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Abstract

In this paper the metric and topological paradigm are inte-
grated in a single systemfor both localization and map build-
ing. A global topological map connects local metric maps,
allowing a compact environment model, which does not re-
quire global metric consistency and permits both precision
and robustness. Furthermore, the approach permits to han-
dleloopsin the environment by automatic mapping using the
information of the multimodal topological localization. The
system uses a 360 degree laser scanner to extract corners
and openings for the topological approach and lines for the
metric method. This hybrid approach has been tested in a 50
X 25 m? portion of the institute building with the fully auton-
omous robot Donald Duck. Experiments are of three types:
Maps created by a complete exploration of the environment
are compared to estimate their quality; Test missions are
randomly generated in order to evaluate the efficiency of the
localization approach; The third type of experiments shows
the practicability of the approach for closing the loop.

1. Introduction

Research in localization and automatic mapping has re-
cently lead to successful approaches. However solutions for
consistent mapping allowing precise and robust |ocalization
in unmodified, dynamic, real-world environments have not
been found yet. The problem is highly complex due to the
fact that it requires the robot to remain localized with respect
to the portion of the environment that has already been
mapped in order to build a coherent map.

Current research has diverged to different approaches:
Metric, topologica or hybrid navigation schemes have been
proposed and studied. Approaches using purely metric maps
arevulnerableto inaccuracies in both map-making and dead-
reckoning abilities of the robot. Even by taking into account
all relationships between features and therobot itself, inlarge
environmentsthe drift in the odometry makes the global con-
sistency of the map difficult to maintain. Landmark-based
approaches, which rely on the topology of the environment,
can better handle this problem, because they only have to
maintain topological global consistency, not metric. Howev-
er these approaches are either less precise than fully metric
approaches, due to the discretization of the localization
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space, or computationally intractable for fully autonomous
robots, when fine grained grids are used. More recently, ap-
proaches combining the topological and the metric paradigm
(mainly grid-based) have shown that positive characteristics
of both can be integrated to compensate for the weakness of
each single approach.

This paper proposes anatural integration of both the metric
and topological paradigms, to maximize the effectiveness of
the presented approach by combining the best characteristics
of both universes. For this, the model embodiesboth ametric
and atopological representation. The metric model consists
of infinite lines that belong to the same place. These places
are related to each other by means of atopological map that
is composed of nodes representing topological |ocations and
edges between nodes. Connections between a node and a
place are a special case: Traveling along these edges causes
aswitch from the topological to the metric paradigm. The ef-
fectiveness of this method for localization has already been
shownin [19]. In this paper it is extended to include an auto-
matic mapping approach, which permits to cope with loops
in the environment.

For the metric approach an extended Kalman filter (EKF)
is used. This method has already proven its strength for lo-
calizationin [2]. Map building can therefore be done with the
stochastic map approach [16]. Topological navigation uses a
partially observable Markov decision process (POMDP) [4]
for state estimation. This permits efficient planning in the
large, has an advantageous symbolic representation for man-
machine interaction and is robust due to its multi hypothesis
tracking.

2. Environment Modeling

The environment is described by a global topological map,
which permits moving in the whole environment, and local
metric maps which the robot can use as soon as it needs fur-
ther localization precision (see alsofig. 1). In order to switch
from topological to metric, a detectable metric feature is
needed to determine the transition point and to initialize the
metric localization (i.e. relocation). Thisisthe only specific
requirement for the presented hybrid approach. Given this
transition feature, a metric place can be defined everywhere
in the environment.



loca metric place

(O topologica node

', X v

M)

\ / ~ topological to
i’ t’ metric edge
Figure 1: The environment is represented by places given
by their metric maps and nodes representing topological

locations. When travelling from a node to a place, the sys-
tem switches from topol ogical to metric and vice-versa.

Switching to topological does not require any specific
characteristic: The robot navigates metrically to the initial-
ization position for the current local placewhereit restartsits
topological navigation.

