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Abstract—Motion vision (visual odometry, the estimation of 
camera egomotion) is a well researched field, yet has seen 
relatively limited use despite strong evidence from biological 
systems that vision can be extremely valuable for navigation. 
The limited use of such vision techniques has been attributed 
to a lack of good algorithms and insufficient computer 
power, but both of those problems were resolved as long as a 
decade ago. A gap presently yawns between theory and 
practice, perhaps due to perceptions of robot vision as less 
reliable and more complex than other types of sensing. We 
present an experimental methodology for assessing the real-
world precision and reliability of visual odometry techniques 
in both normal and extreme terrain. This paper evaluates the 
performance of a mobile robot equipped with a simple vision 
system in common outdoor and indoor environments, 
including grass, pavement, ice, and carpet. Our results show 
that motion vision algorithms can be robust and effective, 
and suggest a number of directions for further development. 

Keywords: robot vision; motion vision; visual odometry; 
optical tracking; robot motion capture; optical flow. 

I. INTRODUCTION 
The benefits of reliable navigation by an autonomous 

mobile robot include the ability to perform a wider range of 
tasks, operate safely near humans, and move unsupervised 
through unstructured areas. In contrast, the consequences 
of poor navigation can range from perceptual confusion 
and mission failure to collisions, robot damage, or human 
injury. Vision has the potential to offer low-latency, high-
frequency, wide field of view estimates of a robot’s 
environmental state (such as its velocity, relative position, 
and obstacle/precipice locations) in a compact, passive 
sensor. Crucial to the increased use of vision sensing are 
good measurements and procedures for evaluating visual 
navigation performance.  

Our objective in this work is to propose criteria and an 
experimental method for rigorously evaluating visual 
odometry systems in real, unstructured environments. This 
work is a prelude to our own use of visual odometry in 
other research (specifically, hybrid fixed and mobile sensor 
networks), and we believe this work, and the data that we 
have collected, can be useful to other researchers as well. 
We demonstrate our approach by evaluating an example 
vision system at outdoor and indoor sites, and discuss the 
impact of environmental and design parameters on vision 
system performance.  

We have developed a portable apparatus for obtaining 
reliable ground truth about a moving robot’s pose (location 
and orientation), and software for simultaneously recording 
video from the offboard apparatus and an onboard digital 
camera. Using this equipment at a variety of outdoor and 
indoor sites we have assembled a library of test video 
sequences and accompanying ground truth data about robot 
movements on terrain including grass, pavement, ice, and 
carpet. We plan to add sand, gravel and rocky terrain soon. 
These ground-truthed sequences allow fair comparisons to 
be made between different vision systems in real world 
conditions. They can also help gauge the performance 
impact of adjusting vision system parameters (e.g., frame 
rate, number of points tracked, interest point detector 
thresholds, camera resolution) and thereby reveal the 
minimal amount of computational and resolving power 
required to achieve a given performance level – crucial 
design information for new robots. 

This work is especially timely because, as digital 
cameras and high performance embedded systems 
proliferate, the cost of equipping a robot with a visual 
odometry system is falling rapidly. Already, reasonable 
quality digital cameras (USB, IEEE 1394, and board 
cameras) are priced comparably to 1D sonar rangefinders 
($20-50). Given the power of commodity markets to drive 
costs down, the near future may see digital cameras 
becoming the least expensive of all potential mobile robot 
sensors. Establishing criteria and benchmark test data as a 
baseline for comparison can help encourage the 
development of new visual navigation algorithms and 
improve the use of established ones. Our video sequences 
and ground truth data are available online at 
http://info.pittsburgh.intel-research.net/People/jasonc/vo. 
Also, while our tests here have been performed with a 
small robot (27x33x43 cm, 5 kg) the methods used will 
readily scale to larger robots and autonomous vehicles.  

The remainder of this paper is organized as follows: 
First, we briefly review related work. Second, we introduce 
the proposed criteria for evaluating visual odometry 
systems and explain the rationale behind those criteria. 
Third, we detail our experimental method for measuring 
visual odometry system performance. Fourth, we describe 
the robot and vision system used in our tests. Fifth, we 
present results based on real-world testing using our 
proposed method. Finally, we review and conclude. 



