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Abstract—Motion vision (visual odometry, the estimation of
camera egomotion) is a well researched field, yet has seen
relatively limited use despite strong evidence from biological
systems that vision can be extremely valuable for navigation.
The limited use of such vision techniques has been attributed
to a lack of good algorithms and insufficient computer
power, but both of those problems were resolved as long as a
decade ago. A gap presently yawns between theory and
practice, perhaps due to perceptions of robot vision as less
reliable and more complex than other types of sensing. We
present an experimental methodology for assessing the real-
world precision and reliability of visual odometry techniques
in both normal and extreme terrain. This paper evaluates the
performance of a mobile robot equipped with a simple vision
system in common outdoor and indoor environments,
including grass, pavement, ice, and carpet. Our results show
that motion vision algorithms can be robust and effective,
and suggest a number of directions for further development.

Keywords: robot vision; motion vision; visual odometry;
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L INTRODUCTION

The benefits of reliable navigation by an autonomous
mobile robot include the ability to perform a wider range of
tasks, operate safely near humans, and move unsupervised
through unstructured areas. In contrast, the consequences
of poor navigation can range from perceptual confusion
and mission failure to collisions, robot damage, or human
injury. Vision has the potential to offer low-latency, high-
frequency, wide field of view estimates of a robot’s
environmental state (such as its velocity, relative position,
and obstacle/precipice locations) in a compact, passive
sensor. Crucial to the increased use of vision sensing are
good measurements and procedures for evaluating visual
navigation performance.

Our objective in this work is to propose criteria and an
experimental method for rigorously evaluating visual
odometry systems in real, unstructured environments. This
work is a prelude to our own use of visual odometry in
other research (specifically, hybrid fixed and mobile sensor
networks), and we believe this work, and the data that we
have collected, can be useful to other researchers as well.
We demonstrate our approach by evaluating an example
vision system at outdoor and indoor sites, and discuss the
impact of environmental and design parameters on vision
system performance.
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We have developed a portable apparatus for obtaining
reliable ground truth about a moving robot’s pose (location
and orientation), and software for simultaneously recording
video from the oftboard apparatus and an onboard digital
camera. Using this equipment at a variety of outdoor and
indoor sites we have assembled a library of test video
sequences and accompanying ground truth data about robot
movements on terrain including grass, pavement, ice, and
carpet. We plan to add sand, gravel and rocky terrain soon.
These ground-truthed sequences allow fair comparisons to
be made between different vision systems in real world
conditions. They can also help gauge the performance
impact of adjusting vision system parameters (e.g., frame
rate, number of points tracked, interest point detector
thresholds, camera resolution) and thereby reveal the
minimal amount of computational and resolving power
required to achieve a given performance level — crucial
design information for new robots.

This work is especially timely because, as digital
cameras and high performance embedded systems
proliferate, the cost of equipping a robot with a visual
odometry system is falling rapidly. Already, reasonable
quality digital cameras (USB, IEEE 1394, and board
cameras) are priced comparably to 1D sonar rangefinders
($20-50). Given the power of commodity markets to drive
costs down, the near future may see digital cameras
becoming the least expensive of all potential mobile robot
sensors. Establishing criteria and benchmark test data as a
baseline for comparison can help encourage the
development of new visual navigation algorithms and
improve the use of established ones. Our video sequences
and ground truth data are available online at
http://info.pittsburgh.intel-research.net/People/jasonc/vo.
Also, while our tests here have been performed with a
small robot (27x33x43 cm, 5 kg) the methods used will
readily scale to larger robots and autonomous vehicles.

The remainder of this paper is organized as follows:
First, we briefly review related work. Second, we introduce
the proposed criteria for evaluating visual odometry
systems and explain the rationale behind those criteria.
Third, we detail our experimental method for measuring
visual odometry system performance. Fourth, we describe
the robot and vision system used in our tests. Fifth, we
present results based on real-world testing using our
proposed method. Finally, we review and conclude.



II.  RELATED WORK

A wide variety of techniques for visual navigation
using robot-mounted cameras have been described over the
past several decades. The use of vision to guide an
autonomous mobile robot dates back at least to 1976, when
Moravec and Gennery used feature tracking to perform
visual servoing/course correction on the Stanford Cart [1].
Visual odometry systems have also been successfully used
in high-profile projects such as autonomous aircraft [2] and
underwater vehicles [3]. Other researchers suggest that,
though a general solution to the structure-from-motion
problem could remain challenging, the problem of
egomotion determination for vision and manipulation is
readily solvable [4][5].