2.1 Global Topological Map

Landmarks, which are helpful for the topological model,
are those permitting to distinguish between locations in the
environment. In this case two different types are chosen:

¢ Corners, which are characterized by their orientation.
¢ Openings, which are also used for model transition.

The topological map can be viewed as a graph. Topologi-
cal locations are represented by nodes containing the infor-
mation about the way to reach the connected topological
location/metric place. Furthermore the list of the landmarks
lying between two locations is represented as a list between
the two nodes. In fig. 2 the graph representing the topol ogi-
cal model is viewed for a portion of the environment.

The corner extractor returns a set of (x,y, 0) parameters
in robot coordinates, representing the position and orienta-
tion of the corners with respect to the robot. Furthermore an
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Figure 2: (a) A portion of an hallway with the extracted
corner and opening features. (b) The topological map is
represented by a graph. It contains nodes connected to
each other with the list of corner features lying between
them. Openings (topological nodes) can either be a transi-
tion to a room or be a connection to another hallway.

extraction confidence parameter p_ is calculated for each
corner. The confidenceisdirectly given by the size of the ex-
tracted feature. Openings are either large steps perpendicular
to the direction of motion in hallways or transitions from
rooms to hallways. They can either be a transition between
an hallway and a room or between two perpendicular hall-
ways. Note that, because the sensor used is a 360 degree la-
ser scanner, an observation contains many landmarks which
are transformed in a graph compatible to the environment
model, as showninfig. 3.
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Figure3: (a) Laéer data and the extracted features. (b) The
resulting observation graph.

2.2 Local Metric Maps

The features used for metric environmental representation
are infinite lines. They are less informative than line seg-
ments, but have a better probabilistic model with analytical
solution and permit a very compact representation of struc-
tured geometric environments requiring only about 10 bytes
per m? for atypical office environment. In fig. 4 a typical
office is shown with the lines used for its local metric map.
The line model is pcos(¢p—a) —r = 0, where (p, ¢) is
the raw measurement and (o, r) themodel parameters. o is
the angle of the perpendicular to the line, r its length. The
used extraction algorithm has been described in[1]. Itsresult
isaset of (o, r) parameterswith their 2 x 2 covariance ma-
trix, which is calculated by propagating the uncertainty from
the laser measurements.
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Figure 4: An office of the ingtitute (a) and the lines repre-
senting it in the local metric map (b). The black segments
permit to see the correspondence between the two figures.

3. Localization and Map Building

The environment models allow the use of two different
navigation method with complementary characteristics. The
metric localization permits a very precise positioning at the
goa point [2], [19] whereas the topological one [4], [19]
guarantees robustness against getting lost due to the multi-
modal representation of the robot’ s location.



3.1 Map Building Strategy

As explained in section 2, the environment model is com-
posed of a global topologica map and a set of local metric
maps. Given a metric transition feature, local metric maps
can be everywhere in the environment. Even if the approach
is applicable to any structured environment, a suitable envi-
ronment-dependent strategy has to be adopted.

For many possible application scenariosit can be expected
that the robot will have to be very precise in rooms, where
most of itstasks have to be executed (e.g. docking for power
recharging; manipulation tasks with objects on a table; hu-
man-robot interaction). While navigating in the large (i.e.
hallways), precision with respect to the features is less im-
portant, but robustness and global consistency take an im-
portant role. Because of this, the two different levels of
abstraction are used in combination of the different type of
environmental structures:

« While navigating in hallways the robot firstly creates
and then updates the global topological map
* When it entersaroom, it creates anew local metric map

These two environmental structures are differentiated by
means of the laser sensor: Thin and long open spaces are as-
sumed to be hallways, while other open spaces will be de-
fined as rooms.

