observer. This may explain the success of functional and
quasi-functional (e.g. reactive) programming in robotics,
because viewing the actions of the robot can often provide
a direct window into the percept stream arriving at the
robot. When the robot misbehaves, the designer can
easly determine if the percept violates implicit
assumptions made by the designer, or if the functional
mapping from percept to action needs to be modified.

Because the composition of Ar is an important design
choice for the robot software engineer, we suggest a
heuristic that is applicable whether the engineer is
designing a functional, reactive or state-based robot
program: prefer robot program solutions with greater
robot observability.

For example, consider a mobile robot that avoids
obstacles and must reach a goal location. Fig. 6 shows
top-level Lisp code for a synchro-drive robot chassis.

(defun swervebot-control ()
(loop (r-move 10
(cond ((close-obstacle-right) 30)
((close-obstacle-left) -30)
((goal-way-right) 30)
((goal-way-left) -30)
(o))

Figure 6: Code for avoiding an obstacle and achieving a goal

The code in Fig. 6 demonstrates a case-based approach to
specifying rotational velocities for the robot. Four most
basic cases are identified, and each is assigned a discrete
rotational speed and direction. A popular aternative to
this case-based approach is a continuous-val ued approach,
in which the speed is a continuous function of the sensor
values (Borenstein and Koren, 1991). For instance, the
rotational speed in the case of goal - way-ri ght could be a
function of the number of degrees disparity between the
heading to the goal and the robot’s current heading.
By now it may be apparent to the reader that Fig. 6
containsasimple bug. The signs of the rotation velocities
are incorrect in the case of the third and fourth condition;

the robot will swerve away from obstacles but also away
from the goal when there are no obstacles. This error was
not contrived but, rather, it was made by the author on his
first try at the robot program.

The behavior that resulted during first testing on a
Nomad 150 robot demonstrates the difficulty of
debugging mobile robot code. During testing, the robot
would, at times, turn away from the goal. Were the sonar
sensors seeing phantom obstacles, or was there an error in
the rotational encoder? The robot appeared to work
correctly at other times, because the designer was
standing next to the robot. Unbeknownst to the designer,
the robot was executing, not the goal -way-1eft case
(which would have caused a rotation in the “wrong”
direction), but the close-obstacle-right (which
seemingly turned towards the goal) because its sensors
were picking up the designer.

This debugging difficulty stems from a lack of robot
observability: when the robot swerves left, it cannot be
determined by observation whether it is doing so because
of cond case 1 or (in the corrected code) cond case 4. The
solution, in keeping with the heuristic to maximize robot
observability, is to populate Ar with actions from A that
are recognizably different for each of the four different
abstract percepts iAr, as shown in Fig. 7.

(defun swervebot-control ()
(loop (r-move 10
(cond ((close-obstacle-right) 30)
((close-obstacle-left) -30)
((goal-way-right) -15)
((goal-way-left) 15)
o)

Figure 7: Improved and debugged swervebot code maximizing

robot observability

When it is possible to design a robot programming
solution with only a handful of cases, this technique may
be advantageous relative to the continuous-valued

programming approach due to its high robot observability.

This bias toward a small number of cases is just one
side effect of the heurisic to maximize robot
observability. The general effect of maximizing robot
observability is a bias toward reducing the size of Ar
maximally, and ideally until the action space is no larger
than the robot program’s internal feature space: |Ar| = |Pr
X'Y]. Anoverly large set of actions in Ar will fail to be
discernible by the observer.

In constructing Ar, the designer is performing action
sampling, in which a subspace of the available action
space is being delineated for use by the robot. The
perceptual complement is percept abstraction, in which
the percepts of the robot, P, are partitioned into |Pr|
values. If the number of partitions selected is too small,
then the robot may fail to recover relevant information
from the environment. If |Pr|is too large, then the robot
may be discriminating detail that is irrelevant to its task.

In summary, an approach to maximizing robot
observability is to minimize the size of Pr and Ar, while
including sufficient information in Pr to capture relevant

environmental detail and making Ar inclusive enough to
maintain the robot’s expressiveness. Next, we propose an
incremental method for constructing a robot program
along these lines.

Property Mapping

A property is a subset of the set of environment states, S
Intuitively, a property captures the value of one feature of
the world while allowing other features of the world to
range freely. For example, property pl may correspond to
the robot faced by an obstacle on its left and no obstacle
onitsright. This property would denote every such state,
varying the robot’s absolute orientation and the existence
of obstacles behind the robot freely, for example.