Despite this strong history of good research and bright
prospects, the adoption of robot vision techniques,
including visual odometry, has been slow. Good studies of
some likely components of robot vision systems have been
published (for instance [6], for optical flow field
estimation), but otherwise implementations have appeared
largely as point solutions for particular robots and “logical
extensions” of published algorithms. Just as Beauchemin
and Barron point out in [5] that optical flow has been well
addressed in theory but not in practice, the theory of
motion vision has been well researched, but many practical
aspects of the work remain to be explored. In this paper we
take a step towards demonstrating visual odometry as a
practical, reliable mobile robot component by defining
navigation-performance-based measurement criteria and
developing good benchmark data.

III. EVALUATION CRITERIA

Ultimately, the measure of success for a navigational
task is safe arrival at an intended destination. For most
situations a robot’s ability to correctly execute higher level
motion plans is a prerequisite for safe maneuvering, so we
recognize this as an important evaluation criterion for
visual odometry systems. In particular, safe closed-loop
maneuvering requires faithful reporting of position and
velocity under real-world conditions. This paper focuses on
intuitive, graphical measures of such positioning fidelity,
primarily using two-dimensional plots of reported position
versus ground truth. We augment these detailed but
subjective measures with several aggregate metrics of
incremental and cumulative odometric performance. This
type of evaluation stands in contrast to other common tests
typically applied to vision systems, including analyses of
synthetic data, measures of image reconstruction quality
(frequently used to evaluate optical flow methods), and
operation in laboratory or office conditions.

A.  Simulated versus Real Data

Vision algorithms may be evaluated with real or with
synthetic data. Synthetic data is tempting because it is
easier to ascertain precise ground truth and because
inconvenient exogenous factors such as variable lighting,
motion blurring, optical imperfections, complex motions,
and temporal and spatial aliasing may be ignored. However
this sharply limits the applicability of such synthetic test
results to real-world application domains such as mobile

robotics. For instance, in [5] two optical flow extraction
methods work well on synthetic data and yet fail when
presented with real image sequences. Real data is more
difficult to obtain and more challenging to handle, but
offers a much better indication of the potential
effectiveness of an algorithm in actual use. An objective of
this research has been to develop and publish a library of
benchmark video sequences recorded in real-world
conditions with corresponding ground-truth information.
Such a library should have at least two forms of impact: (1)
it facilitates fair comparisons between different algorithms;
(2) it permits rapid evaluation of the consequences of
changes or particular parameter choices within existing
algorithms.

B. Extreme Terrain

Rather than limiting our tests to office/lab
environments we have chosen to explore a broad variety of
terrain, including grass, sand, gravel, sidewalks, and
uneven pavement. Each presents its own challenges:
sidewalks lack coarse texture; gravel and sand shift under a
robot’s wheels; grass is of varying height and obscures the

Figure 1. Robots On Ice, In the Grass. Note the tripods for the robot
tracking system and the laptop computers used to record video.



true ground plane; ice and asphalt can be highly reflective.
A vision system that works well in one terrain may fail in
another. Likewise it may be possible to reduce the resource
requirements for a given vision system, environment, and
level of performance in order to realize financial or
computational savings. A broad array of test data compiled
in widely different settings is essential for effectively
assessing these tradeoffs.

C. Open- vs. Closed-Loop Test-Patterns

Some motion-vision algorithms are able to provide
quantitative estimates of a camera’s egomotion, others can
only estimate deviation from a desired goal or path (such as
target tracking or corridor following might require). The
latter algorithms are less capable than the quantitative ones
and must be tested as part of a closed-loop system. That, in
turn, precludes exact comparison with other approaches
and makes evaluating the consequences of parameter
changes much more difficult. This paper focuses only on
those methods that can make quantitative motion estimates,
and which can be tested using prerecorded, open-loop data.