3.2 Exploration Strategy

The proposed exploration strategy is simple: The robot
first exploresall the hallwaysin adepth-first way. It then ex-
plores each room it encountered by backtracking. Note that,
in general, for each hallway the room exploration reduces to
alinear list traversal. Rooms with multiple openings cause
two special cases, which are treated in the next paragraphs.

Rooms with opening to another room: In this case the ro-
bot continues building the current metric map. This leads to
the next case if the other room has an opening to a hallway.

Rooms with opening to a hallway: Due to the metric navi-
gation mode during room exploration, the robot knows the
direction of the opening and can therefore deduce if it opens
to the same hallway, a known one or a new one. In the case
of known hallways, the robot simply goes back to the hall-
way it was coming from and continues its exploration. This
could cause having two metric maps for the same metric
place, onefor each opening. In the case of anew hallway, the
exploration continuesin a hallway depth-first way.

3.3 Topological L ocalization and Map Building

The current experimental test bed is a part of the ingtitute
building. This environment is rectilinear and mainly com-
posed of offices, meeting rooms and hallways. Therefore
only four directions of travel are employed: N, E, S, W.
However this limitation is not an inherent loss of generality
because it is not a general regquirement of the algorithm.

Position Estimator: Given afinite set of environment states
S, afinite set of actions A and a state transition model T, the

model can be defined by introducing partial observability.
This includes a finite set O of possible observations and an
observation function OS, mapping Sinto a discrete probabil-
ity distribution over O. T(s, &, S) represents the probability
that the environment makes a transition from state s to state
s when action a istaken. OS(o, s, a) isthe probability of
making an observation o in state s after having taken action
a. Theprobability of beingin state s (belief stateof s') after
having made observation o while performing action aisthen
given by the equation:
09(0, s, a) 2 T(s a s)SE«(K)
- seS

SEslkr D = P(ola SE(K)) @
where SE (k) isthebelief state of sfor thelast step, SE(k)
is the belief state vector of last step and P(o|a, SE(k)) isa
normalizing factor. The observation function OSis made ro-
bust by the fact that an observation is composed of many
landmarks (fig. 3), rising its distinctiveness. When no open-
ingsarevisible, T(s, a,s) = 0.99 while T(s a,s) = 0.01
for s#s'. When the robot encounters an opening, the most
probable state s' is searched by comparing the travelled dis-
tance d, measured starting from s, to the information saved
in state node s during map building. In this case
T(s,a,s) = 099 while T(s a,s") = 001 fors"#s'.

Heading Estimator: Because the position estimator does
not take into account the heading of the robot, this is done
separately like in [10]. However in this case the orientation
is estimated by a weighted mean of each observed line that
is either horizontal or vertical with respect to the environ-
ment. The success of this method is guaranteed by the fact
that, in general, lines given by the environmental structures
are either parallel or perpendicular to the direction of travel.
Infinite lines are matched by means of the validation test

where prediction 2V is directly the odometry state vector
variable ® and y2 , isanumber taken from a x? distribu-
tionwith n = 1 degrees of freedom. This can be viewed as

an EKF for heading only, where no map is required because
for prediction 6 isdirectly used instead.

Control Strategy: Sinceit is computationally intractable to
compute the optimal POMDP control strategy for alarge en-
vironment [4], simple suboptimal heuristics are introduced.
For the system presented here the most likely state policy has
been adopted: The world state with the highest probability is
found and the action that would be optimal for that state is
executed. However it can happen that the robot is not sure
about its current state. Thisis calculated by mean of the un-
confident function U(SE(k)) , which is the entropy of the
probability distribution over the states of the map. The
POMDP is confident when

U(SE(K)) = =Y SE((K)I0gSE(K) < Upnay ©)

where U, isdetermined by experience. When the robot is



unconfident, it follows the hallway in the direction where it
expects to find more information. What has to be avoided at
any cost is to switch from the multimodal topological navi-
gation to the unimodal metric navigation when the robot is
unconfident about its location, otherwise it could enter a
false local metric place and therefore be lost. If such a prob-
lem occurs a solution for detecting this situation and exit the
current local place would be required in order to alow the
robot relocating itself by means of the topological approach.