In the case of robot programming, our intent is to use
properties to capture the aspects of environment state that
are most relevant to the programming problem. For
example, in the case of a mobile robot destined to serve
hors d'oeuvres, the designer will care about properties
corresponding to the location of obstacles, hungry persons
and the status of the tray: {obstacle near, obstacle far,
hungry person near, hungry person far, tray has cookies,
tray is empty}.

When designers think in property space, they can
choose to define the set of properties Pr and then the
output function g without considering the observability of
the properties using the robot's actual sensors.
Surprisingly, ignoring the sensory shortcomings of the
robot during part of design-time can be beneficial. We
propose such a method for robot program design:

1. Supposethat Sisfully observable. Select anew property
that can map to a single, coherent action.

2. Select a specific action for this property. Avoid
choosing the same action for two distinct properties.

3. Implement the property-action pair in code. Test if
possible.

4. Unless finished go-to Step 1.

By first ignoring the partial observability problem, the
designer avoids simultaneously solving both the action
selection problem and the perceptual/state update
problems. Instead, the designer creates a set of property-
action pairs, where only the most relevant properties are
introduced. Since we assume full observability, this
approach generates all of the key actions that belong in Ar
regardless of the robot’s particular perceptual limitations.
In Step 3, the designer encodes recognition of the chosen
properties into the robot program, thereby addressing the
perception/state update problem on a property-by-
property basis.

Solving the problem incrementally first minimizes the
size of Ar then introduces only as many perceptual
partitions into Pr and only as much state Y as is necessary
to detect the target properties.

Consider, for example, the robot programming problem
for Cheshm, a mobile robot that avoids obstacles using a

solitary depth-from-focus sensor. Cheshm'’s depth-from-
focus sensor provides just three levels of range
information (i.e close, medium, far) ina 3 x 5 grid. The
programming challenge is to design a robot program that
would actively wander while avoiding both convex and
concave (e.g. stairs) obstacles in order to demonstrate the
sensor’s robustness.

The first property chosen, called danger-closep,
recognizes the existence of any convex obstacle
dangeroudy close to the robot. The resulting control
program, shown in Fig. 8, made Cheshm a caterpillar
robot.

(defun cheshm-control ()

(loop (r-move (if (danger- closep) 0 80) 0)))

Figure 8: Preliminary Cheshm control code.

We tested this first version of Cheshm by running the
robot in a variety of circumstances, stepping in front of
the robot and placing various objects in its way to see if it
would react. After debugging the sensing system,
additional property-action pairs were added to implement
swerving around obstacles based on their positions:
{danger-leftp, danger-rightp, medium-leftp, medium-
rightp}. Fig. 9 shows the complete action control code
for Cheshm.

(defun cheshm-control ()
(loop (if (concave-
progn
setf translation-velocity

obstaclep) (turn-around)

(cond ((danger- closep) 0)
((medium- closep) 40)
(t80)) _

(setf rotation-velocity
(cond ((danger- leftp) -40)

((danger- rightp) 40)

((medium- leftp) -20)

((medium- rightp) 20)

(to)) _

(r-move translation-velocity
rotation-velocity)))))

Figure 9:Cheshm’s actual action-selection code

The rotational speeds for medium and close obstacles
differ dignificantly (20 versus 40) so that to the
designer/observer can easily recognize the triggering
property. Animportant goal of the Cheshm project was to
demonstrate that vision can safely detect concave
obstacles. Note that concave- obst acl ep uses a different
action from those used below it for convex obstacles.
This enabled us to observe Cheshm'’s ability to explicitly
recognize concave obstacles, as it turns in place 180
degrees upon encountering stairs and ledges (Nourbakhsh
et al., 1997).

A more recent working example is T.AW. (Texas
Alien Woman), a contestant in the 1999 AAAI Hors
D’ oeuvres competition. In this competition, robots search
for humans in the room, offer them appetizers, and return
to their refill stations for more appetizers when they run
out. T.A.W. was an entry designed to demonstrate the use
of inexpensive pyroelectric sensors to detect its human

targets. The method, gohore(), was written to control
T.A.W. during its return to the refill station once it had
run out of cookies. The top-level goal for gohone() isto
achieve a specific position, the home base, while avoiding
unpredictable, moving obstacles along the way. This code
(Fig. 10) was written using the property-mapping
technique, starting with the properioseObstacle

public void gohome() {

int forwardVel = 0; int

int rotationVel = 0; double

int rotIntGoal; int currentRot;
rc.GetState();
goalDist =

goalDist = 0;
rotationGoal,

Math.abs(rc.stateArray[
Math.abs(rc.stateArray[
rotationGoal =
Math.atan2((

rc.XPOS]) +
rc.YPOS));