IV. EXPERIMENTAL METHODOLOGY

Obtaining the type of measurements proposed above
requires an independent, drift-free means of determining
robot pose throughout each experiment. One logical way to
achieve such precise ground-truth is to work within a
motion capture lab. Using the CMU Graphics Lab motion
capture facility we have collected a number of robot
motion traces. These data, acquired in a controlled setting
with precise ground truth, have enabled us to perform
initial analysis of the visual odometry system described and
to better understand the problem of evaluating it and
similar systems. We have also used data collected in the
motion capture facility to validate our own portable robot
tracking system. With this portable system we have then
been able to collect video and ground truth motion traces in
a number of settings which would be difficult or
impossible to replicate in a laboratory environment (e.g.,
sections of lawn, sheets of ice, sand, gravel, asphalt).

A. Timeline of Each Set of Experiments

A set of experiments at a given site consists of taking
calibration measurements for the robot tracking system,
and then recording several (one to a dozen) individual test
runs. Each test run involves simultaneous capture of video
from an on-robot camera and two tripod-mounted tracking
cameras used by the tracking system. Each run takes from
1-5 minutes during which the robot moves 1-5 meters.

B. Portable Robot Tracking System

Our portable robot tracking system uses a pair of wide
angle digital cameras (f=2.1mm, horizontal field of view
exceeding 90°) mounted on tripods arranged so the
cameras’ fields of view overlap over the entire
experimental area. During each robot motion sequence, the
cameras record 640x480x24bit color video at 4 or 8 frames
per second (fps), depending upon the length and speed of
the experiment. The video is transferred via an IEEE 1394
bus to a nearby laptop and is stored uncompressed for off-

line analysis. Each video frame is time stamped with the
time of acquisition on the laptop (including a lag of
approximately 125ms from actual image capture,
independent of frame rate).

Analysis of the video streams from the tracking
cameras begins by correcting for clock skew between the
camera recordings. Because the robot starts each sequence
at rest we use the observed start of robot motion as a
synchronizing temporal marker to establish a relative time
offset for each recording and adjust each frame’s
timestamp accordingly. This level of timing precision is
sufficient to constrain positioning errors resulting from the
remaining timing offset to less than 1 cm (4 fps) or less
than 0.5 cm (8 fps). After timing correction, we warp each
video frame to correct for radial and tangential distortions
(which are substantial given the lenses used). We then
apply the camshifi algorithm [7] to track the centroid of
each fiducial to sub-pixel precision. Initial color-
probability histograms for camshift are established from
the first frame of each sequence. This correctly accounts
for gradual changes in lighting conditions at the experiment
site over time. (such as a rising or setting sun).

During a local calibration phase at each experiment site
we measure the pair-wise distances between four specific
points on the ground plane and capture images showing
four fiducials placed at each of those points (at the same
height as the fiducials mounted on the robot). We use those
four point locations to define a coordinate frame on the
ground and compute an appropriate  projective
transformation via a homography [15] for each of the two
tracking cameras. Those homographies map pixel locations
in each camera to locations on the ground plane. By raising
the tracking cameras nearly 2m above the ground plane and
steeply pitching them down we are able to obtain full two-
dimensional location estimates from each camera rather
than bearing-only information. Momentary differences in
background and lighting may cause the camshift algorithm
to lose track of the fiducials, but when an estimate from
both tracking cameras is available we combine the two
position estimates using a Kalman filter to arrive at a joint,
smoothed estimate.

The fiducials themselves have gone through several
design iterations, with earlier, smaller ones having proven
too small to be seen clearly in tracking cameras’ wide
angle lenses. The present fiducials are 10 cm long, 4.5 cm
diameter cardboard tubes painted with highly saturated
colors.

Our tracking system relies on a flat ground plane
assumption, and two concerns arise on uneven ground: (1)
the positions of the fiducials are incorrectly projected on
the ground plane because the calibration homography does
not correspond to the robot's local plane; (2) any pitch or
roll in the robot's position can potentially cause the
estimated position of the centroid in the image to deviate
from the true position. For our initial work we have chosen
to minimize these sources of error by focusing on terrain
which is predominantly flat. Future work may incorporate
a different fiducial design and tracking system to permit
experimentation in terrain with large elevation changes and
deep relief.
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Figure 2. Portable Robot Tracking System Compared To Laboratory
Motion Capture System. The lab system’s markers were set approx. 3 cm
further out from the robot’s center of rotation than the portable tracking
system’s fiducials were, hence the inset of the “camera 1” and “camera
2” tracks during turns. In the motion sequence shown the robot traced a
40 cm square figure, making a turn-in-place at each corner. A quarter-
circle arc results at each turn because the fiducials were set at 16.5 and
19.5 cm from the robot’s center of rotation.