II. RELATED WORK 
A wide variety of techniques for visual navigation 

using robot-mounted cameras have been described over the 
past several decades. The use of vision to guide an 
autonomous mobile robot dates back at least to 1976, when 
Moravec and Gennery used feature tracking to perform 
visual servoing/course correction on the Stanford Cart [1]. 
Visual odometry systems have also been successfully used 
in high-profile projects such as autonomous aircraft [2] and 
underwater vehicles [3]. Other researchers suggest that, 
though a general solution to the structure-from-motion 
problem could remain challenging, the problem of 
egomotion determination for vision and manipulation is 
readily solvable [4][5].  

Despite this strong history of good research and bright 
prospects, the adoption of robot vision techniques, 
including visual odometry, has been slow. Good studies of 
some likely components of robot vision systems have been 
published (for instance [6], for optical flow field 
estimation), but otherwise implementations have appeared 
largely as point solutions for particular robots and “logical 
extensions” of published algorithms. Just as Beauchemin 
and Barron point out in [5] that optical flow has been well 
addressed in theory but not in practice, the theory of 
motion vision has been well researched, but many practical 
aspects of the work remain to be explored. In this paper we 
take a step towards demonstrating visual odometry as a 
practical, reliable mobile robot component by defining 
navigation-performance-based measurement criteria and 
developing good benchmark data.  

III. EVALUATION CRITERIA 
Ultimately, the measure of success for a navigational 

task is safe arrival at an intended destination. For most 
situations a robot’s ability to correctly execute higher level 
motion plans is a prerequisite for safe maneuvering, so we 
recognize this as an important evaluation criterion for 
visual odometry systems. In particular, safe closed-loop 
maneuvering requires faithful reporting of position and 
velocity under real-world conditions. This paper focuses on 
intuitive, graphical measures of such positioning fidelity, 
primarily using two-dimensional plots of reported position 
versus ground truth. We augment these detailed but 
subjective measures with several aggregate metrics of 
incremental and cumulative odometric performance. This 
type of evaluation stands in contrast to other common tests 
typically applied to vision systems, including analyses of 
synthetic data, measures of image reconstruction quality 
(frequently used to evaluate optical flow methods), and 
operation in laboratory or office conditions.  

A. Simulated versus Real Data 
Vision algorithms may be evaluated with real or with 
synthetic data. Synthetic data is tempting because it is 
easier to ascertain precise ground truth and because 
inconvenient exogenous factors such as variable lighting, 
motion blurring, optical imperfections, complex motions, 
and temporal and spatial aliasing may be ignored. However 
this sharply limits the applicability of such synthetic test 
results to real-world application domains such as mobile 

robotics. For instance, in [5] two optical flow extraction 
methods work well on synthetic data and yet fail when 
presented with real image sequences. Real data is more 
difficult to obtain and more challenging to handle, but 
offers a much better indication of the potential 
effectiveness of an algorithm in actual use. An objective of 
this research has been to develop and publish a library of 
benchmark video sequences recorded in real-world 
conditions with corresponding ground-truth information. 
Such a library should have at least two forms of impact: (1) 
it facilitates fair comparisons between different algorithms; 
(2) it permits rapid evaluation of the consequences of 
changes or particular parameter choices within existing 
algorithms. 

B. Extreme Terrain 
Rather than limiting our tests to office/lab 

environments we have chosen to explore a broad variety of 
terrain, including grass, sand, gravel, sidewalks, and 
uneven pavement. Each presents its own challenges: 
sidewalks lack coarse texture; gravel and sand shift under a 
robot’s wheels; grass is of varying height and obscures the  
 

 

 
Figure 1.  Robots On Ice, In the Grass. Note the tripods for the robot 

tracking system and the laptop computers used to record video. 



true ground plane; ice and asphalt can be highly reflective. 
A vision system that works well in one terrain may fail in 
another. Likewise it may be possible to reduce the resource 
requirements for a given vision system, environment, and 
level of performance in order to realize financial or 
computational savings. A broad array of test data compiled 
in widely different settings is essential for effectively 
assessing these tradeoffs.  