Map Building: Instead of using acomplex scheme for mod-
el learning like in [11] and [18], where an extension of the
Baum-Welch algorithm is adopted, here the characteristics
of the observation graph (fig. 3) are used. When the robot
feels confident about its position, it can decideif an extracted
landmark is new by comparing the observation graph to the
node in the map corresponding to the most likely state. This
can happen either in an unexplored portion of the environ-
ment or in aknow portion, where new landmarks appear due
to the environment dynamic. Asexplained in section 2.1, the
landmarks come with their extraction confidence p, . This
characteristic is firstly used to decide if the new landmark
can be integrated in the map. When an opening landmark is
extracted, it is integrated in the map as a new state node
(fig. 2) with arough measure of the distance to the last state
node. Furthermore, for each integrated landmark, the confi-
dence p, isused to model the probability of seeing that land-
mark the next time py,,. When it is re-observed, the
probability in the map is averaged with the confidence of the
extracted one. If the robot does not see an expected landmark
the probability 1 —p;y,p IS usegi instead.

t
plmap(ti) = 2% (4)
where, p(t,) = { P (), observed )
1- P map(ti _1), —observed

When the confidence p,, decreasesand isbelow amin-
imum, the corresponding landmark is deleted from the map.
This alows for dynamics in the environment, where land-
marks that disappear in the real world, will be deleted from
the map too.

3.4 Closing the L oop

The problem of closing theloop can be defined asthe ques-
tion of how to know when a location has already been ex-
plored, meaning that the environment contains a loop and
that the loop in the map has aso to be closed (fig. 5).

In [18] this is achieved by adding a topological mapper
which ensures global consistency. This information is then
used to correct the global metric map which eventually con-
vergesto aglobal consistent map.

The current approach differsin two main aspects:

« Instead of closing the loops only by means of the percep-
tion, loops are detected and closed by means of the
localization information.
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Figure 5: (a) A loop in the environment (b) Its map. Clos-
ing the loop in automatic mapping requires the system to
know that a location has already been visited.

« Loops have to be closed only in the topologica map
because the metric model is represented by many dis-
connect local metric maps.

Loops can also exist in alocal metric map, however, dueto
the fact that these maps are supposed to be small, the drift in
odometry does not cause any relevant problem to the local
consistency.

The current method works as follows: The robot does not
try to recognizeif a single perception of the environment has
already been seen somewhere else. However as soon as the
robot createsthe map for apart of the environment which has
already been visited, the probability distribution starts di-
verging to two peaks: One for the position in the map, which
iscurrently being created; Another for the previously created
location representing the same physical place. This can eas-
ily be detected when the distribution has converged into two
peaks. The position where the loop has to be closed can then
be detected by backtracking until the distribution re-con-
vergesto asingle peak. This should also be the start point of
the exploration (or aloca start point).

3.5 Metric L ocalization and Map Building

This section describes briefly the main characteristics of
the stochastic map approach [16], which permits using an
extended Kalman filter [7], [14] for localization.

With this approach both the robot position x, = (x,y, 6)'
and the features x; = (o, r)" are represented in the system
state vector:

Xr Crr Crl Crn

X1 Ci Cin Cin

X = C(x) = (6)

Xn Cnr Cnl Cnn

This represents the uncertain spatial relationship between
objects in the map, which is changed by three actions:
» Robot displacement
* Observation of a new object
» Re-observation of an object already existing in the map



Robot Displacement: When the robot moveswith an uncer-
tain displacement u given by itstwo first moments (u, C,),
which are measured by the odometry, the robot state is up-
dated to g(x,, u) . The updated position and uncertainty of
the robot pose are obtained by error propagation on g:

X (k+1) = g(x(k), u) = x.(k) ®u @
C,(k+1) = G{C”(k) Cfu(k)} G' (8)
Cur(k) Cu

where @ is compounding operator and G is the Jacobean of
g with respect to x, and u.