To validate the portable robot tracking system, we set it
up inside the CMU Graphics Lab motion capture facility
and recorded robot movements with both the portable
tracking system and the laboratory motion-capture system.
The lab system was a Vicon Motion Systems model 512
capture unit equipped with twelve high resolution cameras
coupled to pulsed, LED-based infrared ring-lights. We
used 11 retro-reflective spheres to track the position and
orientation of the robot and the positions of the calibration
points with millimeter level accuracy. When the 2D results
from both systems were compared, we found the portable
system to be quite noisy, but on average accurate to within
1-3 cm. Importantly, we observed no cumulative error.
(See Fig. 2 for a comparison of the two traces.) The noise
in the portable system trace arises from an interaction
between the camshift tracker and the de-mosaicing
algorithm used in our GRGB-pattern single-chip cameras.
The edges of the fiducials appear to change color as they
slide across pixel wells on the imaging chip, causing jitter
in the estimate of fiducial locations. We are presently
considering tracking algorithms that will be more robust to
these variations.

C. Robot Platform

As a test platform we have used a small four-wheel-
drive, four-wheel-steering robot originally constructed as a
prototype for the CMU PER project [8]. This 5kg robot is
27 cm wide by 33 cm long and carries a Cerebellum motor
controller board and a single-board computer based on the
Intel® XScale® PXA250 processor running at 400 MHz.
The robot is capable of arbitrary planar motion and in-place
turns as well as Ackerman two- and four-wheel steering.
Each 6.3 cm diameter wheel is independently steered and
independently driven. There are no wheel encoders, though
the drive motors act through

Figure 3. Views From the On-Robot Camera
(ice, bright sun on asphalt, grass)

very high reduction gearing (320:1) to provide
approximately constant speed robot motion regardless of
terrain in the high duty-cycle regime. The stock robot
firmware uses this constant-speed operation to perform
motor-runtime- and steering-angle-based dead reckoning.
Motor speed stability is further enhanced by the use of an
onboard DC-DC converter to obtain a steady 17 V for
motor power from the gradually discharging 30 V (24 cell
NiMH) battery pack. Ground clearance varies between 2.5
and 7.5 cm, enabling operation in rugged terrain.

The on-robot camera used for visual navigation has a
focal length of 2.1 mm and is mounted 29 cm above the
ground at the robot’s front, center edge. In this position, the
camera’s vertical field of view extends from approximately
45 cm in front of the robot (assuming flat ground) to
approximately 40° above the horizon. Other cameras and
sensors are also attached to the robot but are not used in
this experiment. Because the camera is at the front of the
robot, rather than being collocated with the robot’s
geometric center, the camera experiences mixed translation
and rotation during any turn, including “pure rotation”



turns-in-place. Directly above the camera is a large
fluorescent orange cylinder (9.4 cm. high, with diameter of
4.5 cm) used as a fiducial for tracking the robot. In a
corresponding location and height at the rear center of the
robot is a second, differently-colored cylinder. By tracking
both fiducials from external cameras, we obtain
independent, drift-free estimates of the location and
orientation of the robot.

The on-robot camera is connected via an IEEE 1394
bus tether to a nearby laptop PC to facilitate uncompressed
video recordings of up to 1GB of data at a time. Typically
we operate this camera at VGA resolution (640x480) and
capture 8-bits of grayscale information per pixel at 15 fps,
though selected movement sequences have also been
captured in color and at 30 fps. This video data is then
stored using lossless compression to avoid introducing
artifacts which could adversely impact vision algorithms.

D. Test Patterns

Our test patterns are based predominantly on move-
turn-move sequences. Many cause the robot to turn as
much as 360° over the course of the test. Incorporating
large turns tests the visual odometry system’s ability to
acquire and track new features as old ones move out of its
field of view. For each test sequence, a laptop connected to
the robot via an 802.11b wireless network link issues high
level commands and on-robot firmware handles motor
control and action timing. The robot’s wheels are driven at
approximately 4 cm/s, and when operated on office
carpeting the robot can achieve reasonable short-term
translational and rotational accuracy using time-based dead
reckoning alone. Accuracy on other surfaces is
substantially degraded by wheel slip.