C. Open- vs. Closed-Loop Test-Patterns 
Some motion-vision algorithms are able to provide 

quantitative estimates of a camera’s egomotion, others can 
only estimate deviation from a desired goal or path (such as 
target tracking or corridor following might require). The 
latter algorithms are less capable than the quantitative ones 
and must be tested as part of a closed-loop system. That, in 
turn, precludes exact comparison with other approaches 
and makes evaluating the consequences of parameter 
changes much more difficult. This paper focuses only on 
those methods that can make quantitative motion estimates, 
and which can be tested using prerecorded, open-loop data.  

IV. EXPERIMENTAL METHODOLOGY 
Obtaining the type of measurements proposed above 

requires an independent, drift-free means of determining 
robot pose throughout each experiment. One logical way to 
achieve such precise ground-truth is to work within a 
motion capture lab. Using the CMU Graphics Lab motion 
capture facility we have collected a number of robot 
motion traces. These data, acquired in a controlled setting 
with precise ground truth, have enabled us to perform 
initial analysis of the visual odometry system described and 
to better understand the problem of evaluating it and 
similar systems. We have also used data collected in the 
motion capture facility to validate our own portable robot 
tracking system. With this portable system we have then 
been able to collect video and ground truth motion traces in 
a number of settings which would be difficult or 
impossible to replicate in a laboratory environment (e.g., 
sections of lawn, sheets of ice, sand, gravel, asphalt).  

A. Timeline of Each Set of Experiments 
A set of experiments at a given site consists of taking 

calibration measurements for the robot tracking system, 
and then recording several (one to a dozen) individual test 
runs. Each test run involves simultaneous capture of video 
from an on-robot camera and two tripod-mounted tracking 
cameras used by the tracking system. Each run takes from 
1-5 minutes during which the robot moves 1-5 meters.  

B. Portable Robot Tracking System 
Our portable robot tracking system uses a pair of wide 

angle digital cameras (f=2.1mm, horizontal field of view 
exceeding 90°) mounted on tripods arranged so the 
cameras’ fields of view overlap over the entire 
experimental area. During each robot motion sequence, the 
cameras record 640x480x24bit color video at 4 or 8 frames 
per second (fps), depending upon the length and speed of 
the experiment. The video is transferred via an IEEE 1394 
bus to a nearby laptop and is stored uncompressed for off-

line analysis. Each video frame is time stamped with the 
time of acquisition on the laptop (including a lag of 
approximately 125ms from actual image capture, 
independent of frame rate).  

Analysis of the video streams from the tracking 
cameras begins by correcting for clock skew between the 
camera recordings. Because the robot starts each sequence 
at rest we use the observed start of robot motion as a 
synchronizing temporal marker to establish a relative time 
offset for each recording and adjust each frame’s 
timestamp accordingly. This level of timing precision is 
sufficient to constrain positioning errors resulting from the 
remaining timing offset to less than 1 cm (4 fps) or less 
than 0.5 cm (8 fps). After timing correction, we warp each 
video frame to correct for radial and tangential distortions 
(which are substantial given the lenses used). We then 
apply the camshift algorithm [7] to track the centroid of 
each fiducial to sub-pixel precision. Initial color-
probability histograms for camshift are established from 
the first frame of each sequence. This correctly accounts 
for gradual changes in lighting conditions at the experiment 
site over time. (such as a rising or setting sun). 

During a local calibration phase at each experiment site 
we measure the pair-wise distances between four specific 
points on the ground plane and capture images showing 
four fiducials placed at each of those points (at the same 
height as the fiducials mounted on the robot). We use those 
four point locations to define a coordinate frame on the 
ground and compute an appropriate projective 
transformation via a homography [15] for each of the two 
tracking cameras. Those homographies map pixel locations 
in each camera to locations on the ground plane. By raising 
the tracking cameras nearly 2m above the ground plane and 
steeply pitching them down we are able to obtain full two-
dimensional location estimates from each camera rather 
than bearing-only information. Momentary differences in 
background and lighting may cause the camshift algorithm 
to lose track of the fiducials, but when an estimate from 
both tracking cameras is available we combine the two 
position estimates using a Kalman filter to arrive at a joint, 
smoothed estimate.  