rc.stateArray[
rc.stateArray|
currentRot = rc.stateArray|
rotintGoal = (int)(3600.0 *
if (rotintGoal < 0)
if ((personp()) && (
resetExcuseMeTimer();
System.out.println("l must go get cookies
excuse me");

rc.YPOS)),

rc.XPOS)));
rc.THETA];

rotationGoal /
rotintGoal += 3600;
canExcuseMe())) {

myTongue.playSound(* out.au");
Y if
if (goalDist < homeThreshold) {
move(0,0);

myState = REFILLING;
1 System.out.printin("
}else if (closeObstacle()) {
1 System.out.printin("Close obstacle... ");
forwardVel = 0;
rotationVel =
computeRotCloseObstacle(

exitingtoREFILLING");

currentRot,
rotintGoal);
}else {

1 System.out.printin("no obstacle...");
forwardVel = computeForVelTo(goalDist);
rotationVel = computeRotTo(currentRot,

rotintGoal);

move(forwardVel, -
i gohome()

rotationVel);

int conput eFor Vel To(int goal Dist) {
int minF, minS;
minF = minFront();
minS = Math.min(minLeft(), minRight());
int nominal = goalDist / 3; // ILLAH was 2
if (nominal > 200) nominal = 200;
if ((minF > 40) && (minS > 20)) {
return nominal;
}else if ((
return nominal/2;
}else {
return nominal/3;

1}

bool ean cl oseCbstacl e() {
return ((minFront() < 17) || (
minFRight() < 8)); }

minF > 20) && (minS > 10)) {

minFLeft() < 8)

int conputeRot d oseCbstacl e(int curRot,

int goal Rot) {
if (minLeft() < minRight()) {
return -50;

}else {
return 50;

}
Y computeRotCloseObstacle() //

/I input is between 0 and 3600 and O - 3600

/l output needs to be -200 to +200 or so...
int conputeRotTo(int curRot, int goal Rot) {
int theDiff = goalRot - curRot;
if (theDiff < -1800) theDiff += 3600;

if (theDiff > 1800) theDiff -= 3600;

if ((theDiff > 0) && (minLeft() < 25)) {
theDiff = 0;

1 System.out.printin("left close");

}else if ((theDiff < 0) &&

(minRight() < 25)) {
theDiff = 0;
1 System.out.printin("right close");

}
return (theDiff / 10);
}

Figure 10:T.A.W.’s gohome procedure

When cl osebst acl e() wasfirst coded, it was given zero
rotational speed and the el se case directly following it
smply set forwardvel a a single speed and set
rotationvel at zero. After testing and debugging, the
next step was to add rotation to the cl oseObst acl e case
and, by inspecting conput eRot Ol oseCbst acl e() you can
see that this was performed using one discrete rotation
speed for the sake of robot observability.

Next, the else case was changed from an unintelligent
“go straight ahead” command to turn toward the goal.
Note in conputeRot To() that the rotational speed was
indeed computed as a continuous function of the
difference between desired heading and current heading.
While this could diminish robot observability, it affords
T.A.W. extremely smooth motion and elicited comments
to this effect during the competition.

In spite of this continuousdly-valued function, T.A.W.
achieves a high degree of robot observability by
depending on trandational speed to communicate internal
state and perceptual state. When the robot is observed
during execution of gohone(), it isinstantly either moving
straight ahead or turning. The observability question is,
can an observer tell why the robot is moving the way it is
moving?

If T.AW. isgoing straight, it is in one of two cases: it
believes it is heading in the goal direction, or it cannot
turn because it detects an obstacle in conput eRot To() .
The forward velocity of T.A.W. is significantly faster in
the former case (nonminal) than in the latter case
(nominal/2), and so this distinction will be obvious.

In the case of turning, T.A.W. turns either toward the
goal or away from an obstacle. Turning toward the goal
isdone at full trandational speed (i.e. noni nal), as shown
by comput eFor Vel To(), while turning away from an
obstacle is done with a forward velocity of zero (based on
the closeObstacle() case).

The astute reader will note that T.A.W. can speak
(myTongue. pl aySound(“out . au”)). If so, why not
program the robot to communicate internal values
verbally, just as a C debugger may sprinkle the code with
printf commands. Thisis acceptable in many situations,
but there are two caveats.

First, there remains a bandwidth limitation on the
human observer, and this constrains the number of
properties and the number of discrete, chosen actions that
are feasible. Second, the robot’s entire behavior is often
relevant to its goals. In the case of T.A.W., the robot

speaks to the public, so the audio channel is not freely
available.