These test patterns may seem to emphasize a separation
of translation and rotation (and hence simplify egomotion
estimation). However, because the camera on the robot is
mounted 16.5 cm forward of the robot’s center of rotation,
every turn is in fact a simultaneous translation and rotation
from the perspective of the vision system. Non-central
camera placement, despite being more challenging for the
vision system, better represents typical camera deployment
scenarios and is especially important for medium-sized and
large robots where central camera placement may be
difficult, impossible, or result in an unacceptably-restricted
field of view.

E. Why Uncompressed Video? Why IEEE 1394?

While IEEE 1394 interfaces are not yet common on
single-board computers such as might be used to control a
robot, this high speed interface offers the most
straightforward means of transporting uncompressed VGA
resolution digital video at reasonable frame rates across a
tether. Using uncompressed video in this evaluation is
important for two reasons: (a) an embedded video system
is most likely to work with uncompressed frames,
potentially via a high-speed local interface to the camera
(for instance, as in [9]); and (b) some vision algorithms
experience degraded performance in the face of
compression artifacts. Use of a tether was essential given
the large amount of video data captured (over 250

MB/minute for 8-bit grayscale at 15 fps, 3x that for color).
Our current experimental apparatus uses a laptop equipped
with 2GB main memory to record the video stream from
the robot, thus allowing experiments of up to 8 minutes
duration at 15 fps, or 4 minutes at 30 fps.

Capturing at the highest frame rate possible has the
added advantage of allowing us to decimate the resulting
video stream later on to obtain equivalent video at lower
frame rates. This is helpful in testing sensitivity of a given
algorithm to frame rate. Given that a reduced frame rate
translates directly into lower computational demands and
lower cost components this is an especially important
design variable to investigate.

V. AN EXAMPLE VISUAL ODOMETRY ALGORITHM

The visual odometry algorithm we have used for our
tests is a simple and direct method based on the assumption
that the scene in view is a predominantly flat ground plane
at constant, known distance and pitch from the camera,
with zero roll. The optical flow field in the portion of the
image below a static horizon is used to estimate x and z
translation, and the optical flow field above the horizon is
used to estimate rotation. To our knowledge this particular
method has not been explicitly published, perhaps because
of the onerous and restrictive camera geometry assumption
required for it to succeed. Nonetheless, this assumption is
valid for the case of many small mobile robots with no
suspension and a rigid frame.

1. The Role of Consensus: Scene motion information
tends to incorporate a variety of confusing elements,
including tracks of other moving entities, reflections,
changing shadows, occlusions, and optical flow field
estimation errors. These elements result in outliers which
can hide the information needed to estimate camera
egomotion. Consensus methods such as RANSAC [10]
have long been used when analyzing optical flow fields to
resist confusion by outliers and generate estimates across
large populations [11]. We use RANSAC methods several
times in this algorithm, in both single- and multi-
dimensional forms, to condense groups of discrete
estimates into consensus estimates used for pose updates.

Figure 4. Optical Flow Field Traces, captured in an office environment
on carpet. The vectors shown represent 20 frames of motion (slightly
over 1 second). Notice the strong motion observed along the ground

plane and the relative lack of motion observed above the horizon.



2. Algorithm: Simple trigonometry reveals that, given a
plane G obliquely viewed by a perspective camera C with
zero roll and yaw and constant pitch relative to G, the
projection of the plane into the camera image is particularly
straightforward. If the origin of G(x,z) is set as the point
directly beneath camera C and the z-axis forms a plane
with C’s optical axis, and if C(u,v) is set as the intersection
of C’s optical axis with its the imaging plane, then a feature
at (x,z) on G will be imaged at location (u=k;"x/z, v=ky/z) in
C. We can use this to presumptively map tracked features
to locations on the ground plane, and then to calculate
corresponding tangential and normal movement distances
for optical flow field vectors.

For each frame of video we first un-warp it to remove
radial and tangential distortion, then process it with the
algorithm described in [12] and [13], using the differences
between adjacent frames to estimate the optical flow field.

Given a horizon line measured during a one-time
calibration process described below, we divide the flow
field vectors into three groups: sky for vectors substantially
higher than the horizon line, horizon for vectors close to
the line, and ground for vectors substantially below the
horizon line.