The fiducials themselves have gone through several 
design iterations, with earlier, smaller ones having proven 
too small to be seen clearly in tracking cameras’ wide 
angle lenses. The present fiducials are 10 cm long, 4.5 cm 
diameter cardboard tubes painted with highly saturated 
colors.  

Our tracking system relies on a flat ground plane 
assumption, and two concerns arise on uneven ground: (1) 
the positions of the fiducials are incorrectly projected on 
the ground plane because the calibration homography does 
not correspond to the robot's local plane; (2) any pitch or 
roll in the robot's position can potentially cause the 
estimated position of the centroid in the image to deviate 
from the true position. For our initial work we have chosen 
to minimize these sources of error by focusing on terrain 
which is predominantly flat. Future work may incorporate 
a different fiducial design and tracking system to permit 
experimentation in terrain with large elevation changes and 
deep relief.  



 

  

Figure 2.  Portable Robot Tracking System Compared To Laboratory 
Motion Capture System. The lab system’s markers were set approx. 3 cm 
further out from the robot’s center of rotation than the portable tracking 
system’s fiducials were, hence the inset of the “camera 1” and “camera 
2” tracks during turns. In the motion sequence shown the robot traced a 
40 cm square figure, making a turn-in-place at each corner. A quarter-
circle arc results at each turn because the fiducials were set at 16.5 and 

19.5 cm from the robot’s center of rotation.  

To validate the portable robot tracking system, we set it 
up inside the CMU Graphics Lab motion capture facility 
and recorded robot movements with both the portable 
tracking system and the laboratory motion-capture system. 
The lab system was a Vicon Motion Systems model 512 
capture unit equipped with twelve high resolution cameras 
coupled to pulsed, LED-based infrared ring-lights. We 
used 11 retro-reflective spheres to track the position and 
orientation of the robot and the positions of the calibration 
points with millimeter level accuracy. When the 2D results 
from both systems were compared, we found the portable 
system to be quite noisy, but on average accurate to within 
1-3 cm. Importantly, we observed no cumulative error. 
(See Fig. 2 for a comparison of the two traces.) The noise 
in the portable system trace arises from an interaction 
between the camshift tracker and the de-mosaicing 
algorithm used in our GRGB-pattern single-chip cameras. 
The edges of the fiducials appear to change color as they 
slide across pixel wells on the imaging chip, causing jitter 
in the estimate of fiducial locations. We are presently 
considering tracking algorithms that will be more robust to 
these variations. 

C. Robot Platform 
As a test platform we have used a small four-wheel-

drive, four-wheel-steering robot originally constructed as a 
prototype for the CMU PER project [8]. This 5kg robot is 
27 cm wide by 33 cm long and carries a Cerebellum motor 
controller board and a single-board computer based on the 
Intel XScale PXA250 processor running at 400 MHz. 
The robot is capable of arbitrary planar motion and in-place 
turns as well as Ackerman two- and four-wheel steering. 
Each 6.3 cm diameter wheel is independently steered and 
independently driven. There are no wheel encoders, though 
the drive motors act through  

 

 

 
Figure 3.  Views From the On-Robot Camera  

(ice, bright sun on asphalt, grass) 

very high reduction gearing (320:1) to provide 
approximately constant speed robot motion regardless of 
terrain in the high duty-cycle regime. The stock robot 
firmware uses this constant-speed operation to perform 
motor-runtime- and steering-angle-based dead reckoning. 
Motor speed stability is further enhanced by the use of an 
onboard DC-DC converter to obtain a steady 17 V for 
motor power from the gradually discharging 30 V (24 cell 
NiMH) battery pack. Ground clearance varies between 2.5 
and 7.5 cm, enabling operation in rugged terrain. 