New Object: When anew object isfound, a new entry must
be made in the system state vector. A new row and column
are also added to the system covariance matrix to describe
the uncertainty in the object’s location and the inter-depen-
dencies with the other objects. The new object (Xnew, Crew)
can be integrated in the map by computing the following
equations of uncertainty propagation:

Xn+1(K) = 9% (K), Xpew) =
Cnrin+1(K) = G, C (NG +G, Coo,Gy  (10)
Cn+1(K) = G, Cyi(k) (11)

Re-Observation: Let X, bethenew observationin thero-
bot frame. The measurement equation is defined as:

Z = h(X, Xpew %) = 9(Xps Xnew) = Xi (12
Xhew 1Stemporarily included in the state to apply the EKF.
However if prediction x; satisfiesthe validation test

(Xnew - Xi) Sr:éwi (Xnew =X )T < X(ZX’H (13)
Wwhere Shewi = Cnewnew*_'clii _Cnewi - Cinew Xi,n is a
number taken from a y 2 distributionwith n = 2 degrees of
freedom and o the level on which the hypothesis of pairing
correctnessisrejected, then x,.,, iSare-observation of x; .

Xr(k) @ Xnew (9)

Extended Kalman Filter: When aspatial relationshipisre-
observed, the updated estimate is a weighted average of the
two estimates calculated by means of an EKF. It permits to
update a subset of the state vector while maintaining the con-
sistency by means of the covariance matrices. A measure-
ment equation z = h(xy, X.X,,) isconsidered as a function
of mrelationshipsincluded in x. All of the n estimates x; of
the state vector x are updated by a value that is proportional
to the difference 6 = z—z between the ideal measurement
z and the actual measurement z:

Xi(k+1) = x(Kk) + T;,I5,3 (14)
M
r, = E[x8'] = Zl_:lcinIj (15)
M M
r,, = E[88'] = PPN HCiHy  (19)

where H, isthe Jacobean matr|x of hwith respect to x;
The variance and covariance Cj; arealso updated:

Ci(k+1) = ciJ-(k)—r.zr;iF,Tz (17)

4. Experimental Results

The approach has been tested in the 50 x 25 m? portion of
theinstitute building showninfig. 6 with four different types
of experiments for atotal of more than 1.5 km.
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Figure 6: The test environment. It is complex, dynamic and
artificially closed in A so that the exploration procedure is
finite. Black dots are the places where the automatic map-
per is expected to extract state nodes (the other doors are
closed). In B and B’ the robot had problems distinguishing
between the two neighbour locations. C and D are detected
as rooms and represented by a single local metric map. A
large loop does not exist in this environment. Therefore, for
the experiments in section 4.3, a loop is “ artificially cre-
ated” by starting the exploration in 1, stopping it in 2, tak-
ing the robot manually to 3 and resuming.

For the experiments, Donald Duck has been used (fig. 7).
It is a fully autonomous mobile vehicle running XO/2, a
deadline driven hard real-time operating system [3]. Donald
navigates locally by means of a motion control algorithm,
which plays the role of both position controller and obstacle
avoidance: It reaches the given (x,y, 0) or (x,y) goal by
planning a collision free path (with respect to the current lo-
cal data), and reacting to the dynamic environment either by
merely replanning the path or by changing heading direction
and replanning when an object appearsin front of the robot.

W Figure 7: The fully autonomous robot
| Donald Duck. Its controller consists of
a VME standard backplane with a
Motorola PowerPC 604 microproces-
sor clocked at 300 Mhz running XO/2.
Among its peripheral devices, the most
important are the wheel encoders, a
360° laser range finder and a grey-
level CCD camera.