For the set of flow vectors in the sky we retransform the
vector endpoints back into original (radially distorted)
camera coordinates and use the consensus value of (u(f)-
u(t-1))-k; as our estimate t of the robot’s rotation.

For the set of flow vectors on the ground, we apply the
perspective transform discussed above to convert each
vector in the image frame to a displacement along the
ground plane. From those ground plane vectors we then
subtract the projected rotation field implied by the
estimated rotation, . Finally, we choose the consensus
displacement vector [%,z]" from the remaining ground
motion field. This is our estimate of tangential and normal
translation. We ignore flow vectors on the Aorizon.

3. Calibration: We first calibrate the camera for radial and
tangential distortion [14], and establish the amount of
cropping necessary to eliminate vignetting after the
distortion correction has been applied. Next we measure
the vertical and horizontal field of view of the undistorted,
cropped image. Then we mount the camera on the robot
and measure the location of the horizon in the camera view.
These parameters are assumed not to change and hence
need only be measured once at robot assembly.

4. Speed: The code used for the analyses presented here
has not been designed to run in real-time. However, we
have also implemented a version of this algorithm as part
of a demonstration system which performs closed loop,
real-time control of a small robot, including visual
servoing, course correction, pose estimation, and hazard
detection (precipices and obstacles) while simultaneously
displaying the video stream being analyzed and overlaying
it with an optical flow field and other annotations. The
entire system runs at between 8 and 10 fps on a 1.6 GHz
Intel® Pentium® I1I-based laptop computer.

VI. RESULTS

Revealing the specific situations in which a visual
odometry system is reliable, versus those where more work
is required, is a particular goal of this research. Here we
analyze the performance of our example visual odometry
algorithm in four different settings. Table 1 below
summaries the results in each setting, while the x-z plots on
the following page offer a more graphical and detailed
depiction of vision system performance. In the x-z plots
the ground-truth motion of the robot is shown as a thin,
dotted, red line, while the motion estimate from the visual
odometry system is shown as a thick, solid, black line. All
scales are in centimeters and each commanded robot move
was a 40 or 80 cm square.

A. Aggregate Measures

The aggregate figures in Table I obscure many of the
details of spatial performance better observed in the x-z
plots, but do reveal a number of interesting points about the
overall behavior of our test algorithm:

First, note the dramatic reduction in incremental
rotational error in the outdoor tests. We believe this is due
to the abundant high-contrast textured regions offered by
an outdoor horizon. Because features tracked on such
regions lie effectively at infinity, they are ideal for
measuring rotation.

Second, note the substantial increase in incremental
translational error in the outdoor tests. We believe this is
due to terrain-specific issues: Ice exhibits specular
reflections which may be tracked as though they were static
ground features. Asphalt in the bright midday sun causes
glare which leaves few trackable features along the ground
plane. Grass presents a complex surface which masks the
true ground plane, resulting in consistent overestimation of
translational motion. The particular lawn on which we
tested also included several small undulations, which lead
to substantial errors in estimates of translation in the z
dimension (see also Fig. 6).

Third, notice that cumulative error rate, averaged across
each entire test, is considerably lower than one might infer
from the incremental error measures alone. This is borne

TABLE 1. VISUAL ODOMETRY PERFORMANCE BY TERRAIN TYPE
Terrain Incremental Incremental Average

Error, Error, Cumulative

Translation® Rotation"” Error Rate®
Indoors/Carpet 0.3 14.2 0.26
Outdoors/Grass 2.2 4.7 0.41
Outdoors/Asphalt 43 5.8 0.49
Outdoors/Ice 3.5 10.5 0.43

a. Expressed in centimeters translation per 24 video frame period, corresponding to 1.6
seconds at 15 fps or approximately 8 cm of robot motion. This number is an average of
absolute values and thus penalizes oscillation, unlike the x-z plots.

b. Expressed in degrees per 24 frame period, also an average of absolute values.

c. Expressed in centimeters net Euclidian distance per 24 frame period based on the
difference between the visual odometry system’s final position estimate and the final
ground truth position.
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Figure 8. Visual Odometry on Icy Pavement

out in the x-z plots in Figs. 5 — 8, which show better overall
positioning performance than the rotational error measure
in particular would suggest. From studying the detailed
motion data and position estimates from each experiment
we believe this lower-than-expected cumulative error rate
reflects egomotion estimation errors which cancel one
another out over time (e.g., changes in camera pitch
typically cancel out). Because the incremental error
measures shown in Table I are averages of absolute values,
errors which cancel out are fully penalized even though
they may contribute little to cumulative error. Finally, we
also believe the incremental performance measures are
higher across the board than they should ideally be due to
jitter in the ground truth data, as discussed in Sec. IV.B.