The on-robot camera used for visual navigation has a 
focal length of 2.1 mm and is mounted 29 cm above the 
ground at the robot’s front, center edge. In this position, the 
camera’s vertical field of view extends from approximately 
45 cm in front of the robot (assuming flat ground) to 
approximately 40° above the horizon. Other cameras and 
sensors are also attached to the robot but are not used in 
this experiment. Because the camera is at the front of the 
robot, rather than being collocated with the robot’s 
geometric center, the camera experiences mixed translation 
and rotation during any turn, including “pure rotation” 



turns-in-place. Directly above the camera is a large 
fluorescent orange cylinder (9.4 cm. high, with diameter of 
4.5 cm) used as a fiducial for tracking the robot. In a 
corresponding location and height at the rear center of the 
robot is a second, differently-colored cylinder. By tracking 
both fiducials from external cameras, we obtain 
independent, drift-free estimates of the location and 
orientation of the robot.  

The on-robot camera is connected via an IEEE 1394 
bus tether to a nearby laptop PC to facilitate uncompressed 
video recordings of up to 1GB of data at a time. Typically 
we operate this camera at VGA resolution (640x480) and 
capture 8-bits of grayscale information per pixel at 15 fps, 
though selected movement sequences have also been 
captured in color and at 30 fps. This video data is then 
stored using lossless compression to avoid introducing 
artifacts which could adversely impact vision algorithms.  

D. Test Patterns 
Our test patterns are based predominantly on move-

turn-move sequences. Many cause the robot to turn as 
much as 360° over the course of the test. Incorporating 
large turns tests the visual odometry system’s ability to 
acquire and track new features as old ones move out of its 
field of view. For each test sequence, a laptop connected to 
the robot via an 802.11b wireless network link issues high 
level commands and on-robot firmware handles motor 
control and action timing.  The robot’s wheels are driven at 
approximately 4 cm/s, and when operated on office 
carpeting the robot can achieve reasonable short-term 
translational and rotational accuracy using time-based dead 
reckoning alone. Accuracy on other surfaces is 
substantially degraded by wheel slip.  

These test patterns may seem to emphasize a separation 
of translation and rotation (and hence simplify egomotion 
estimation). However, because the camera on the robot is 
mounted 16.5 cm forward of the robot’s center of rotation, 
every turn is in fact a simultaneous translation and rotation 
from the perspective of the vision system. Non-central 
camera placement, despite being more challenging for the 
vision system, better represents typical camera deployment 
scenarios and is especially important for medium-sized and 
large robots where central camera placement may be 
difficult, impossible, or result in an unacceptably-restricted 
field of view.  

E. Why Uncompressed Video? Why IEEE 1394? 
While IEEE 1394 interfaces are not yet common on 

single-board computers such as might be used to control a 
robot, this high speed interface offers the most 
straightforward means of transporting uncompressed VGA 
resolution digital video at reasonable frame rates across a 
tether. Using uncompressed video in this evaluation is 
important for two reasons: (a) an embedded video system 
is most likely to work with uncompressed frames, 
potentially via a high-speed local interface to the camera 
(for instance, as in [9]); and (b) some vision algorithms 
experience degraded performance in the face of 
compression artifacts. Use of a tether was essential given 
the large amount of video data captured (over 250 

MB/minute for 8-bit grayscale at 15 fps, 3x that for color). 
Our current experimental apparatus uses a laptop equipped 
with 2GB main memory to record the video stream from 
the robot, thus allowing experiments of up to 8 minutes 
duration at 15 fps, or 4 minutes at 30 fps.   

Capturing at the highest frame rate possible has the 
added advantage of allowing us to decimate the resulting 
video stream later on to obtain equivalent video at lower 
frame rates. This is helpful in testing sensitivity of a given 
algorithm to frame rate. Given that a reduced frame rate 
translates directly into lower computational demands and 
lower cost components this is an especially important 
design variable to investigate. 