4.1 Map Building

In this section the automatic mapping capabilities of this
approach aretested and evaluated. Notethat the environment
isarbitrarily closed (fig. 6), so that the exploration procedure
isfinite. Furthermorelocal metric maps are taken from the a
priori map used in [2], because the stochastic map is not yet
implemented on the robot and runs, therefore, only off-line.



For this evaluation, five maps generated by complete ex-
plorations of the environment shown in fig. 6 are compared
to evaluatetheir quality with respect to consistency and com-
pleteness. In order to evaluate the topological mapper first,
maps are compared before the backtracking step. By know-
ing which door is open during the exploration, it can be ex-
trapolated how many state nodes should be extracted (seethe
black dots in fig. 6). Their position (odometry) and type
(opening or hallway) are stored during exploration to check
whether the resulting model is consistent with the real envi-
ronment. For the other features (corners), each resulting map
is compared to the others to cal cul ate the average amount of
differences between a couple of maps. The results are pre-
sented in table 1.

Number of explorations 5
Total travelled distance 343 m
Number of states in the environment 13
Mean detected states 12.8/98%
Mean confused hallway/opening 1.2/9.2%
Mean detected features 78
Mean different features 18/23%

Table 1: Comparison of five maps generated by complete
explorations of the environment shown in fig. 6.

One of the problems encountered during the exploration is
the difficulty of distinguishing between opening and hall-
way. Thisleadsto a mean of 1.2 false detection for each ex-
periment. Nevertheless by visiting all the openings when
traversing the environment by backtracking to add the local
metric maps, these errors are detected and corrected. In one
experiment a state (opening) was not extracted at all.

For the corner features it is more difficult to define which
feature really exists in the environment. What can better be
seen is the difference between two maps. The mean amount
of extracted cornersin amap is 78; an average of 18 of these
are noisy features that are not always extracted. This means
that almost 77% of the features are constant in the five maps
showing that the perception delivers valuabl e information to
the mapper.

4.2 Localization

The quality of amap can also easily be estimated by testing
it for localization. For this two types of localization experi-
ments are performed: One for localization (position track-
ing) and the other for relocation.

To test thetopological localization, 25 randomly generated
test missions for atotal of about 900 m and 28000 estimates
are performed. The robot knows in which state it is at the
start point. A mission issuccessful when the robot reachesits
goa location, is in front of the opening and is confident
about its position. There it switches to the metric approach.
To have more information about the experiments, each state
transition is stored in alog file with all the information, per-

mitting to know if each state transition detected by thelocal-
ization took place physically. The results are presented in
table 2. Even if al the missions are successful the log file
permits to detects 21 false state transitions that caused 404
false estimatesin B and B’ (fig. 6), where the peak probabil-
ity moved forward and backward between two neighbor
states. These false estimates represent only 1.4% of thetotal,
meaning that the system recovers quite fast from these er-
rors. Nevertheless the robot had also confident false esti-
mates (0.5%) that can causeamission failureif the goal state
is estimated when the robot is in front of a another opening.

Number of missions 25
Success 25/ 100%
Total travelled distance 899 m
Mean travel distance 36 m
Mean travel speed 0.31m/s
Total real state transitions 181
False state transitions 21/12%
Total estimates 27870
Unconfident states 3413/ 12%
False estimates 404/ 1.4%
Confident false estimates 149/ 0.5%

Table 2: Localization experiments. All the test missions
have been successfully performed. However the robot
also made false state transitions that caused some false
estimates (1.4%). This happened only by B and B’ in
fig. 6. The reason that lead to a success rate of 100% is
that the system always recovered from its error without
estimating the goal location in front of a false opening.
Nevertheless the robot had also confident false estimates
(0.5%) that could cause mission failure.