B. X-Z Plots

The x-z plots at the left suggest many of the points
made in the summary table, but also provide further detail
about vision system performance in specific situations. For
instance, note that in Fig. 5, executed indoors on carpet, the
visual odometry algorithm yields accurate results during
lens-axis-parallel translation (e.g., line segments are shown
at the correct scale), and also during axis-normal
translation (e.g., smooth quarter-circles are shown at each
corner, accurately depicting the movements of the offset
camera). However, rotational estimates are less accurate.
This appears to be because objects in the “sky” (i.e., on
nearby walls) are sufficiently nearby to shift in the camera
during translational movements as well as rotational ones.

In contrast, note that in a test run outdoors on grass
(Fig. 6), lens-axis-parallel translation is overestimated
because the surface of the grass is higher than the true
ground plane. Thus tracked features on it appear to move
further and faster. The section of grass used for this test
also exhibited small undulations which appear as apparent
doubling-back in the visual odometry trace. When
traversing these very shallow hills, the visual odometry
system actually estimates that the robot reverses direction.

In Fig. 7, a bright, sunny sky sharply reduces contrast
on the pavement in front of the robot. (see also Fig. 3) The
result is an optical flow field in the “ground” region of the
camera which is too sparse for accurate estimation of
translational movements. However, rotational accuracy
remains high because the sky regions have many high
contrast features. Finally in Fig. 8 specular reflections from
the wet surface of the ice complicate estimation of
translational velocities while an occasionally blank horizon
and sky reduce accuracy when estimating rotational
velocity as well.

C. Sensitivity Analyses

Figs. 9 and 10 illustrate the value of recorded data in
permitting sensitivity analyses, in this case of the video
frame rate supplied to the vision system. Conducting
parameter-sensitivity analyses can be a good way to
understand the performance envelope of a given vision
system. Just as a good software profiling tool can help
identify sections of a program where optimization would
be especially fruitful, sensitivity-analyses such as these can
help to identify aspects of a vision system which might be



improved. In Figs. 9 and 10, for instance, we find that
accurately estimating distance traveled while turning can
actually be more difficult on carpet than on ice as frame
rates are reduced. We hypothesize that this is due to the
highly regular appearance of the carpet and the increased
potential for temporal-spatial aliasing at low frame rates.
This suggests that a change in the optical flow estimation
algorithm parameters might better avoid aliasing and
improve overall visual odometry performance.

Sensitivity analyses can also be useful during the
design and development process for a new robot or vision
system. For instance, a designer can determine the
minimum camera resolution or frame rate required to
achieve a particular level of positioning accuracy, or an
engineer might subject a new version of robot firmware to
a battery of visual odometry tests before releasing it.

VII. CONCLUSION

Vision is a uniquely powerful sensing option for mobile
robots, and one which will become increasingly attractive
in the coming years. As digital cameras and embedded
processors targeted at the consumer market become more
powerful and less expensive vision may well surpass all
other mobile robot sensors in cost effectiveness. Yet
despite decades of strong computer vision research many
of the more practical aspects of applying vision to mobile
robot navigation have received scant attention, including
rigorous methods for empirical testing in extreme
conditions.

We have described a portable experimental apparatus
for obtaining video sequences from a robot-mounted
camera and corresponding ground-truth traces of the
robot’s motion. We have proposed basic evaluation criteria
for mobile robot visual odometry systems. Finally, we are
releasing a library of video with accompanying ground
truth series for use by other researchers in the field.
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Figure 9. Sensitivity to frame rate — 105 cm diameter circle on ice.
The dotted trace which breaks away from the others has been analyzed an
effective frame rate of 1.7 frames per second (fps). Above 3 fps,
performance of the algorithm plateaus in this particular case.
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Figure 10. Sensitivity to frame rate — 40 cm square figure on carpet.
Only the 7.5 fps trace accurately reproduces the scale and shape of the
ground track (thick line). At lower frame rates scale is overestimated.
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