As shown by the nyst at e variable, T.A.W. also makes
use of a limited amount of state. The property mapping
technique was used for each state's behavior, and
furthermore the states were disambiguated by designing
intentionally different overall robot motion for each state.
The speed achieved by T.A.W. during the GoHOMVE state is
approximately twice the speed used during the SERVEFOD
state.

The control code was designed, implemented and tested
over the course of approximately 6 hours of focused work.
The result, T.A.W., achieved second place at the 1999
AAAI Competition.

Other, more ambitious mobile robots programmed
usng this same methodology have demonstrated
significant mean time to failure statistics. Chips, in
particular, as well as Sweet Lips and Joe, are three full-
time tour guide robots that conduct tours in museums.
Chips uses a property-mapping, case-based approach to
both navigation and obstacle avoidance and has now been
running for 22 months autonomoudy. Its mean time
between failure has increased to a stable value of
approximately three weeks (Nourbakhsh et al., 1999).

Concluding Remarks

We have used the property mapping technique for more
than four years, resulting in several examples of very
successful implementations. Our experiences suggest that
robot observability is a good predictor of long-term robot
reliability. But, is this the most important mechanism by
which this technique affects robot reliability?

Property mapping tends to minimize the effective
perceptual space via partitioning, and to minimize the
effective output range via action sampling. It is
conceivable that this form of problem reformulation
introduces a real bias toward a space of reliable robot
programs, separate from its effect on diagnostic
transparency.

The property technique described herein applies to
ground percepts and actions. Architectures such at 3T
(Bonasso and Kortenkamp, 1996) take advantage of a
hierarchical approach in which meta-actions are
implemented as primitive behaviors. A next step is to
generalize property mapping and robot observability so
that they may be applied to such hierarchical systems.
This technique also needs to be extended to the multi-
threaded case in order to evaluate inherently parallel
architectures such &ubsumption (Brooks, 1986).

Finally, we have observed surprising differences in
robot reliability when comparing implementations in
functional languages (Lisp, ML) and procedural
languages (C, Pascal). An examination of whether
functional programming languages naturally lead to high
degrees of robot observability may be fruitful.

Acknowledgments

Prof. Michael Genesereth teaches CS224 at Stanford
University. Profs. Martha Pollack and Don Chiarulli
teach CS1699 at University of Pittsburgh. Chris Hardouin
created T.A.W. Thanks to Lee Weiss, Iwan Ulrich and
the anonymous reviewers for their comments.

References

Bonasso, R. and Kortenkamp, D. 1996. Using a layered control
architecture to aleviate planning with inc. info. In Planning with
Incomplete Information, AAAI Spring Symposium Series.

Borenstein, J. and Koren, Y. 1991. The vector field histogram—
fast obstacle avoidance for mobile robots, |EEE J. Robotics and
Automation 7 (3) 278-288.

Brooks, R. 1986. A robust layered control system for a mobile
robot.|EEE Journal of Robotics and Automation, 2:14-23.

Firby, R. 1987. An investigation into reactive planning in
complex domains. IRroc. AAAI-87.

Halperin, D., Kavraki, L and Latombe J. 1998. Robot algorithms.
CRC Handbook of Algorithms and Theory of Computation, M.
Atallah (ed.), CRC Press.

Horswill, 1. 1999. Functional programming of behavior-based
systems. In Proc. IEEE International Symposium on
Computational Intelligence in Robotics and Automation.

Horswill, I. 1993. Polly: A vision-based artificial agent. In Proc.
AAAI-93, Washington DC, AAAI Press.

Krotkov, E., Simmons, R., Cozman, F. and Koenig, S. 1996.
Safeguarded teleoperation for lunar rovers: from human factors
to field trials. In Proc. |IEEE Planetary Rover Technology and
Systems Workshop, Minn., MN.

Kunz, C., Willeke, T. and Nourbakhsh, I. 1999. Automatic
mapping of dynamic office environments. Autonomous Robots 7,
131-142.

Nourbakhsh, I., Bobenage, J., Grange, S, Lutz, R., Meyer, R. and
Soto, A. 1999. An affective mobile robot educator with a full-
time job.Artificial Intelligence 114:95-124.

Nourbakhsh, 1., Andre, D., Tomasi, C. and Genesereth, M. 1997.
Mobile robot obstacle avoidance via depth from focus. Robotics
and Autonomous Systems 22, 151-158.

Simmons, R. 1994. Structured control for autonomous robots.
| EEE Transactions on Robotics and Automation, 10:1.