V. AN EXAMPLE VISUAL ODOMETRY ALGORITHM 
The visual odometry algorithm we have used for our 

tests is a simple and direct method based on the assumption 
that the scene in view is a predominantly flat ground plane 
at constant, known distance and pitch from the camera, 
with zero roll. The optical flow field in the portion of the 
image below a static horizon is used to estimate x and z 
translation, and the optical flow field above the horizon is 
used to estimate rotation. To our knowledge this particular 
method has not been explicitly published, perhaps because 
of the onerous and restrictive camera geometry assumption 
required for it to succeed. Nonetheless, this assumption is 
valid for the case of many small mobile robots with no 
suspension and a rigid frame.  

1. The Role of Consensus: Scene motion information 
tends to incorporate a variety of confusing elements, 
including tracks of other moving entities, reflections, 
changing shadows, occlusions, and optical flow field 
estimation errors. These elements result in outliers which 
can hide the information needed to estimate camera 
egomotion. Consensus methods such as RANSAC [10] 
have long been used when analyzing optical flow fields to 
resist confusion by outliers and generate estimates across 
large populations [11]. We use RANSAC methods several 
times in this algorithm, in both single- and multi-
dimensional forms, to condense groups of discrete 
estimates into consensus estimates used for pose updates.  

  
Figure 4.  Optical Flow Field Traces, captured in an office environment 

on carpet. The vectors shown represent 20 frames of motion (slightly 
over 1 second). Notice the strong motion observed along the ground 

plane and the relative lack of motion observed above the horizon.  



2. Algorithm: Simple trigonometry reveals that, given a 
plane G obliquely viewed by a perspective camera C with 
zero roll and yaw and constant pitch relative to G, the 
projection of the plane into the camera image is particularly 
straightforward. If the origin of G(x,z) is set as the point 
directly beneath camera C and the z-axis forms a plane 
with C’s optical axis, and if C(u,v) is set as the intersection 
of C’s optical axis with its the imaging plane, then a feature 
at (x,z) on G will be imaged at location (u=k1·x/z, v=k2/z) in 
C. We can use this to presumptively map tracked features 
to locations on the ground plane, and then to calculate 
corresponding tangential and normal movement distances 
for optical flow field vectors. 

For each frame of video we first un-warp it to remove 
radial and tangential distortion, then process it with the 
algorithm described in [12] and [13], using the differences 
between adjacent frames to estimate the optical flow field.  

Given a horizon line measured during a one-time 
calibration process described below, we divide the flow 
field vectors into three groups: sky for vectors substantially 
higher than the horizon line, horizon for vectors close to 
the line, and ground for vectors substantially below the 
horizon line.  

For the set of flow vectors in the sky we retransform the 
vector endpoints back into original (radially distorted) 
camera coordinates and use the consensus value of (u(t)-
u(t-1))·k3 as our estimate r̂  of the robot’s rotation.  

For the set of flow vectors on the ground, we apply the 
perspective transform discussed above to convert each 
vector in the image frame to a displacement along the 
ground plane. From those ground plane vectors we then 
subtract the projected rotation field implied by the 
estimated rotation, r̂ . Finally, we choose the consensus 
displacement vector [ x̂ , ẑ ]T from the remaining ground 
motion field. This is our estimate of tangential and normal 
translation.  We ignore flow vectors on the horizon. 

3. Calibration: We first calibrate the camera for radial and 
tangential distortion [14], and establish the amount of 
cropping necessary to eliminate vignetting after the 
distortion correction has been applied. Next we measure 
the vertical and horizontal field of view of the undistorted, 
cropped image. Then we mount the camera on the robot 
and measure the location of the horizon in the camera view. 
These parameters are assumed not to change and hence 
need only be measured once at robot assembly.  

4. Speed: The code used for the analyses presented here 
has not been designed to run in real-time. However, we 
have also implemented a version of this algorithm as part 
of a demonstration system which performs closed loop, 
real-time control of a small robot, including visual 
servoing, course correction, pose estimation, and hazard 
detection (precipices and obstacles) while simultaneously 
displaying the video stream being analyzed and overlaying 
it with an optical flow field and other annotations. The 
entire system runs at between 8 and 10 fps on a 1.6 GHz 
Intel Pentium III-based laptop computer.  