The second type of test isfocused on recovering from alost
situation (relocation). Ten experiments are started from a
randomly defined position in the environment with an over-
all constant belief state (i.e. lost situation). The goal is to
measure which distance or amount of state transitions arere-
quired in order to converge to a correct confident state esti-
mate. To avoid false interpretations, the robot is required to
travel 3 state nodes further without estimate errors to fulfill
the test. In table 3 the ten tests are resumed briefly.

Number of experiments 10
Total travelled distance 250 m
Mean distance for recovering 13.7m
Min / max distance for recovering 1.21/20.31m
Mean number of state for recovering 211
Min/ max state for recovering 1/4

Table 3: Recovering from a lost situation (i.e. overall
constant belief state). The robot requires from 1 to 4
states to recover, depending on the distinctiveness of the
part of the environment where it is moving.



Asexpected the robot can alwaysrecover. Itspolicy issim-
ple: Go forward until recover or end of hallway; If end of
hallway, turn. The system requires a minimum of 1 and a
maximum of 4 statesto recover. The interesting point is that
this difference in the results is position dependent and re-
peatable. For example the crossing between the two hall-
ways permits to recover with a single state because it is
global distinctive for the environment in fig. 6. On the other
hand, the right part of the horizontal hallway seems to be
more distinctive than the left one where the robot require the
maximum amount of states to recover.

The metric localization is used but not explicitly tested
here, because the used EKF has already been extensively
tested in [2] with a total of 6.4 km. The mean 2c -error
bounds approached the centimeter in x and y and the degree
for 6 . Furthermore the metric localization approach has also
been tested with this hybrid method for localization on the
samerobot in[19], where ground truth measurements at goal
position resulted in an average error of lessthan 1 cm.

4.3 Closing the L oop

In the test environment there are no large loops. In order to
test the proposed approach, a loop is artificially created by
displacing the robot during the exploration as shown in
fig. 6. Because in all the other experiments (map building,
localization), except the relocation, no distant twin peaks
have appeared, it can be assumed that, when two peaks ap-
pear and move in the same way for three subsequent state
transitions, aloop has been discovered. This experiment has
been performed three times. Each time the probability distri-
bution has effectively diverged into two peaks allowing to
detect the loop. In order to close the loop the robot has gone
back until the distribution has converged to a single confi-
dent peak. Thistook place where the map has been started (1
in fig. 6) proving that the loop could be closed correctly.

5. Related Work

Successful navigation of embedded systemsfor real appli-
cations relies on the precision that the vehicle can achieve,
the capacity of not getting lost and the practicability of their
algorithms on the limited resources of the autonomous sys-
tem. Furthermore the fact that a priori maps arerarely avail-
able and, even when given, not in the format required by the
robot, and that they are mainly unsatisfactory due to impre-
cision, incorrectness and incompleteness, makes automatic
mapping areal need for application like scenarios.

Simultaneous localization and map building research can
be divided into two main categories: Metric and topological.
Metric approaches are defined here as methods, which per-
mit the robot to estimate its (x, y, 6) position, while topo-
logical are those where the position is given by a location
without metric information.

After the first precise mathematical definition of the sto-
chastic map [16], early experiments [7], [14], have shown

the quality of fully metric simultaneous|ocalization and map
building: The resulting environment model permits highly
precise localization, which is only bounded by the quality of
the sensor data [2]. However these approaches suffer of
some limitations. Firstly they rely strongly on dead-reckon-
ing. For automatic mapping this makes the global consisten-
cy of the map difficult to maintain in large environments,
where the drift in the odometry becomes too important. Fur-
thermore they represent the robot pose with a single Gauss-
ian distribution. This means that an unmodeled event (i.e.
collision) could cause adivergence between the ground truth
and the estimated pose from which the system is unable to
recover (lost situation). In [5] it has been shown that by tak-
ing into account al the correlations (off-diagonal cross-co-
variance in eq. (6)), the global consistency is better
maintained. However thisis not sufficient, as confirmed by
arecent work [6], where asolution is proposed by extending
the absolute |localization to include a localization relative to
local reference frames.