VI. RESULTS 
Revealing the specific situations in which a visual 

odometry system is reliable, versus those where more work 
is required, is a particular goal of this research. Here we 
analyze the performance of our example visual odometry 
algorithm in four different settings. Table I below 
summaries the results in each setting, while the x-z plots on 
the following page offer a more graphical and detailed 
depiction of vision system performance.  In the x-z plots 
the ground-truth motion of the robot is shown as a thin, 
dotted, red line, while the motion estimate from the visual 
odometry system is shown as a thick, solid, black line. All 
scales are in centimeters and each commanded robot move 
was a 40 or 80 cm square. 

A. Aggregate Measures 
The aggregate figures in Table I obscure many of the 

details of spatial performance better observed in the x-z 
plots, but do reveal a number of interesting points about the 
overall behavior of our test algorithm:   

First, note the dramatic reduction in incremental 
rotational error in the outdoor tests.  We believe this is due 
to the abundant high-contrast textured regions offered by 
an outdoor horizon.  Because features tracked on such 
regions lie effectively at infinity, they are ideal for 
measuring rotation.   

Second, note the substantial increase in incremental 
translational error in the outdoor tests.  We believe this is 
due to terrain-specific issues: Ice exhibits specular 
reflections which may be tracked as though they were static 
ground features.  Asphalt in the bright midday sun causes 
glare which leaves few trackable features along the ground 
plane.  Grass presents a complex surface which masks the 
true ground plane, resulting in consistent overestimation of 
translational motion.  The particular lawn on which we 
tested also included several small undulations, which lead 
to substantial errors in estimates of translation in the z 
dimension (see also Fig. 6).  

Third, notice that cumulative error rate, averaged across 
each entire test, is considerably lower than one might infer 
from the incremental error measures alone.  This is borne 
 

TABLE I.  VISUAL ODOMETRY PERFORMANCE BY TERRAIN TYPE 

Terrain Incremental 
Error, 

Translation a 

Incremental 
Error, 

Rotation b 

Average 
Cumulative 
Error Rate c 

Indoors/Carpet 0.3 14.2 0.26 

Outdoors/Grass 2.2 4.7 0.41 

Outdoors/Asphalt 4.3 5.8 0.49 

Outdoors/Ice 3.5 10.5 0.43 

a. Expressed in centimeters translation per 24 video frame period, corresponding to 1.6 
seconds at 15 fps or approximately 8 cm of robot motion.  This number is an average of 

absolute values and thus penalizes oscillation, unlike the x-z plots. 

b. Expressed in degrees per 24 frame period, also an average of absolute values.  

c. Expressed in centimeters net Euclidian distance per 24 frame period based on the 
difference between the visual odometry system’s final position estimate and the final 

ground truth position.  



 
Figure 5.  Visual Odometry on Office Carpet 

 
Figure 6.  Visual Odometry on Grass 

 
Figure 7.  Visual Odometry on Asphalt in Bright Sun 

 
Figure 8.  Visual Odometry on Icy Pavement 

out in the x-z plots in Figs. 5 – 8, which show better overall 
positioning performance than the rotational error measure 
in particular would suggest. From studying the detailed 
motion data and position estimates from each experiment 
we believe this lower-than-expected cumulative error rate 
reflects egomotion estimation errors which cancel one 
another out over time (e.g., changes in camera pitch 
typically cancel out).  Because the incremental error 
measures shown in Table I are averages of absolute values, 
errors which cancel out are fully penalized even though 
they may contribute little to cumulative error.  Finally, we 
also believe the incremental performance measures are 
higher across the board than they should ideally be due to 
jitter in the ground truth data, as discussed in Sec. IV.B.   

B. X-Z Plots 
The x-z plots at the left suggest many of the points 

made in the summary table, but also provide further detail 
about vision system performance in specific situations.  For 
instance, note that in Fig. 5, executed indoors on carpet, the 
visual odometry algorithm yields accurate results during 
lens-axis-parallel translation (e.g., line segments are shown 
at the correct scale), and also during axis-normal 
translation (e.g., smooth quarter-circles are shown at each 
corner, accurately depicting the movements of the offset 
camera).  However, rotational estimates are less accurate.  
This appears to be because objects in the “sky” (i.e., on 
nearby walls) are sufficiently nearby to shift in the camera 
during translational movements as well as rotational ones. 

In contrast, note that in a test run outdoors on grass 
(Fig. 6), lens-axis-parallel translation is overestimated 
because the surface of the grass is higher than the true 
ground plane.  Thus tracked features on it appear to move 
further and faster. The section of grass used for this test 
also exhibited small undulations which appear as  apparent 
doubling-back in the visual odometry trace. When 
traversing these very shallow hills, the visual odometry 
system actually estimates that the robot reverses direction.  

In Fig. 7, a bright, sunny sky sharply reduces contrast 
on the pavement in front of the robot. (see also Fig. 3) The 
result is an optical flow field in the “ground” region of the 
camera which is too sparse for accurate estimation of 
translational movements. However, rotational accuracy 
remains high because the sky regions have many high 
contrast features. Finally in Fig. 8 specular reflections from 
the wet surface of the ice complicate estimation of 
translational velocities while an occasionally blank horizon 
and sky reduce accuracy when estimating rotational 
velocity as well.  

C. Sensitivity Analyses 
Figs. 9 and 10 illustrate the value of recorded data in 

permitting sensitivity analyses, in this case of the video 
frame rate supplied to the vision system. Conducting 
parameter-sensitivity analyses can be a good way to 
understand the performance envelope of a given vision 
system. Just as a good software profiling tool can help 
identify sections of a program where optimization would 
be especially fruitful, sensitivity-analyses such as these can 
help to identify aspects of a vision system which might be 



improved. In Figs. 9 and 10, for instance, we find that 
accurately estimating distance traveled while turning can 
actually be more difficult on carpet than on ice as frame 
rates are reduced.  We hypothesize that this is due to the 
highly regular appearance of the carpet and the increased 
potential for temporal-spatial aliasing at low frame rates.  
This suggests that a change in the optical flow estimation 
algorithm parameters might better avoid aliasing and 
improve overall visual odometry performance.  

Sensitivity analyses can also be useful during the 
design and development process for a new robot or vision 
system.  For instance, a designer can determine the 
minimum camera resolution or frame rate required to 
achieve a particular level of positioning accuracy, or an 
engineer might subject a new version of robot firmware to 
a battery of visual odometry tests before releasing it. 

VII. CONCLUSION 
Vision is a uniquely powerful sensing option for mobile 

robots, and one which will become increasingly attractive 
in the coming years. As digital cameras and embedded 
processors targeted at the consumer market become more 
powerful and less expensive vision may well surpass all 
other mobile robot sensors in cost effectiveness. Yet 
despite decades of strong computer vision research many 
of the more practical aspects of applying vision to mobile 
robot navigation have received scant attention, including 
rigorous methods for empirical testing in extreme 
conditions.  

We have described a portable experimental apparatus 
for obtaining video sequences from a robot-mounted 
camera and corresponding ground-truth traces of the 
robot’s motion. We have proposed basic evaluation criteria 
for mobile robot visual odometry systems. Finally, we are 
releasing a library of video with accompanying ground 
truth series for use by other researchers in the field.  

 

 
Figure 9.  Sensitivity to frame rate – 105 cm diameter circle on ice. 

The dotted trace which breaks away from the others has been analyzed an 
effective frame rate of 1.7 frames per second (fps). Above 3 fps, 

performance of the algorithm plateaus in this particular case. 

 
Figure 10.  Sensitivity to frame rate – 40 cm square figure on carpet. 

Only the 7.5 fps trace accurately reproduces the scale and shape of the 
ground track (thick line). At lower frame rates scale is overestimated. 
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