On the other hand topological approaches[12] can handle
multi hypothesistracking and have atopological global con-
sistency, which is easier to maintain. The robustness of such
approaches has firstly been proven by the application of the
state set progression [15], which has then been generalized
to the POMDP approach [4], [10]. For automatic mapping in
[11] the Baum-Welch algorithm has been used for model
learning. In contrast to the above mentioned topological ap-
proaches, [13] proposes a topological approach, which
heavily rely on odometry in order better to handle dynamic
environments. All these approaches are robust, but have the
drawback of losing in precision with respect to the fully met-
ric ones: The robot pose is represented by alocation without
precise metric information. To face this, the Markov local-
ization [9] has been proposed: A finegrained grid guarantees
both precision and multimodality. However this approach
remains computationally intractable for current embedded
systems. A more efficient aternative has recently been pro-
posed, but the Monte Carlo localization [8] has not yet been
extended for simultaneous localization and map building.

Metric and topological approaches are converging, like
[6], [8] and [9], to hybrid solutions by adding advantageous
characteristics of the oppositeworld. Going in this direction,
in[17] the approach consists in extracting atopol ogical map
from agrid map by means of aVoronoi based method, while
[18] proposes to use the Baum-Welch algorithm as in [11],
but to build atopologically consistent global map which per-
mits closing the loop for the global metric map too.

In contrast to the above mentioned approaches, for this
system a natural integration of the metric and topological
paradigm is proposed. The approaches are completely sepa-
rated into two levels of abstraction. Metric maps are used
only locally for structures (rooms) that are naturally defined
by the environment. There, afully metric method is adopted.
As it has been shown in [5], for such small environments,
wherethedrift in the odometry remains uncritical, stochastic



map allows for precise and consistent automatic mapping.
The topological approach is used to connect the local metric
maps that can be far away from each other. With this the ro-
bot can take advantage of the precision of a fully metric,
EKF navigation, added to the robustness in the large of the
POMDP approach. All this by maintai ning a compactness of
the environment representation and alow complexity, which
allows an efficient implementation of the method on a fully
autonomous system. This hybrid approach shows also its
practicability for environments with loops. In this case the
loop is closed in the global topological map based on the in-
formation from the topological localization, while the metric
information remainslocal and doestherefore not require fur-
ther processing, contrasting to [18], where the topological
information is used for mapping only, to closetheloopin the
metric map correctly.

6. Conclusions and Outlook

This paper presents a new hybrid approach for both local-
ization and map building. The metric and topological parts
are completely separated into two levels of abstraction. To-
gether they allow avery compact and computationally effi-
cient representation of the environment for mobile robot
navigation. Furthermore this combination permits both pre-
cision with the non-discrete metric estimator and robustness
by means of the multimodal topological approach.

The approach is validated empirically by extensive exper-
imentation for atotal of more than 1.5 km. Map building is
tested by performing five complete explorations of the envi-
ronment and comparing the resulting maps. This comparison
demonstrates that the maps are consistent with respect to the
environment and that the perception permits to extract pre-
cious information. For localization, the success rate over the
0.9 km of the 25 tests missionsis 100%. Nevertheless a pre-
cise analysis of the state transitions shows that, between
neighbor states, fal se state estimate occurs (1.4%) and some-
times are even treated as confident (0.5%). The relocation
performance of the topological method has been shown with
10 successful experiments where the belief state converges
with 1 to 4 states depending on the distinctiveness of the part
of the environment where the robot is navigating. It has been
shown how loops can be closed on the localization level in-
stead of the perception level. Thisiseasily done by using the
multi hypothesis tracking characteristic of the POMDP ap-
proach for detection and backtracking for closing the loop.

These experiments show that the presented approach is
mature to be introduced for real applications. Further re-
search will therefore focus on long term experimentation in
large indoor environments presenting other different and
challenging characteristics.
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